Skip to main content

17.01.2024 | Review

Imaging Procedure and Clinical Studies of [18F]FP-CIT PET

verfasst von: Changhwan Sung, Seung Jun Oh, Jae Seung Kim

Erschienen in: Nuclear Medicine and Molecular Imaging

Einloggen, um Zugang zu erhalten

Abstract

N-3-[18F]fluoropropyl-2β-carbomethoxy-3β-4-iodophenyl nortropane ([18F]FP-CIT) is a radiopharmaceutical for dopamine transporter (DAT) imaging using positron emission tomography (PET) to detect dopaminergic neuronal degeneration in patients with parkinsonian syndrome. [18F]FP-CIT was granted approval by the Ministry of Food and Drug Safety in 2008 as the inaugural radiopharmaceutical for PET imaging, and it has found extensive utilization across numerous institutions in Korea. This review article presents an imaging procedure for [18F]FP-CIT PET to aid nuclear medicine physicians in clinical practice and systematically reviews the clinical studies associated with [18F]FP-CIT PET.
Literatur
1.
Zurück zum Zitat Coenen HH, Dutschka K, Müller SP, Geworski L, Farahati J, Reiners C. N.c.a. radiosynthesis of [123,124I]beta-CIT, plasma analysis and pharmacokinetic studies with SPECT and PET. Nucl Med Biol. 1995;22:977–84.PubMedCrossRef Coenen HH, Dutschka K, Müller SP, Geworski L, Farahati J, Reiners C. N.c.a. radiosynthesis of [123,124I]beta-CIT, plasma analysis and pharmacokinetic studies with SPECT and PET. Nucl Med Biol. 1995;22:977–84.PubMedCrossRef
2.
Zurück zum Zitat Kung MP, Stevenson DA, Plössl K, Meegalla SK, Beckwith A, Essman WD, et al. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med. 1997;24:372–80.PubMed Kung MP, Stevenson DA, Plössl K, Meegalla SK, Beckwith A, Essman WD, et al. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med. 1997;24:372–80.PubMed
3.
Zurück zum Zitat Kim JS, Oh SJ, Moon DH. Molecular imaging in neurodegenerative diseases. J Korean Med Assoc. 2009;52:151–67.CrossRef Kim JS, Oh SJ, Moon DH. Molecular imaging in neurodegenerative diseases. J Korean Med Assoc. 2009;52:151–67.CrossRef
4.
Zurück zum Zitat Lundkvist C, Halldin C, Ginovart N, Swahn CG, Farde L. [18F] beta-CIT-FP is superior to [11C] beta-CIT-FP for quantitation of the dopamine transporter. Nucl Med Biol. 1997;24:621–7.PubMedCrossRef Lundkvist C, Halldin C, Ginovart N, Swahn CG, Farde L. [18F] beta-CIT-FP is superior to [11C] beta-CIT-FP for quantitation of the dopamine transporter. Nucl Med Biol. 1997;24:621–7.PubMedCrossRef
5.
Zurück zum Zitat Sihver W, Drewes B, Schulze A, Olsson RA, Coenen HH. Evaluation of novel tropane analogues in comparison with the binding characteristics of [18F]FP-CIT and [131I]beta-CIT. Nucl Med Biol. 2007;34:211–9.PubMedCrossRef Sihver W, Drewes B, Schulze A, Olsson RA, Coenen HH. Evaluation of novel tropane analogues in comparison with the binding characteristics of [18F]FP-CIT and [131I]beta-CIT. Nucl Med Biol. 2007;34:211–9.PubMedCrossRef
6.
Zurück zum Zitat Kong Y, Zhang C, Liu K, Wagle Shukla A, Sun B, Guan Y. Imaging of dopamine transporters in Parkinson disease: a meta-analysis of (18) F/(123) I-FP-CIT studies. Ann Clin Transl Neurol. 2020;7:1524–34.PubMedPubMedCentralCrossRef Kong Y, Zhang C, Liu K, Wagle Shukla A, Sun B, Guan Y. Imaging of dopamine transporters in Parkinson disease: a meta-analysis of (18) F/(123) I-FP-CIT studies. Ann Clin Transl Neurol. 2020;7:1524–34.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Lee I, Kim JS, Park JY, Byun BH, Park SY, Choi JH, et al. Head-to-head comparison of (18) F-FP-CIT and (123) I-FP-CIT for dopamine transporter imaging in patients with Parkinson’s disease: A preliminary study. Synapse. 2018;72: e22032.PubMedCrossRef Lee I, Kim JS, Park JY, Byun BH, Park SY, Choi JH, et al. Head-to-head comparison of (18) F-FP-CIT and (123) I-FP-CIT for dopamine transporter imaging in patients with Parkinson’s disease: A preliminary study. Synapse. 2018;72: e22032.PubMedCrossRef
8.
Zurück zum Zitat Joe J. Levosulpiride-Induced Neurological Adverse Effects: A Prospective Study from a Tertiary Care Center. Ann Indian Acad Neurol. 2020;23:174–6.PubMedPubMedCentralCrossRef Joe J. Levosulpiride-Induced Neurological Adverse Effects: A Prospective Study from a Tertiary Care Center. Ann Indian Acad Neurol. 2020;23:174–6.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Booij J, Kemp P. Dopamine transporter imaging with [(123)I]FP-CIT SPECT: potential effects of drugs. Eur J Nucl Med Mol Imaging. 2008;35:424–38.PubMedCrossRef Booij J, Kemp P. Dopamine transporter imaging with [(123)I]FP-CIT SPECT: potential effects of drugs. Eur J Nucl Med Mol Imaging. 2008;35:424–38.PubMedCrossRef
11.
Zurück zum Zitat Schillaci O, Pierantozzi M, Filippi L, Manni C, Brusa L, Danieli R, et al. The effect of levodopa therapy on dopamine transporter SPECT imaging with(123)I-FP-CIT in patients with Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2005;32:1452–6.PubMedCrossRef Schillaci O, Pierantozzi M, Filippi L, Manni C, Brusa L, Danieli R, et al. The effect of levodopa therapy on dopamine transporter SPECT imaging with(123)I-FP-CIT in patients with Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2005;32:1452–6.PubMedCrossRef
12.
Zurück zum Zitat Booij J, de Jong J, de Bruin K, Knol R, de Win MM, van Eck-Smit BL. Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects. J Nucl Med. 2007;48:359–66.PubMed Booij J, de Jong J, de Bruin K, Knol R, de Win MM, van Eck-Smit BL. Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects. J Nucl Med. 2007;48:359–66.PubMed
13.
Zurück zum Zitat Chaly T, Dhawan V, Kazumata K, Antonini A, Margouleff C, Dahl JR, et al. Radiosynthesis of [18F] N-3-fluoropropyl-2-beta-carbomethoxy-3-beta-(4-iodophenyl) nortropane and the first human study with positron emission tomography. Nucl Med Biol. 1996;23:999–1004.PubMedCrossRef Chaly T, Dhawan V, Kazumata K, Antonini A, Margouleff C, Dahl JR, et al. Radiosynthesis of [18F] N-3-fluoropropyl-2-beta-carbomethoxy-3-beta-(4-iodophenyl) nortropane and the first human study with positron emission tomography. Nucl Med Biol. 1996;23:999–1004.PubMedCrossRef
14.
Zurück zum Zitat Lee SJ, Oh SJ, Chi DY, Kang SH, Kil HS, Kim JS, et al. One-step high-radiochemical-yield synthesis of [18F]FP-CIT using a protic solvent system. Nucl Med Biol. 2007;34:345–51.PubMedCrossRef Lee SJ, Oh SJ, Chi DY, Kang SH, Kil HS, Kim JS, et al. One-step high-radiochemical-yield synthesis of [18F]FP-CIT using a protic solvent system. Nucl Med Biol. 2007;34:345–51.PubMedCrossRef
15.
