Skip to main content
Erschienen in: Cancer Imaging 1/2015

Open Access 01.12.2015 | Case series

Image findings of cranial nerve pathology on [18F]-2- deoxy-D-glucose (FDG) positron emission tomography with computerized tomography (PET/CT): a pictorial essay

verfasst von: Osama A. Raslan, Razi Muzaffar, Vilaas Shetty, Medhat M. Osman

Erschienen in: Cancer Imaging | Ausgabe 1/2015

Abstract

This article aims to increase awareness about the utility of 18F -FDG-PET/CT in the evaluation of cranial nerve (CN) pathology. We discuss the clinical implication of detecting perineural tumor spread, emphasize the primary and secondary 18F -FDG-PET/CT findings of CN pathology, and illustrate the individual 18F -FDG-PET/CT CN anatomy and pathology of 11 of the 12 CNs.
Hinweise

Competing interests

Dr. Osman: Speaker, Koninklijke Philips NV. All other authors have no financial disclosures.

Authors’ contributions

All Authors: 1) Have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; 3) have given final approval of the version to be published; and 4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read and approved the final manuscript.
Abkürzungen
FDG
[18 F]-2- deoxy-D-glucose
PET/CT
Positron emission tomography with computerized tomography
CN
Cranial nerve
HN
Head and neck
CPA
Cerebellopontine angle lesion
IAC
Internal auditory canal
JF
Jugular foramen
CN I
Olfactory nerve
CN II
Optic nerve
CN III
Oculomotor nerve
CN IV
Trochlear nerve
CN V
Trigeminal nerve
CN V1
Ophthalmic division of trigeminal nerve
CN V2
Maxillary division of trigeminal nerve
CN V3
Mandibular division of trigeminal nerve
CN VI
Abducens nerve
CN VII
Facial nerve
CN VIII
Vestibulocochlear nerve
CN IX
Glossopharyngeal nerve
CN X
Vagus nerve
CN XI
Spinal accessory nerve
CN XII
Hypoglossal nerve
FIESTA
Fast imaging employing steady-state acquisition
MPR
Multiplanar reformatted images
SSFP
Steady state free precession
STIR
Short tau inversion recovery
MIP
Maximum intensity projection

Background

Conventional CT and MRI have been the imaging modalities of choice for evaluation of cranial nerve (CN) pathology. However, CN pathology can also be detected on [18 F]-2- deoxy-D-glucose (FDG) positron emission tomography with computerized tomography (PET/CT) imaging [13]. As FDG PET/CT is increasingly being used for oncologic imaging and more specifically for evaluation of head and neck (HN) cancer [4], PET/CT interpreters need to familiarize themselves with the image findings of CN involvement, which will greatly impact the staging and management of these patients.
Tumor related PET/CT findings include the perineural spread of HN tumors which represents a rare contiguous metastatic extension of tumor along a cranial nerve that portends to poor prognosis, even if the patient is asymptomatic [2, 5]. If present, treatment can be changed to include neck dissection, a larger radiation field, or adding adjuvant therapy [68]. Facial nerve involvement (CN VII) in parotid tumors may preclude facial nerve–sparing surgery or require additional treatment modality [9]. Patients with skin cancer and perineural invasion will require adjuvant radiation therapy even when clear margins are achieved with Mohs surgery [10, 11]. Also the degree of FDG uptake by the tumor as measured by the SUV max is an important prognostic marker for locally advanced nasopharyngeal cancer. High FDG uptake reflects more aggressive tumors that may require more aggressive treatment and carries a worse prognosis, as compared to the less aggressive low FDG tumors [12].
Non-tumor related benign and malignant cranial nerve pathology can also be incidentally detected during PET/CT oncologic imaging including schwannomas [13], optic nerve glioma [14], meningioma [15], and melanoma [15]. Gallium 68 (68Ga) 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaceticacid (DOTA)–octreotate (DOTATATE, GaTate), has been shown to be more sensitive than FDG-PET/CT in detection of low grade somatostatin receptor positive tumors namely meningioma, esthesioneuroblastoma and schwannoma [16].
The purpose of this article is to describe the primary and secondary FDG-PET/CT findings of CN pathology and to provide a comprehensive illustration of the PET/CT cross-sectional anatomy and pathology of almost each individual CN, thus raising awareness and familiarity about incidental CN lesions seen on PET/CT, which will directly reflect on patient staging and management.

Primary and secondary PET/CT findings of CN pathology

The primary sign of CN pathology includes linear thickening or linear increased/decreased FDG activity along the expected course of the CN (Fig. 1). For this purpose, all three planes (axial, coronal and sagittal) and maximum intensity projection (MIP) images must be evaluated and correlations with all other available imaging modalities, e.g. (CT or MRI) which will often confirm the abnormality.
The secondary signs of CN pathology include widening or destruction at the corresponding skull base foramen, asymmetric atrophy or abnormal activity in the muscles supplied by the CN, or increased FDG activity related to synergistic/antagonistic muscle overcompensation to maintain function (Table 1).
Table 1
Clinical, primary and secondary findings of CN pathology
Symptoms/signs that trigger search pattern for CN pathology
Which CN to suspect?
What to look for and where to look for it on PET/CT?
Primary Sign
Secondary Signs
Abnormality along course of CN
Abnormal skull base foramen/ bone
Muscle atrophy
Over compensation
Anosmia
CN I (Olfactory)
Roof of nose and anterior cranial fossa
Cribriform plate of ethmoid
--
--
Visual loss
CN II (Optic)
Orbit, suprasellar cistern
Optic canal
--
--
Diplopia
CN III (Oculomotor)
Cavernous sinus
Superior orbital fissure (SOF)
Extraocular muscles (except superior oblique and lateral rectus muscles)
--
Vertical diplopia
CN IV (Trochlear)
Cavernous sinus
SOF
Superior oblique
--
Trigeminal Neuralgia
CN V (Trigeminal, main trunk)
Pons, prepontine cistern, Meckel's cave.
--
--
--
Paresthesia over forehead and eye
CN V1 (Ophthalmic division)
Cavernous sinus
SOF
--
--
Paresthesia over cheek
CN V2 (Maxillary division)
Cavernous sinus, cheek
Foramen rotundum, pterygopalatine fossa and infraorbital canal /foramen
--
--
Paresthesia over chin, trismus
CN V3 (Mandibular division)
Masticator space
Foramen ovale, mandibular canal and mental foramen
--
--
Lateral gaze diplopia
CN VI( Abducens)
Cavernous sinus, clivus
SOF
Lateral rectus
Ipsilateral Medial rectus
Facial palsy
CN VII (Facial)
Cerebellopontine angle , parotid space
Petrous bone, internal auditory canal (IAC), and stylomastoid foramen
--
--
Hearing loss/ imbalance
CN VIII (Vestibulocochlear)
Cerebellopontine angle
Petrous bone and IAC
--
--
Hoarseness
CN X (Vagus nerve, recurrent laryngeal branch)
Carotid space, tracheoesophageal grooves, around aortic root
Jugular foramen (JF)
Ipsilateral vocal cord
Contralateral vocal cord
Shoulder drooping
CN XI (Spinal accessory)
Carotid space
JF, foramen magnum
Sternomastoid and trapezius muscles
--
Dysarthria and dysphagia
CN XII (Hypoglossal nerve)
occipital condyles , Carotid space, base of tongue
JF, Hypoglossal canal
Ipsilateral hemitongue
Contralateral hemitounge

Case presentation

Olfactory nerve (CN I)

Direct visualization of the CN I lesion is beyond the resolution of PET/CT, however CN I involvement should be suspected in lesions involving the superior sinonasal and anterior cranial fossa region. The differential considerations include olfactory neuroblastoma (Esthesioneuroblastoma), sinonasal carcinoma and melanoma (Fig. 2).

Optic nerve (CN II)

The main differential considerations for CN II lesion include optic pathway glioma (OPG), optic nerve sheath meningioma, idiopathic orbital inflammatory pseudotumor, and optic neuritis. FDG activity in Optic nerve glioma is variable depending on its histological grade [17, 18]. Some authors suggested the use of FDG-PET/CT in monitoring malignant transformation of OPG in children with neurofibromatosis type 1 syndrome [17, 19]. Optic meningioma is a benign tumor that typically demonstrate minimal to no FDG uptake on PET [15] and can be associated with bony sclerosis/destruction as in our case (Fig. 3). Orbital pseudotumor could be both hyper or isometabolic on FDG PET [18]. Xie et al. described a 56-year-old female with elevated FDG activity in several cranial and peripheral nerves suggestive of multiple neuritis, with patient“s symptoms improving following treatment [3].