Zurück zum Zitat Lee SJ, Oh SJ, Moon WY, Choi MS, Kim JS, Chi DY, et al. New automated synthesis of [18F]FP-CIT with base amount control affording high and stable radiochemical yield: a 1.5-year production report. Nucl Med Biol. 2011;38:593–7.PubMedCrossRef Lee SJ, Oh SJ, Moon WY, Choi MS, Kim JS, Chi DY, et al. New automated synthesis of [18F]FP-CIT with base amount control affording high and stable radiochemical yield: a 1.5-year production report. Nucl Med Biol. 2011;38:593–7.PubMedCrossRef
16.
Zurück zum Zitat Lee SJ, Oh SJ, Chi DY, Jin-Sook R, Dae-Hyuk M. High yielding [18F]Fluorination method by fine control of the base. Bull Korean Chem Soc. 2012;33:2177–80.CrossRef Lee SJ, Oh SJ, Chi DY, Jin-Sook R, Dae-Hyuk M. High yielding [18F]Fluorination method by fine control of the base. Bull Korean Chem Soc. 2012;33:2177–80.CrossRef
17.
Zurück zum Zitat Kazumata K, Dhawan V, Chaly T, Antonini A, Margouleff C, Belakhlef A, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med. 1998;39:1521–30.PubMed Kazumata K, Dhawan V, Chaly T, Antonini A, Margouleff C, Belakhlef A, et al. Dopamine transporter imaging with fluorine-18-FPCIT and PET. J Nucl Med. 1998;39:1521–30.PubMed
18.
Zurück zum Zitat Yaqub M, Boellaard R, van Berckel BN, Ponsen MM, Lubberink M, Windhorst AD, et al. Quantification of dopamine transporter binding using [18F]FP-beta-CIT and positron emission tomography. J Cereb Blood Flow Metab. 2007;27:1397–406.PubMedCrossRef Yaqub M, Boellaard R, van Berckel BN, Ponsen MM, Lubberink M, Windhorst AD, et al. Quantification of dopamine transporter binding using [18F]FP-beta-CIT and positron emission tomography. J Cereb Blood Flow Metab. 2007;27:1397–406.PubMedCrossRef
19.
Zurück zum Zitat Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med. 1999;40:753–61.PubMed Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by [123I]FPCIT SPECT. J Nucl Med. 1999;40:753–61.PubMed
20.
Zurück zum Zitat Oh JK, Yoo ID, Seo YY, Chung YA, Yoo Ie R, Kim SH, et al. Clinical Significance of F-18 FP-CIT Dual Time Point PET Imaging in Idiopathic Parkinson’s Disease. Nucl Med Mol Imaging. 2011;45:255–60.PubMedPubMedCentralCrossRef Oh JK, Yoo ID, Seo YY, Chung YA, Yoo Ie R, Kim SH, et al. Clinical Significance of F-18 FP-CIT Dual Time Point PET Imaging in Idiopathic Parkinson’s Disease. Nucl Med Mol Imaging. 2011;45:255–60.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Jin S, Oh M, Oh SJ, Oh JS, Lee SJ, Chung SJ, et al. Additional Value of Early-Phase 18F-FP-CIT PET Image for Differential Diagnosis of Atypical Parkinsonism. Clin Nucl Med. 2017;42:e80–7.PubMedCrossRef Jin S, Oh M, Oh SJ, Oh JS, Lee SJ, Chung SJ, et al. Additional Value of Early-Phase 18F-FP-CIT PET Image for Differential Diagnosis of Atypical Parkinsonism. Clin Nucl Med. 2017;42:e80–7.PubMedCrossRef
22.
Zurück zum Zitat Alberts I, Sachpekidis C, Prenosil G, Viscione M, Bohn KP, Mingels C, et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [(18)F]-FDG PET/CT. Ann Nucl Med. 2021;35:485–92.PubMedPubMedCentralCrossRef Alberts I, Sachpekidis C, Prenosil G, Viscione M, Bohn KP, Mingels C, et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [(18)F]-FDG PET/CT. Ann Nucl Med. 2021;35:485–92.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Gur RC, Ragland JD, Reivich M, Greenberg JH, Alavi A, Gur RE. Regional differences in the coupling between resting cerebral blood flow and metabolism may indicate action preparedness as a default state. Cereb Cortex. 2009;19:375–82.PubMedCrossRef Gur RC, Ragland JD, Reivich M, Greenberg JH, Alavi A, Gur RE. Regional differences in the coupling between resting cerebral blood flow and metabolism may indicate action preparedness as a default state. Cereb Cortex. 2009;19:375–82.PubMedCrossRef
24.
Zurück zum Zitat Hong CM, Ryu HS, Ahn BC. Early perfusion and dopamine transporter imaging using (18)F-FP-CIT PET/CT in patients with parkinsonism. Am J Nucl Med Mol Imaging. 2018;8:360–72.PubMedPubMedCentral Hong CM, Ryu HS, Ahn BC. Early perfusion and dopamine transporter imaging using (18)F-FP-CIT PET/CT in patients with parkinsonism. Am J Nucl Med Mol Imaging. 2018;8:360–72.PubMedPubMedCentral
25.
Zurück zum Zitat Jin S, Oh M, Oh SJ, Oh JS, Lee SJ, Chung SJ, et al. Differential Diagnosis of Parkinsonism Using Dual-Phase F-18 FP-CIT PET Imaging. Nucl Med Mol Imaging. 2013;47:44–51.PubMedCrossRef Jin S, Oh M, Oh SJ, Oh JS, Lee SJ, Chung SJ, et al. Differential Diagnosis of Parkinsonism Using Dual-Phase F-18 FP-CIT PET Imaging. Nucl Med Mol Imaging. 2013;47:44–51.PubMedCrossRef
26.
Zurück zum Zitat Chun K, Kong E, Cho I. Comparison of perfusion 18F-FP-CIT PET and 99mTc-ECD SPECT in parkinsonian disorders. Medicine (Baltimore). 2021;100: e27019.PubMedCrossRef Chun K, Kong E, Cho I. Comparison of perfusion 18F-FP-CIT PET and 99mTc-ECD SPECT in parkinsonian disorders. Medicine (Baltimore). 2021;100: e27019.PubMedCrossRef
27.
Zurück zum Zitat Oh M, Lee N, Kim C, Son HJ, Sung C, Oh SJ, et al. Diagnostic accuracy of dual-phase (18)F-FP-CIT PET imaging for detection and differential diagnosis of Parkinsonism. Sci Rep. 2021;11:14992.PubMedPubMedCentralCrossRef Oh M, Lee N, Kim C, Son HJ, Sung C, Oh SJ, et al. Diagnostic accuracy of dual-phase (18)F-FP-CIT PET imaging for detection and differential diagnosis of Parkinsonism. Sci Rep. 2021;11:14992.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Peng S, Tang C, Schindlbeck K, Rydzinski Y, Dhawan V, Spetsieris PG, et al. Dynamic (18)F-FPCIT PET: quantification of Parkinson’s disease metabolic networks and nigrostriatal dopaminergic dysfunction in a single imaging session. J Nucl Med. 2021;62:1775–82.PubMedPubMedCentralCrossRef Peng S, Tang C, Schindlbeck K, Rydzinski Y, Dhawan V, Spetsieris PG, et al. Dynamic (18)F-FPCIT PET: quantification of Parkinson’s disease metabolic networks and nigrostriatal dopaminergic dysfunction in a single imaging session. J Nucl Med. 2021;62:1775–82.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat An YS, Yoon JH, Son SJ, Hong CH, Lee SJ, Yoon JK. Early-phase (18)F-FP-CIT and (18)F-flutemetamol PET were significantly correlated. Sci Rep. 2021;11:12297.PubMedPubMedCentralCrossRef An YS, Yoon JH, Son SJ, Hong CH, Lee SJ, Yoon JK. Early-phase (18)F-FP-CIT and (18)F-flutemetamol PET were significantly correlated. Sci Rep. 2021;11:12297.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Lee JY, Seo SH, Kim YK, Yoo HB, Kim YE, Song IC, et al. Extrastriatal dopaminergic changes in Parkinson’s disease patients with impulse control disorders. J Neurol Neurosurg Psychiatry. 2014;85:23–30.PubMedCrossRef Lee JY, Seo SH, Kim YK, Yoo HB, Kim YE, Song IC, et al. Extrastriatal dopaminergic changes in Parkinson’s disease patients with impulse control disorders. J Neurol Neurosurg Psychiatry. 2014;85:23–30.PubMedCrossRef
31.
Zurück zum Zitat Hong CM, Kim DH, Ahn BC, Seo JG, Ryu HS. Relationship between Apathy and Subjective Poor Night-time Sleep in de novo. Untreated Parkinson’s Disease J Integr Neurosci. 2022;21:74.PubMed Hong CM, Kim DH, Ahn BC, Seo JG, Ryu HS. Relationship between Apathy and Subjective Poor Night-time Sleep in de novo. Untreated Parkinson’s Disease J Integr Neurosci. 2022;21:74.PubMed
32.
Zurück zum Zitat Kim A, Kim HJ, Jeon B. Importance of proper window setting in visual assessment of dopamine transporter imaging: A case of early-onset parkinsonism related to Park2 gene mutation. Neurology Asia. 2016;21:187–9. Kim A, Kim HJ, Jeon B. Importance of proper window setting in visual assessment of dopamine transporter imaging: A case of early-onset parkinsonism related to Park2 gene mutation. Neurology Asia. 2016;21:187–9.
33.
Zurück zum Zitat Knudsen K, Fedorova TD, Horsager J, Andersen KB, Skjærbæk C, Berg D, et al. Asymmetric Dopaminergic Dysfunction in Brain-First versus Body-First Parkinson’s Disease Subtypes. J Parkinsons Dis. 2021;11:1677–87.PubMedCrossRef Knudsen K, Fedorova TD, Horsager J, Andersen KB, Skjærbæk C, Berg D, et al. Asymmetric Dopaminergic Dysfunction in Brain-First versus Body-First Parkinson’s Disease Subtypes. J Parkinsons Dis. 2021;11:1677–87.PubMedCrossRef
34.
Zurück zum Zitat Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson’s disease. Neurobiol Dis. 2022;164: 105626.PubMedCrossRef Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson’s disease. Neurobiol Dis. 2022;164: 105626.PubMedCrossRef
35.
Zurück zum Zitat Wüllner U, Borghammer P, Choe CU, Csoti I, Falkenburger B, Gasser T, et al. The heterogeneity of Parkinson’s disease. J Neural Transm (Vienna). 2023;130:827–38.PubMedCrossRef Wüllner U, Borghammer P, Choe CU, Csoti I, Falkenburger B, Gasser T, et al. The heterogeneity of Parkinson’s disease. J Neural Transm (Vienna). 2023;130:827–38.PubMedCrossRef
36.
Zurück zum Zitat Borghammer P. The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson’s Disease: Explaining Motor Asymmetry, Non-Motor Phenotypes, and Cognitive Decline. J Parkinsons Dis. 2021;11:455–74.PubMedCentralCrossRef Borghammer P. The α-Synuclein Origin and Connectome Model (SOC Model) of Parkinson’s Disease: Explaining Motor Asymmetry, Non-Motor Phenotypes, and Cognitive Decline. J Parkinsons Dis. 2021;11:455–74.PubMedCentralCrossRef
37.
Zurück zum Zitat Sung C, Lee JH, Oh JS, Oh M, Lee SJ, Oh SJ, et al. Longitudinal Decline of Striatal Subregional [(18)F]FP-CIT Uptake in Parkinson’s Disease. Nucl Med Mol Imaging. 2017;51:304–13.PubMedPubMedCentralCrossRef Sung C, Lee JH, Oh JS, Oh M, Lee SJ, Oh SJ, et al. Longitudinal Decline of Striatal Subregional [(18)F]FP-CIT Uptake in Parkinson’s Disease. Nucl Med Mol Imaging. 2017;51:304–13.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Martínez-Valle Torres MD, Ortega Lozano SJ, Gómez Heredia MJ, Amrani Raissouni T, Ramos Moreno E, Moya Espinosa P, et al. Longitudinal evaluation using FP-CIT in patients with parkinsonism. Neurología (English Edition). 2014;29:327–33.CrossRef Martínez-Valle Torres MD, Ortega Lozano SJ, Gómez Heredia MJ, Amrani Raissouni T, Ramos Moreno E, Moya Espinosa P, et al. Longitudinal evaluation using FP-CIT in patients with parkinsonism. Neurología (English Edition). 2014;29:327–33.CrossRef
39.
Zurück zum Zitat Kim YI, Im HJ, Paeng JC, Lee JS, Eo JS, Kim DH, et al. Validation of Simple Quantification Methods for (18)F-FP-CIT PET Using Automatic Delineation of Volumes of Interest Based on Statistical Probabilistic Anatomical Mapping and Isocontour Margin Setting. Nucl Med Mol Imaging. 2012;46:254–60.PubMedPubMedCentralCrossRef Kim YI, Im HJ, Paeng JC, Lee JS, Eo JS, Kim DH, et al. Validation of Simple Quantification Methods for (18)F-FP-CIT PET Using Automatic Delineation of Volumes of Interest Based on Statistical Probabilistic Anatomical Mapping and Isocontour Margin Setting. Nucl Med Mol Imaging. 2012;46:254–60.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Jeong E, Oh SY, Pahk K, Lee CN, Park KW, Lee JS, et al. Feasibility of PET Template-Based Analysis on F-18 FP-CIT PET in Patients with De Novo Parkinson’s Disease. Nucl Med Mol Imaging. 2013;47:73–80.PubMedPubMedCentralCrossRef Jeong E, Oh SY, Pahk K, Lee CN, Park KW, Lee JS, et al. Feasibility of PET Template-Based Analysis on F-18 FP-CIT PET in Patients with De Novo Parkinson’s Disease. Nucl Med Mol Imaging. 2013;47:73–80.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Kim JS, Cho H, Choi JY, Lee SH, Ryu YH, Lyoo CH, et al. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image. PLoS ONE. 2015;10: e0132585.PubMedPubMedCentralCrossRef Kim JS, Cho H, Choi JY, Lee SH, Ryu YH, Lyoo CH, et al. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image. PLoS ONE. 2015;10: e0132585.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Jeong YJ, Son HJ, Yoon HJ, Kang DY. Functional volumetric analysis of striatum using F-18 FP-CIT PET in patients with idiopathic Parkinson’s disease and normal subjects. Ann Nucl Med. 2016;30:572–8.PubMedCrossRef Jeong YJ, Son HJ, Yoon HJ, Kang DY. Functional volumetric analysis of striatum using F-18 FP-CIT PET in patients with idiopathic Parkinson’s disease and normal subjects. Ann Nucl Med. 2016;30:572–8.PubMedCrossRef
43.