Oculomotor, trochlear and abducens nerves (CN III, IV, VI)

Direct visualization of CNs III, IV and VI is usually beyond the resolution of PET/CT, however large brain stem or cavernous sinus lesions along the course of these nerves may indicate cranial nerve involvement by these lesions. Also, extraocular muscle atrophy or asymmetric decreased uptake could represent denervation injury, which should prompt a search for a lesion along the course of the innervating CN. In an attempt to compensate for the paralyzed muscle, the non affected extraocular muscles may show increased FDG activity, further confirming the CN involvement (Fig. 4c–e).

Trigeminal nerve, maxillary and mandibular divisions (CNV, V2 & V3)

FDG-PET/CT can detect perineural tumor spread along the trigeminal nerve and its main divisions; most commonly arising from head and neck squamous cell carcinoma, adenoid cystic carcinoma, mucoepidermoid carcinoma, skin cancer and melanoma as well as [2] lymphoma [1] and neurolymphomatosis [20] (Fig. 5).

Facial/ vestibulocochlear nerve complex (CNVII and VIII)

The most common cerebellopontine angle lesions are vestibular schwannoma and meningioma. Vestibular schwannoma is typically described as a hypometabolic lesion [21], however in our experience they were hypermetabolic (Fig. 6c-f), which may be related to the large size of the lesions. Vestibular schwannoma is differentiated from meningioma by extension into the internal auditory canal (Fig. 6f). The less common facial nerve schwannoma is diagnosed when the lesion extends along the labyrinthine segment of CNVII (Fig. 6g, h). Perineural spread form parotid gland lesions should be suspected with abnormal activity extending superiorly along the stylomastoid foramen or within the temporal bone [2, 22, 23]. Rare CN melanoma metastasis along CNs VII and VIII has also been described [24].

Vagus and spinal accessory nerves (CNs X and XI)

The most common jugular foramen (JF) lesions that my involve CN X and XI are glomus juglare, schwannoma, meningioma and skull base metastasis. Looking at the bone margins of the JF on the bone window of PET/CT may help differentiate glomus tumors which tend to have a permeative destructive margins from schwannoma which tend to cause smooth expansion of the JF (Fig. 7e) and meningioma, which may have permeative sclerotic margins [25]. If the recurrent laryngeal branch of CNX is involved, it will be seen as a hypometabolic ipsilateral paralyzed vocal cord with a hypermetabolic overcompensating contralateral vocal cord (Fig. 7c, d). Ipsilateral shoulder dropping on MIP images (Fig. 7g), with atrophy of the trapezius and sternomastoid muscles on the axial images (Fig. 7c, d), signifies CNXI involvement, which could be secondary to CNXI sacrifice during neck dissection.

Hypoglossal nerve (CN XII)

Injury of CNXII could occur by the aforementioned JF lesions [25]. Further distally it could be secondary to hypoglossal foramen lesions (CNXII Schwannoma [25, 26]), clival tumor (chordoma, chondrosarcoma and plasmacytoma) [25], or rarely could be secondary to retrospective perineural tumor spread from tongue base tumor or radiation injury. An atrophic sagging fatty infiltrated ipsilateral tongue will be seen with hypometabolism on PET/CT (Fig. 8 b, d, e) [25].

Conclusion

Cranial nerve pathology can be detected on FDG PET/CT. With the increased reliance on PET/CT in patient staging and follow-up, PET/CT interpreters should familiarize themselves with these findings as it may change patient staging and management.
“This retrospective study was approved by the Saint Louis University IRB board”.

Acknowledgment

None.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

Dr. Osman: Speaker, Koninklijke Philips NV. All other authors have no financial disclosures.