Zurück zum Zitat Bae S, Choi H, Whi W, Paeng JC, Cheon GJ, Kang KW, et al. Spatial Normalization Using Early-Phase [(18)F]FP-CIT PET for Quantification of Striatal Dopamine Transporter Binding. Nucl Med Mol Imaging. 2020;54:305–14.PubMedPubMedCentralCrossRef Bae S, Choi H, Whi W, Paeng JC, Cheon GJ, Kang KW, et al. Spatial Normalization Using Early-Phase [(18)F]FP-CIT PET for Quantification of Striatal Dopamine Transporter Binding. Nucl Med Mol Imaging. 2020;54:305–14.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Son HJ, Oh JS, Oh M, Lee SJ, Oh SJ, Chung SJ, et al. Test-retest reproducibility of dopamine transporter density measured with [(18)F]FP-CIT PET in patients with essential tremor and Parkinson’s disease. Ann Nucl Med. 2021;35:299–306.PubMedCrossRef Son HJ, Oh JS, Oh M, Lee SJ, Oh SJ, Chung SJ, et al. Test-retest reproducibility of dopamine transporter density measured with [(18)F]FP-CIT PET in patients with essential tremor and Parkinson’s disease. Ann Nucl Med. 2021;35:299–306.PubMedCrossRef
45.
Zurück zum Zitat Robeson W, Dhawan V, Belakhlef A, Ma Y, Pillai V, Chaly T, et al. Dosimetry of the dopamine transporter radioligand 18F-FPCIT in human subjects. J Nucl Med. 2003;44:961–6.PubMed Robeson W, Dhawan V, Belakhlef A, Ma Y, Pillai V, Chaly T, et al. Dosimetry of the dopamine transporter radioligand 18F-FPCIT in human subjects. J Nucl Med. 2003;44:961–6.PubMed
46.
Zurück zum Zitat Booij J, Busemann Sokole E, Stabin MG, Janssen AG, de Bruin K, van Royen EA. Human biodistribution and dosimetry of [123I]FP-CIT: a potent radioligand for imaging of dopamine transporters. Eur J Nucl Med. 1998;25:24–30.PubMedCrossRef Booij J, Busemann Sokole E, Stabin MG, Janssen AG, de Bruin K, van Royen EA. Human biodistribution and dosimetry of [123I]FP-CIT: a potent radioligand for imaging of dopamine transporters. Eur J Nucl Med. 1998;25:24–30.PubMedCrossRef
47.
Zurück zum Zitat Robeson W, Dhawan V, Ma Y, Bjelke D, Margouleff C, Chaly T, et al. Radiation absorbed dose to the basal ganglia from dopamine transporter radioligand 18F-FPCIT. Biomed Res Int. 2014;2014: 498072.PubMedPubMedCentralCrossRef Robeson W, Dhawan V, Ma Y, Bjelke D, Margouleff C, Chaly T, et al. Radiation absorbed dose to the basal ganglia from dopamine transporter radioligand 18F-FPCIT. Biomed Res Int. 2014;2014: 498072.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Ma Y, Dhawan V, Mentis M, Chaly T, Spetsieris PG, Eidelberg D. Parametric mapping of [18F]FPCIT binding in early stage Parkinson’s disease: a PET study. Synapse. 2002;45:125–33.PubMedCrossRef Ma Y, Dhawan V, Mentis M, Chaly T, Spetsieris PG, Eidelberg D. Parametric mapping of [18F]FPCIT binding in early stage Parkinson’s disease: a PET study. Synapse. 2002;45:125–33.PubMedCrossRef
50.
Zurück zum Zitat Park E, Hwang YM, Lee CN, Kim S, Oh SY, Kim YC, et al. Differential Diagnosis of Patients with Inconclusive Parkinsonian Features Using [(18)F]FP-CIT PET/CT. Nucl Med Mol Imaging. 2014;48:106–13.PubMedCrossRef Park E, Hwang YM, Lee CN, Kim S, Oh SY, Kim YC, et al. Differential Diagnosis of Patients with Inconclusive Parkinsonian Features Using [(18)F]FP-CIT PET/CT. Nucl Med Mol Imaging. 2014;48:106–13.PubMedCrossRef
51.
Zurück zum Zitat You S, Kim MJ, Kim SR, Kim MJ, Oh M, Kim JS, et al. Clinical features and nigrostriatal dysfunction in patients with combined postural and resting tremors. Parkinsonism Relat Disord. 2013;19:1118–22.PubMedCrossRef You S, Kim MJ, Kim SR, Kim MJ, Oh M, Kim JS, et al. Clinical features and nigrostriatal dysfunction in patients with combined postural and resting tremors. Parkinsonism Relat Disord. 2013;19:1118–22.PubMedCrossRef
52.
Zurück zum Zitat Ahn JH, Kim LJ, Kim EY, Park JJ, Yoon BN. Dramatic unilateral decrease in uptake via the dopamine transporter: imaging in a patient with hemiparkinsonism following the lacunar stroke in substantia nigra. Neurol Asia. 2019;24:75–8. Ahn JH, Kim LJ, Kim EY, Park JJ, Yoon BN. Dramatic unilateral decrease in uptake via the dopamine transporter: imaging in a patient with hemiparkinsonism following the lacunar stroke in substantia nigra. Neurol Asia. 2019;24:75–8.
53.
Zurück zum Zitat Kim C, Kim DY, Hong IK. Vascular Parkinsonism by Infarctions at Different Locations on 18F-FP-CIT PET/CT. Clin Nucl Med. 2019;44:e627–8.PubMedCrossRef Kim C, Kim DY, Hong IK. Vascular Parkinsonism by Infarctions at Different Locations on 18F-FP-CIT PET/CT. Clin Nucl Med. 2019;44:e627–8.PubMedCrossRef
54.
Zurück zum Zitat Cheon M, Lee KH. Focal increased 18F FP-CIT uptake in a recent ischemic lesion in the frontal lobe. Clin Nucl Med. 2015;40:e137–9.PubMedCrossRef Cheon M, Lee KH. Focal increased 18F FP-CIT uptake in a recent ischemic lesion in the frontal lobe. Clin Nucl Med. 2015;40:e137–9.PubMedCrossRef
55.
Zurück zum Zitat Lee YH, Lee S, Chung SJ, Yoo HS, Jung JH, Baik K, et al. The pattern of FP-CIT PET in pure white matter hyperintensities-related vascular parkinsonism. Parkinsonism Relat Disord. 2021;82:1–6.PubMedCrossRef Lee YH, Lee S, Chung SJ, Yoo HS, Jung JH, Baik K, et al. The pattern of FP-CIT PET in pure white matter hyperintensities-related vascular parkinsonism. Parkinsonism Relat Disord. 2021;82:1–6.PubMedCrossRef
56.
Zurück zum Zitat Shin S, Jun S, Nam HY. Effect of white matter hyperintensity on dopamine transporter availability of striatum measured by F-18 FP-CIT PET. Jpn J Radiol. 2021;39:1097–102.PubMedCrossRef Shin S, Jun S, Nam HY. Effect of white matter hyperintensity on dopamine transporter availability of striatum measured by F-18 FP-CIT PET. Jpn J Radiol. 2021;39:1097–102.PubMedCrossRef
57.
Zurück zum Zitat Oh M, Kim JS, Kim JY, Shin KH, Park SH, Kim HO, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med. 2012;53:399–406.PubMedCrossRef Oh M, Kim JS, Kim JY, Shin KH, Park SH, Kim HO, et al. Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med. 2012;53:399–406.PubMedCrossRef
58.
Zurück zum Zitat Kim HW, Kim JS, Oh M, Oh JS, Lee SJ, Oh SJ, et al. Different loss of dopamine transporter according to subtype of multiple system atrophy. Eur J Nucl Med Mol Imaging. 2016;43:517–25.PubMedCrossRef Kim HW, Kim JS, Oh M, Oh JS, Lee SJ, Oh SJ, et al. Different loss of dopamine transporter according to subtype of multiple system atrophy. Eur J Nucl Med Mol Imaging. 2016;43:517–25.PubMedCrossRef
59.
Zurück zum Zitat Han S, Oh M, Oh JS, Lee SJ, Oh SJ, Chung SJ, et al. Subregional Pattern of Striatal Dopamine Transporter Loss on 18F FP-CIT Positron Emission Tomography in Patients With Pure Akinesia With Gait Freezing. JAMA Neurol. 2016;73:1477–84.PubMedCrossRef Han S, Oh M, Oh JS, Lee SJ, Oh SJ, Chung SJ, et al. Subregional Pattern of Striatal Dopamine Transporter Loss on 18F FP-CIT Positron Emission Tomography in Patients With Pure Akinesia With Gait Freezing. JAMA Neurol. 2016;73:1477–84.PubMedCrossRef
60.
Zurück zum Zitat Park HK, Kim JS, Im KC, Oh SJ, Kim MJ, Lee JH, et al. Functional brain imaging in pure akinesia with gait freezing: [18F] FDG PET and [18F] FP-CIT PET analyses. Mov Disord. 2009;24:237–45.PubMedCrossRef Park HK, Kim JS, Im KC, Oh SJ, Kim MJ, Lee JH, et al. Functional brain imaging in pure akinesia with gait freezing: [18F] FDG PET and [18F] FP-CIT PET analyses. Mov Disord. 2009;24:237–45.PubMedCrossRef
61.
Zurück zum Zitat Yoo HS, Chung SJ, Kim SJ, Oh JS, Kim JS, Ye BS, et al. The role of 18F-FP-CIT PET in differentiation of progressive supranuclear palsy and frontotemporal dementia in the early stage. Eur J Nucl Med Mol Imaging. 2018;45:1585–95.PubMedCrossRef Yoo HS, Chung SJ, Kim SJ, Oh JS, Kim JS, Ye BS, et al. The role of 18F-FP-CIT PET in differentiation of progressive supranuclear palsy and frontotemporal dementia in the early stage. Eur J Nucl Med Mol Imaging. 2018;45:1585–95.PubMedCrossRef
62.
Zurück zum Zitat Yoo J, Cheon M. Differential diagnosis of patients with atypical Parkinsonian syndrome using (18)F-FDG and (18)F-FP CIT PET: A report of five cases. Radiol Case Rep. 2022;17:2765–70.PubMedPubMedCentralCrossRef Yoo J, Cheon M. Differential diagnosis of patients with atypical Parkinsonian syndrome using (18)F-FDG and (18)F-FP CIT PET: A report of five cases. Radiol Case Rep. 2022;17:2765–70.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Cheon M, Kim SM, Ha SW, Kang MJ, Yang HE, Yoo J. Diagnostic performance for differential diagnosis of atypical parkinsonian syndromes from parkinson’s disease using quantitative indices of (18)F-FP-CIT PET/CT. Diagnostics (Basel). 2022;12:1402.PubMedCrossRef Cheon M, Kim SM, Ha SW, Kang MJ, Yang HE, Yoo J. Diagnostic performance for differential diagnosis of atypical parkinsonian syndromes from parkinson’s disease using quantitative indices of (18)F-FP-CIT PET/CT. Diagnostics (Basel). 2022;12:1402.PubMedCrossRef
64.
Zurück zum Zitat Min JH, Park DG, Yoon JH, An YS. Dual-Phase 18F-FP-CIT PET in Corticobasal Syndrome. Clin Nucl Med. 2019;44:e49–50.PubMedCrossRef Min JH, Park DG, Yoon JH, An YS. Dual-Phase 18F-FP-CIT PET in Corticobasal Syndrome. Clin Nucl Med. 2019;44:e49–50.PubMedCrossRef
65.
Zurück zum Zitat Park DG, An YS, Yoon JH. Serial 18F-FP-CIT and FDG PET in Fulminant Corticobasal Syndrome. Clin Nucl Med. 2021;46:754–5.PubMedCrossRef Park DG, An YS, Yoon JH. Serial 18F-FP-CIT and FDG PET in Fulminant Corticobasal Syndrome. Clin Nucl Med. 2021;46:754–5.PubMedCrossRef
66.
Zurück zum Zitat Chung SJ, Lee YH, Yoo HS, Sohn YH, Ye BS, Cha J, et al. Distinct FP-CIT PET patterns of Alzheimer’s disease with parkinsonism and dementia with Lewy bodies. Eur J Nucl Med Mol Imaging. 2019;46:1652–60.PubMedCrossRef Chung SJ, Lee YH, Yoo HS, Sohn YH, Ye BS, Cha J, et al. Distinct FP-CIT PET patterns of Alzheimer’s disease with parkinsonism and dementia with Lewy bodies. Eur J Nucl Med Mol Imaging. 2019;46:1652–60.PubMedCrossRef
67.
Zurück zum Zitat Lee H, Sung YH, Hwang KH. Additional Role of Midbrain F-18 FP-CIT Uptake on PET in Evaluation of Essential Tremor and Parkinsonism. Curr Med Imaging. 2023;19:1041–51.PubMed Lee H, Sung YH, Hwang KH. Additional Role of Midbrain F-18 FP-CIT Uptake on PET in Evaluation of Essential Tremor and Parkinsonism. Curr Med Imaging. 2023;19:1041–51.PubMed
68.
Zurück zum Zitat Kang K, Choi D, Lee HW. Unusual idiopathic normal pressure hydrocephalus patient with marked asymmetric and upper body parkinsonism. Ann Indian Acad Neurol. 2016;19:245–8.PubMedPubMedCentralCrossRef Kang K, Choi D, Lee HW. Unusual idiopathic normal pressure hydrocephalus patient with marked asymmetric and upper body parkinsonism. Ann Indian Acad Neurol. 2016;19:245–8.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Lee JY, Park SB, Lee M, Ju H, Im K, Kwon KY. Detailed visual assessment of striatal dopaminergic depletion in patients with idiopathic normal pressure hydrocephalus: unremarkable or not? BMC Neurol. 2020;20:277.PubMedPubMedCentralCrossRef Lee JY, Park SB, Lee M, Ju H, Im K, Kwon KY. Detailed visual assessment of striatal dopaminergic depletion in patients with idiopathic normal pressure hydrocephalus: unremarkable or not? BMC Neurol. 2020;20:277.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Kim S, Song IU, Chung YA, Choi EK, Oh JK. Brain MRI, Tc-99m HMPAO SPECT and F-18 FP-CIT PET/CT Findings in a Patient with Wilson Disease: A Case Report. Nucl Med Mol Imaging. 2014;48:303–5.PubMedPubMedCentralCrossRef Kim S, Song IU, Chung YA, Choi EK, Oh JK. Brain MRI, Tc-99m HMPAO SPECT and F-18 FP-CIT PET/CT Findings in a Patient with Wilson Disease: A Case Report. Nucl Med Mol Imaging. 2014;48:303–5.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Shin S, Kim K, Pak K, Nam HY, Kim SJ, Kim IJ. Effects of Maturation on Striatal Dopamine Transporter Availability in Rats. Nuklearmedizin. 2019;58:395–400.PubMedCrossRef Shin S, Kim K, Pak K, Nam HY, Kim SJ, Kim IJ. Effects of Maturation on Striatal Dopamine Transporter Availability in Rats. Nuklearmedizin. 2019;58:395–400.PubMedCrossRef
72.
Zurück zum Zitat Lee CS, Kim SJ, Oh SJ, Kim HO, Yun SC, Doudet D, et al. Uneven age effects of [(18)F]FP-CIT binding in the striatum of Parkinson’s disease. Ann Nucl Med. 2014;28:874–9.PubMedCrossRef Lee CS, Kim SJ, Oh SJ, Kim HO, Yun SC, Doudet D, et al. Uneven age effects of [(18)F]FP-CIT binding in the striatum of Parkinson’s disease. Ann Nucl Med. 2014;28:874–9.PubMedCrossRef
73.