Authors’ contributions

All Authors: 1) Have made substantial contributions to conception and design, or acquisition of data, or analysis and interpretation of data; 2) have been involved in drafting the manuscript or revising it critically for important intellectual content; 3) have given final approval of the version to be published; and 4) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Yılmaz S, Sağer S, Sen F, Halac M. Bilateral trigeminal nerve recurrence of non-hodgkin lymphoma revealed with FDG PET/CT. Indian J Nucl Med. 2014;29(1):50–2.PubMedCentralCrossRefPubMed Yılmaz S, Sağer S, Sen F, Halac M. Bilateral trigeminal nerve recurrence of non-hodgkin lymphoma revealed with FDG PET/CT. Indian J Nucl Med. 2014;29(1):50–2.PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Paes FM, Singer AD, Checkver AN, Palmquist RA, De La Vega G, Sidani C. Perineural spread in head and neck malignancies:clinical significance and evaluation with 18F-FDG PET/CT. Radiographics. 2013;33(6):1717–36.CrossRefPubMed Paes FM, Singer AD, Checkver AN, Palmquist RA, De La Vega G, Sidani C. Perineural spread in head and neck malignancies:clinical significance and evaluation with 18F-FDG PET/CT. Radiographics. 2013;33(6):1717–36.CrossRefPubMed
3.
Zurück zum Zitat Xie X, Cheng B, Han X, Liu B. Findings of multiple neuritis on FDG PET/CT imaging. Clin Nucl Med. 2013;38(1):67–9.CrossRefPubMed Xie X, Cheng B, Han X, Liu B. Findings of multiple neuritis on FDG PET/CT imaging. Clin Nucl Med. 2013;38(1):67–9.CrossRefPubMed
4.
Zurück zum Zitat Pfister DG, Ang KK, Brizel DM, Burtness BA, Busse PM, Caudell JJ, et al. Head and neck cancers, version 2.2013. Featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2013;11(8):917–23.PubMed Pfister DG, Ang KK, Brizel DM, Burtness BA, Busse PM, Caudell JJ, et al. Head and neck cancers, version 2.2013. Featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2013;11(8):917–23.PubMed
5.
Zurück zum Zitat Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115(15):3379–91.CrossRefPubMed Liebig C, Ayala G, Wilks JA, Berger DH, Albo D. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115(15):3379–91.CrossRefPubMed
6.
Zurück zum Zitat Salamaa J, Sabab N, Quonc H, Gargd M, Lawsone J, McDonaldf M, et al. ACR appropriateness criteria® adjuvant therapy for resected squamous cell carcinoma of the head and neck. Oral Oncol. 2011;47(7):554–9.CrossRef Salamaa J, Sabab N, Quonc H, Gargd M, Lawsone J, McDonaldf M, et al. ACR appropriateness criteria® adjuvant therapy for resected squamous cell carcinoma of the head and neck. Oral Oncol. 2011;47(7):554–9.CrossRef
7.
Zurück zum Zitat Tai SK, Li WY, Yang MH, Chang SY, Chu PY, Tsai TL, et al. Treatment for T1–2 oral squamous cell carcinoma with or without perineural invasion: neck dissection and postoperative adjuvant therapy. Ann Surg Oncol. 2012;19(6):1995–2002.CrossRefPubMed Tai SK, Li WY, Yang MH, Chang SY, Chu PY, Tsai TL, et al. Treatment for T1–2 oral squamous cell carcinoma with or without perineural invasion: neck dissection and postoperative adjuvant therapy. Ann Surg Oncol. 2012;19(6):1995–2002.CrossRefPubMed
8.
Zurück zum Zitat Chatterjee S, Frew J, Mott J, McCallum H, Stevenson P, Maxwell R, et al. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study. Clin Oncol (R Coll Radiol). 2012;24(10):e173–9.CrossRef Chatterjee S, Frew J, Mott J, McCallum H, Stevenson P, Maxwell R, et al. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study. Clin Oncol (R Coll Radiol). 2012;24(10):e173–9.CrossRef
9.