Zurück zum Zitat Asanuma K, Dhawan V, Carbon M, Eidelberg D. Assessment of disease progression in parkinsonism. J Neurol. 2004;251(Suppl 7):vII4-8.PubMed Asanuma K, Dhawan V, Carbon M, Eidelberg D. Assessment of disease progression in parkinsonism. J Neurol. 2004;251(Suppl 7):vII4-8.PubMed
74.
Zurück zum Zitat Chung SJ, Yoo HS, Lee YH, Lee PH, Sohn YH. Heterogeneous Patterns of Striatal Dopamine Loss in Patients with Young- versus Old-Onset Parkinson’s Disease: Impact on Clinical Features. J Mov Disord. 2019;12:113–9.PubMedPubMedCentralCrossRef Chung SJ, Yoo HS, Lee YH, Lee PH, Sohn YH. Heterogeneous Patterns of Striatal Dopamine Loss in Patients with Young- versus Old-Onset Parkinson’s Disease: Impact on Clinical Features. J Mov Disord. 2019;12:113–9.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Chung SJ, Yoo HS, Lee YH, Sohn YH, Ye BS, Cha J, et al. Minimal parkinsonism in the elderly is associated with striatal dopamine loss and pontine structural damage. Parkinsonism Relat Disord. 2020;81:140–3.PubMedCrossRef Chung SJ, Yoo HS, Lee YH, Sohn YH, Ye BS, Cha J, et al. Minimal parkinsonism in the elderly is associated with striatal dopamine loss and pontine structural damage. Parkinsonism Relat Disord. 2020;81:140–3.PubMedCrossRef
76.
Zurück zum Zitat Lee DY, Oh M, Kim SJ, Oh JS, Chung SJ, Kim JS. Bilirubin-Related Differential Striatal [18F]FP-CIT Uptake in Parkinson Disease. Clin Nucl Med. 2019;44:855–9.PubMedCrossRef Lee DY, Oh M, Kim SJ, Oh JS, Chung SJ, Kim JS. Bilirubin-Related Differential Striatal [18F]FP-CIT Uptake in Parkinson Disease. Clin Nucl Med. 2019;44:855–9.PubMedCrossRef
77.
Zurück zum Zitat Pak K, Seo S, Lee MJ, Kim K, Suh S, Im HJ, et al. Striatal DAT availability does not change after supraphysiological glucose loading dose in humans. Endocr Connect. 2021;10:1266–72.PubMedPubMedCentralCrossRef Pak K, Seo S, Lee MJ, Kim K, Suh S, Im HJ, et al. Striatal DAT availability does not change after supraphysiological glucose loading dose in humans. Endocr Connect. 2021;10:1266–72.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Pak K, Seo S, Lee MJ, Kim K, Suh S, Lee J, et al. Hedonic Rating of Sucrose Is Sub-Regionally Associated with Striatal Dopamine Transporter in Humans. Neuroendocrinology. 2022;112:338–44.PubMedCrossRef Pak K, Seo S, Lee MJ, Kim K, Suh S, Lee J, et al. Hedonic Rating of Sucrose Is Sub-Regionally Associated with Striatal Dopamine Transporter in Humans. Neuroendocrinology. 2022;112:338–44.PubMedCrossRef
79.
Zurück zum Zitat Lee Y, Oh JS, Chung SJ, Chung SJ, Kim SJ, Nam CM, et al. Does smoking impact dopamine neuronal loss in de novo Parkinson disease? Ann Neurol. 2017;82:850–4.PubMedCrossRef Lee Y, Oh JS, Chung SJ, Chung SJ, Kim SJ, Nam CM, et al. Does smoking impact dopamine neuronal loss in de novo Parkinson disease? Ann Neurol. 2017;82:850–4.PubMedCrossRef
80.
81.
Zurück zum Zitat Kim SY, Choi HG, Kim YH, Kwon MJ, Kim JH, Lee HS, et al. Longitudinal study of the inverse relationship between Parkinson’s disease and cancer in Korea. NPJ Parkinsons Dis. 2023;9:116.PubMedPubMedCentralCrossRef Kim SY, Choi HG, Kim YH, Kwon MJ, Kim JH, Lee HS, et al. Longitudinal study of the inverse relationship between Parkinson’s disease and cancer in Korea. NPJ Parkinsons Dis. 2023;9:116.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Sunwoo MK, Hong JY, Lee JJ, Lee PH, Sohn YH. Does education modify motor compensation in Parkinson’s disease? J Neurol Sci. 2016;362:118–20.PubMedCrossRef Sunwoo MK, Hong JY, Lee JJ, Lee PH, Sohn YH. Does education modify motor compensation in Parkinson’s disease? J Neurol Sci. 2016;362:118–20.PubMedCrossRef
83.
Zurück zum Zitat Morbelli S, Esposito G, Arbizu J, Barthel H, Boellaard R, Bohnen NI, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020;47:1885–912.PubMedPubMedCentralCrossRef Morbelli S, Esposito G, Arbizu J, Barthel H, Boellaard R, Bohnen NI, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020;47:1885–912.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [(123)I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging. 2023;50:1974–87.PubMedPubMedCentralCrossRef Chahid Y, Sheikh ZH, Mitropoulos M, Booij J. A systematic review of the potential effects of medications and drugs of abuse on dopamine transporter imaging using [(123)I]I-FP-CIT SPECT in routine practice. Eur J Nucl Med Mol Imaging. 2023;50:1974–87.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Ahlskog JE, Uitti RJ, O’Connor MK, Maraganore DM, Matsumoto JY, Stark KF, et al. The effect of dopamine agonist therapy on dopamine transporter imaging in Parkinson’s disease. Mov Disord. 1999;14:940–6.PubMedCrossRef Ahlskog JE, Uitti RJ, O’Connor MK, Maraganore DM, Matsumoto JY, Stark KF, et al. The effect of dopamine agonist therapy on dopamine transporter imaging in Parkinson’s disease. Mov Disord. 1999;14:940–6.PubMedCrossRef
86.
Zurück zum Zitat Innis RB, Marek KL, Sheff K, Zoghbi S, Castronuovo J, Feigin A, et al. Effect of treatment with L-dopa/carbidopa or L-selegiline on striatal dopamine transporter SPECT imaging with [123I]beta-CIT. Mov Disord. 1999;14:436–42.PubMedCrossRef Innis RB, Marek KL, Sheff K, Zoghbi S, Castronuovo J, Feigin A, et al. Effect of treatment with L-dopa/carbidopa or L-selegiline on striatal dopamine transporter SPECT imaging with [123I]beta-CIT. Mov Disord. 1999;14:436–42.PubMedCrossRef
87.
Zurück zum Zitat Fowler JS, Volkow ND, Logan J, Franceschi D, Wang GJ, MacGregor R, et al. Evidence that L-deprenyl treatment for one week does not inhibit MAO A or the dopamine transporter in the human brain. Life Sci. 2001;68:2759–68.PubMedCrossRef Fowler JS, Volkow ND, Logan J, Franceschi D, Wang GJ, MacGregor R, et al. Evidence that L-deprenyl treatment for one week does not inhibit MAO A or the dopamine transporter in the human brain. Life Sci. 2001;68:2759–68.PubMedCrossRef
88.
Zurück zum Zitat Group PS. Dopamine Transporter Brain Imaging to Assess the Effects of Pramipexole vs Levodopa on Parkinson Disease Progression. JAMA. 2002;287:1653–61.CrossRef Group PS. Dopamine Transporter Brain Imaging to Assess the Effects of Pramipexole vs Levodopa on Parkinson Disease Progression. JAMA. 2002;287:1653–61.CrossRef
89.