Zurück zum Zitat Bell RB, Dierks EJ, Homer L, Potter BE. Management and outcome of patients with malignant salivary gland tumors. J Oral Maxillofac Surg. 2005;63(7):917–28.CrossRefPubMed Bell RB, Dierks EJ, Homer L, Potter BE. Management and outcome of patients with malignant salivary gland tumors. J Oral Maxillofac Surg. 2005;63(7):917–28.CrossRefPubMed
10.
Zurück zum Zitat Warren TA, Panizza B, Porceddu SV, Gandhi M, Patel P, Wood M, et al. Outcomes after surgery and postoperative radiotherapy for perineural spread of head and neck cutaneous squamous cell carcinoma. Head Neck. 2014 Dec 24. doi: 10.1002/hed.23982. [Epub ahead of print] PubMed PMID: 25546817. Warren TA, Panizza B, Porceddu SV, Gandhi M, Patel P, Wood M, et al. Outcomes after surgery and postoperative radiotherapy for perineural spread of head and neck cutaneous squamous cell carcinoma. Head Neck. 2014 Dec 24. doi: 10.​1002/​hed.​23982. [Epub ahead of print] PubMed PMID: 25546817.
11.
Zurück zum Zitat Dunn M, Morgan MB, Beer TW. Perineural invasion: identification, significance, and a standardized definition. Dermatol Surg. 2009;35(2):214–21.CrossRefPubMed Dunn M, Morgan MB, Beer TW. Perineural invasion: identification, significance, and a standardized definition. Dermatol Surg. 2009;35(2):214–21.CrossRefPubMed
12.
Zurück zum Zitat Xie P, Yue JB, Fu Z, Feng R, Yu JM. Prognostic value of 18F-FDG PET/CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann Oncol. 2010;21(5):1078–82. doi:10.1093/annonc/mdp430. Epub 2009 Nov 13.CrossRefPubMed Xie P, Yue JB, Fu Z, Feng R, Yu JM. Prognostic value of 18F-FDG PET/CT before and after radiotherapy for locally advanced nasopharyngeal carcinoma. Ann Oncol. 2010;21(5):1078–82. doi:10.​1093/​annonc/​mdp430. Epub 2009 Nov 13.CrossRefPubMed
13.
Zurück zum Zitat Jung EJ, Han HS, Koh YC, Cho J, Ryu CG, Paik JH, et al. Metachronous schwannoma in the colon with vestibular schwannoma. Ann Surg Treat Res. 2014;87(3):161–5.PubMedCentralCrossRefPubMed Jung EJ, Han HS, Koh YC, Cho J, Ryu CG, Paik JH, et al. Metachronous schwannoma in the colon with vestibular schwannoma. Ann Surg Treat Res. 2014;87(3):161–5.PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Roselli F, Pisciotta NM, Aniello MS, Niccoli-Asabella A, Defazio G, Livrea P, et al. Brain F-18 Fluorocholine PET/CT for the assessment of optic pathway glioma in neurofibromatosis-1. Clin Nucl Med. 2010;35(10):838–9.CrossRefPubMed Roselli F, Pisciotta NM, Aniello MS, Niccoli-Asabella A, Defazio G, Livrea P, et al. Brain F-18 Fluorocholine PET/CT for the assessment of optic pathway glioma in neurofibromatosis-1. Clin Nucl Med. 2010;35(10):838–9.CrossRefPubMed
15.
16.
Zurück zum Zitat Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2):500–16.CrossRefPubMed Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2):500–16.CrossRefPubMed
17.
Zurück zum Zitat Moharir M, London K, Howman-Giles R, North K. Utility of positron emission tomography for tumour surveillance in children with neurofibromatosis type 1. Eur J Nucl Med Mol Imaging. 2010;37(7):1309–17.CrossRefPubMed Moharir M, London K, Howman-Giles R, North K. Utility of positron emission tomography for tumour surveillance in children with neurofibromatosis type 1. Eur J Nucl Med Mol Imaging. 2010;37(7):1309–17.CrossRefPubMed
18.
Zurück zum Zitat Miyamoto J, Tatsuzawa K, Owada K, Kawabe T, Sasajima H, Mineura K. Usefulness and limitations of fluorine-18-fluorodeoxyglucose positron emission tomography for the detection of malignancy of orbital tumors. Neurol Med Chir (Tokyo). 2008;48(11):495–9. discussion 499.CrossRef Miyamoto J, Tatsuzawa K, Owada K, Kawabe T, Sasajima H, Mineura K. Usefulness and limitations of fluorine-18-fluorodeoxyglucose positron emission tomography for the detection of malignancy of orbital tumors. Neurol Med Chir (Tokyo). 2008;48(11):495–9. discussion 499.CrossRef
19.
Zurück zum Zitat Mölenkamp G, Riemann B, Kuwert T, Sträter R, Kurlemann G, Schober O, et al. Monitoring tumor activity in low grade glioma of childhood. Klin Padiatr. 1998;210(4):239–42.CrossRefPubMed Mölenkamp G, Riemann B, Kuwert T, Sträter R, Kurlemann G, Schober O, et al. Monitoring tumor activity in low grade glioma of childhood. Klin Padiatr. 1998;210(4):239–42.CrossRefPubMed
20.
Zurück zum Zitat Salm LP, Van der Hiel B, Stokkel MP. Increasing importance of 18F-FDG PET in the diagnosis of neurolymphomatosis. Nucl Med Commun. 2012;33(9):907–16.CrossRefPubMed Salm LP, Van der Hiel B, Stokkel MP. Increasing importance of 18F-FDG PET in the diagnosis of neurolymphomatosis. Nucl Med Commun. 2012;33(9):907–16.CrossRefPubMed
21.
Zurück zum Zitat Ginsberg LE. Imaging of perineural tumor spread in head and neck cancer. Semin Ultrasound CT MR. 1999;20(3):175–86.CrossRefPubMed Ginsberg LE. Imaging of perineural tumor spread in head and neck cancer. Semin Ultrasound CT MR. 1999;20(3):175–86.CrossRefPubMed
22.
Zurück zum Zitat Nemec SF, Herneth AM, Czerny C. Perineural tumor spread in malignant head and neck tumors. Top Magn Reson Imaging. 2007;18(6):467–71.CrossRefPubMed Nemec SF, Herneth AM, Czerny C. Perineural tumor spread in malignant head and neck tumors. Top Magn Reson Imaging. 2007;18(6):467–71.CrossRefPubMed
23.
Zurück zum Zitat Lopci E, Monti L, Balzarini L, Chiti A. Cardiac and acoustic metastases in relapsing melanoma. Clin Nucl Med. 2013;38(2):e85–8.CrossRefPubMed Lopci E, Monti L, Balzarini L, Chiti A. Cardiac and acoustic metastases in relapsing melanoma. Clin Nucl Med. 2013;38(2):e85–8.CrossRefPubMed
24.
Zurück zum Zitat Macdonald AJ, Salzman KL, Harnsberger HR, Gilbert E, Shelton C. Primary jugular foramen meningioma: imaging appearance and differentiating features. AJR Am J Roentgenol. 2004;182(2):373–7.CrossRefPubMed Macdonald AJ, Salzman KL, Harnsberger HR, Gilbert E, Shelton C. Primary jugular foramen meningioma: imaging appearance and differentiating features. AJR Am J Roentgenol. 2004;182(2):373–7.CrossRefPubMed
25.
Zurück zum Zitat Thompson EO, Smoker WR. Hypoglossal nerve palsy: a segmental approach. Radiographics. 1994;14(5):939–58.CrossRefPubMed Thompson EO, Smoker WR. Hypoglossal nerve palsy: a segmental approach. Radiographics. 1994;14(5):939–58.CrossRefPubMed
26.
Zurück zum Zitat Santarius T, Dakoji S, Afshari FT, Raymond FL, Firth HV, Fernandes HM, et al. Isolated hypoglossal schwannoma in a 9-year old child. J Neurosurg Pediatr. 2012;10(2):130–3.CrossRefPubMed Santarius T, Dakoji S, Afshari FT, Raymond FL, Firth HV, Fernandes HM, et al. Isolated hypoglossal schwannoma in a 9-year old child. J Neurosurg Pediatr. 2012;10(2):130–3.CrossRefPubMed
Metadaten
Titel
Image findings of cranial nerve pathology on [18F]-2- deoxy-D-glucose (FDG) positron emission tomography with computerized tomography (PET/CT): a pictorial essay
verfasst von
Osama A. Raslan
Razi Muzaffar
Vilaas Shetty
Medhat M. Osman
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Cancer Imaging / Ausgabe 1/2015
Elektronische ISSN: 1470-7330
DOI
https://doi.org/10.1186/s40644-015-0054-0

Weitere Artikel der Ausgabe 1/2015

Cancer Imaging 1/2015 Zur Ausgabe

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.