Zurück zum Zitat Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature. 1997;386:827–30.PubMedCrossRef Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature. 1997;386:827–30.PubMedCrossRef
90.
Zurück zum Zitat McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci. 1998;18:8417–22.PubMedPubMedCentralCrossRef McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci. 1998;18:8417–22.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, et al. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry. 2001;158:1206–14.PubMedCrossRef Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, et al. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry. 2001;158:1206–14.PubMedCrossRef
92.
Zurück zum Zitat Chou YH, Huang WS, Su TP, Lu RB, Wan FJ, Fu YK. Dopamine transporters and cognitive function in methamphetamine abuser after a short abstinence: A SPECT study. Eur Neuropsychopharmacol. 2007;17:46–52.PubMedCrossRef Chou YH, Huang WS, Su TP, Lu RB, Wan FJ, Fu YK. Dopamine transporters and cognitive function in methamphetamine abuser after a short abstinence: A SPECT study. Eur Neuropsychopharmacol. 2007;17:46–52.PubMedCrossRef
93.
Zurück zum Zitat Frankl JA, Bose S, Kuo PH. False-Positive Findings on Dopamine Transporter SPECT Due to Therapeutic Dextroamphetamine and Amphetamine. J Nucl Med Technol. 2018;46:149–50.PubMedCrossRef Frankl JA, Bose S, Kuo PH. False-Positive Findings on Dopamine Transporter SPECT Due to Therapeutic Dextroamphetamine and Amphetamine. J Nucl Med Technol. 2018;46:149–50.PubMedCrossRef
94.
Zurück zum Zitat Spencer TJ, Biederman J, Ciccone PE, Madras BK, Dougherty DD, Bonab AA, et al. PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Am J Psychiatry. 2006;163:387–95.PubMedCrossRef Spencer TJ, Biederman J, Ciccone PE, Madras BK, Dougherty DD, Bonab AA, et al. PET study examining pharmacokinetics, detection and likeability, and dopamine transporter receptor occupancy of short- and long-acting oral methylphenidate. Am J Psychiatry. 2006;163:387–95.PubMedCrossRef
95.
Zurück zum Zitat Szobot CM, Shih MC, Schaefer T, Júnior N, Hoexter MQ, Fu YK, et al. Methylphenidate DAT binding in adolescents with Attention-Deficit/ Hyperactivity Disorder comorbid with Substance Use Disorder–a single photon emission computed tomography with [Tc(99m)]TRODAT-1 study. Neuroimage. 2008;40:1195–201.PubMedCrossRef Szobot CM, Shih MC, Schaefer T, Júnior N, Hoexter MQ, Fu YK, et al. Methylphenidate DAT binding in adolescents with Attention-Deficit/ Hyperactivity Disorder comorbid with Substance Use Disorder–a single photon emission computed tomography with [Tc(99m)]TRODAT-1 study. Neuroimage. 2008;40:1195–201.PubMedCrossRef
96.
Zurück zum Zitat Karila L, Leroy C, Dubol M, Trichard C, Mabondo A, Marill C, et al. Dopamine Transporter Correlates and Occupancy by Modafinil in Cocaine-Dependent Patients: A Controlled Study With High-Resolution PET and [(11)C]-PE2I. Neuropsychopharmacology. 2016;41:2294–302.PubMedPubMedCentralCrossRef Karila L, Leroy C, Dubol M, Trichard C, Mabondo A, Marill C, et al. Dopamine Transporter Correlates and Occupancy by Modafinil in Cocaine-Dependent Patients: A Controlled Study With High-Resolution PET and [(11)C]-PE2I. Neuropsychopharmacology. 2016;41:2294–302.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Spencer TJ, Madras BK, Bonab AA, Dougherty DD, Clarke A, Mirto T, et al. A positron emission tomography study examining the dopaminergic activity of armodafinil in adults using [11C]altropane and [11C]raclopride. Biol Psychiatry. 2010;68:964–70.PubMedCrossRef Spencer TJ, Madras BK, Bonab AA, Dougherty DD, Clarke A, Mirto T, et al. A positron emission tomography study examining the dopaminergic activity of armodafinil in adults using [11C]altropane and [11C]raclopride. Biol Psychiatry. 2010;68:964–70.PubMedCrossRef
98.
Zurück zum Zitat Lavalaye J, Linszen DH, Booij J, Dingemans PMAJ, Reneman L, Habraken JBA, et al. Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT. Schizophr Res. 2001;47:59–67.PubMedCrossRef Lavalaye J, Linszen DH, Booij J, Dingemans PMAJ, Reneman L, Habraken JBA, et al. Dopamine transporter density in young patients with schizophrenia assessed with [123]FP-CIT SPECT. Schizophr Res. 2001;47:59–67.PubMedCrossRef
99.
Zurück zum Zitat Mateos JJ, Lomeña F, Parellada E, Mireia F, Fernandez-Egea E, Pavia J, et al. Lower striatal dopamine transporter binding in neuroleptic-naive schizophrenic patients is not related to antipsychotic treatment but it suggests an illness trait. Psychopharmacology. 2007;191:805–11.PubMedCrossRef Mateos JJ, Lomeña F, Parellada E, Mireia F, Fernandez-Egea E, Pavia J, et al. Lower striatal dopamine transporter binding in neuroleptic-naive schizophrenic patients is not related to antipsychotic treatment but it suggests an illness trait. Psychopharmacology. 2007;191:805–11.PubMedCrossRef
100.
Zurück zum Zitat Alice P, Catriona I, Simon JGL. Visual Hallucinations and the Role of Medications in Parkinson’s Disease: Triggers, Pathophysiology, and Management. The Journal of Neuropsychiatry and Clinical Neurosciences. 2020;32:334–43.CrossRef Alice P, Catriona I, Simon JGL. Visual Hallucinations and the Role of Medications in Parkinson’s Disease: Triggers, Pathophysiology, and Management. The Journal of Neuropsychiatry and Clinical Neurosciences. 2020;32:334–43.CrossRef
101.
Zurück zum Zitat Seo M, Oh M, Cho M, Chung SJ, Lee CS, Kim JS. The Effect of SSRIs on the Binding of (18)F-FP-CIT in Parkinson Patients: A Retrospective Case Control Study. Nucl Med Mol Imaging. 2014;48:287–94.PubMedPubMedCentralCrossRef Seo M, Oh M, Cho M, Chung SJ, Lee CS, Kim JS. The Effect of SSRIs on the Binding of (18)F-FP-CIT in Parkinson Patients: A Retrospective Case Control Study. Nucl Med Mol Imaging. 2014;48:287–94.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Wang J, Zuo CT, Jiang YP, Guan YH, Chen ZP, Xiang JD, et al. 18F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn & Yahr stages. J Neurol. 2007;254:185–90.PubMedCrossRef Wang J, Zuo CT, Jiang YP, Guan YH, Chen ZP, Xiang JD, et al. 18F-FP-CIT PET imaging and SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn & Yahr stages. J Neurol. 2007;254:185–90.PubMedCrossRef
103.
Zurück zum Zitat Yang Y, Cheon M, Kwak YT. 18F-FP-CIT Positron Emission Tomography for Correlating Motor and Cognitive Symptoms of Parkinson’s Disease. Dement Neurocogn Disord. 2017;16:57–63.PubMedPubMedCentralCrossRef Yang Y, Cheon M, Kwak YT. 18F-FP-CIT Positron Emission Tomography for Correlating Motor and Cognitive Symptoms of Parkinson’s Disease. Dement Neurocogn Disord. 2017;16:57–63.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Chung M, Park YS, Kim JS, Kim YJ, Ma HI, Jang SJ, et al. Correlating Parkinson’s disease motor symptoms with three-dimensional [(18)F]FP-CIT PET. Jpn J Radiol. 2015;33:609–18.PubMedCrossRef Chung M, Park YS, Kim JS, Kim YJ, Ma HI, Jang SJ, et al. Correlating Parkinson’s disease motor symptoms with three-dimensional [(18)F]FP-CIT PET. Jpn J Radiol. 2015;33:609–18.PubMedCrossRef
105.
Zurück zum Zitat Lee E, Lee JE, Yoo K, Hong JY, Oh J, Sunwoo MK, et al. Neural correlates of progressive reduction of bradykinesia in de novo Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:1376–81.PubMedCrossRef Lee E, Lee JE, Yoo K, Hong JY, Oh J, Sunwoo MK, et al. Neural correlates of progressive reduction of bradykinesia in de novo Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:1376–81.PubMedCrossRef
106.
Zurück zum Zitat Lee MJ, Kim SL, Lyoo CH, Rinne JO, Lee MS. Impact of regional striatal dopaminergic function on kinematic parameters of Parkinson’s disease. J Neural Transm (Vienna). 2015;122:669–77.PubMedCrossRef Lee MJ, Kim SL, Lyoo CH, Rinne JO, Lee MS. Impact of regional striatal dopaminergic function on kinematic parameters of Parkinson’s disease. J Neural Transm (Vienna). 2015;122:669–77.PubMedCrossRef
107.
Zurück zum Zitat Kim DH, Kyeong S, Cheon M, Ha SW, Yoo J, Kim SM. Characterization of idiopathic Parkinson’s disease subgroups using quantitative gait analysis and corresponding subregional striatal uptake visualized using (18)F-FP-CIT positron emission tomography. Gait Posture. 2020;82:167–73.PubMedCrossRef Kim DH, Kyeong S, Cheon M, Ha SW, Yoo J, Kim SM. Characterization of idiopathic Parkinson’s disease subgroups using quantitative gait analysis and corresponding subregional striatal uptake visualized using (18)F-FP-CIT positron emission tomography. Gait Posture. 2020;82:167–73.PubMedCrossRef
108.
Zurück zum Zitat Lee R, Shin JH, Choi H, Kim HJ, Cheon GJ, Jeon B. Variability of FP-CIT PET Patterns Associated With Clinical Features of Multiple System Atrophy. Neurology. 2021;96:e1663–71.PubMedCrossRef Lee R, Shin JH, Choi H, Kim HJ, Cheon GJ, Jeon B. Variability of FP-CIT PET Patterns Associated With Clinical Features of Multiple System Atrophy. Neurology. 2021;96:e1663–71.PubMedCrossRef
109.
Zurück zum Zitat Ryu HS, Oh M, Oh JS, Moon H, Park KW, Lee C, et al. Distinct clinical features of predominant pre-synaptic and trans-synaptic nigrostriatal dysfunction in multiple system atrophy. J Neurol Sci. 2019;402:100–6.PubMedCrossRef Ryu HS, Oh M, Oh JS, Moon H, Park KW, Lee C, et al. Distinct clinical features of predominant pre-synaptic and trans-synaptic nigrostriatal dysfunction in multiple system atrophy. J Neurol Sci. 2019;402:100–6.PubMedCrossRef
110.
Zurück zum Zitat Chung SJ, Lee S, Yoo HS, Lee YH, Lee HS, Choi Y, et al. Association of the Non-Motor Burden with Patterns of Striatal Dopamine Loss in de novo Parkinson’s Disease. J Parkinsons Dis. 2020;10:1541–9.PubMedCrossRef Chung SJ, Lee S, Yoo HS, Lee YH, Lee HS, Choi Y, et al. Association of the Non-Motor Burden with Patterns of Striatal Dopamine Loss in de novo Parkinson’s Disease. J Parkinsons Dis. 2020;10:1541–9.PubMedCrossRef
111.
Zurück zum Zitat Oh YS, Kim JS, Chung YA, You Ie R, Yang DW, Chung SW, et al. Orthostatic hypotension, non-dipping and striatal dopamine in Parkinson disease. Neurol Sci. 2013;34:557–60.PubMedCrossRef Oh YS, Kim JS, Chung YA, You Ie R, Yang DW, Chung SW, et al. Orthostatic hypotension, non-dipping and striatal dopamine in Parkinson disease. Neurol Sci. 2013;34:557–60.PubMedCrossRef
112.
Zurück zum Zitat Shin HW, Chung SJ, Lee S, Cha J, Sohn YH, Yun M, et al. Dysautonomia is linked to striatal dopamine deficits and regional cerebral perfusion in early parkinson disease. Clin Nucl Med. 2020;45:e342–8.PubMedCrossRef Shin HW, Chung SJ, Lee S, Cha J, Sohn YH, Yun M, et al. Dysautonomia is linked to striatal dopamine deficits and regional cerebral perfusion in early parkinson disease. Clin Nucl Med. 2020;45:e342–8.PubMedCrossRef
113.
Zurück zum Zitat Kwak IH, Lee YK, Ma HI, Lee S, Yun M, Kim YJ, et al. Striatal Subregion Analysis Associated with REM Sleep Behavior Disorder in Parkinson’s Disease. J Integr Neurosci. 2023;22:18.PubMedCrossRef Kwak IH, Lee YK, Ma HI, Lee S, Yun M, Kim YJ, et al. Striatal Subregion Analysis Associated with REM Sleep Behavior Disorder in Parkinson’s Disease. J Integr Neurosci. 2023;22:18.PubMedCrossRef
114.
Zurück zum Zitat Lee JY, Yoon EJ, Kim YK, Shin CW, Nam H, Jeong JM, et al. Nonmotor and Dopamine Transporter Change in REM Sleep Behavior Disorder by Olfactory Impairment. J Mov Disord. 2019;12:103–12.PubMedPubMedCentralCrossRef Lee JY, Yoon EJ, Kim YK, Shin CW, Nam H, Jeong JM, et al. Nonmotor and Dopamine Transporter Change in REM Sleep Behavior Disorder by Olfactory Impairment. J Mov Disord. 2019;12:103–12.PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Shin C, Lee JY, Kim YK, Nam H, Yoon EJ, Shin SA, et al. Cognitive decline in association with hyposmia in idiopathic rapid eye movement sleep behavior disorder: a prospective 2-year follow-up study. Eur J Neurol. 2019;26:1417–20.PubMedCrossRef Shin C, Lee JY, Kim YK, Nam H, Yoon EJ, Shin SA, et al. Cognitive decline in association with hyposmia in idiopathic rapid eye movement sleep behavior disorder: a prospective 2-year follow-up study. Eur J Neurol. 2019;26:1417–20.PubMedCrossRef
116.
Zurück zum Zitat Oh YS, Kim JS, Hwang EJ, Lyoo CH. Striatal dopamine uptake and olfactory dysfunction in patients with early Parkinson’s disease. Parkinsonism Relat Disord. 2018;56:47–51.PubMedCrossRef Oh YS, Kim JS, Hwang EJ, Lyoo CH. Striatal dopamine uptake and olfactory dysfunction in patients with early Parkinson’s disease. Parkinsonism Relat Disord. 2018;56:47–51.PubMedCrossRef
117.
Zurück zum Zitat Kim JH, Jeon J, Lee Y, Kim SM, Cheon M, Kim JY. Striatal Dopaminergic Loss and Dysphagia in Parkinson Disease. Clin Nucl Med. 2023;48:143–9.PubMedCrossRef Kim JH, Jeon J, Lee Y, Kim SM, Cheon M, Kim JY. Striatal Dopaminergic Loss and Dysphagia in Parkinson Disease. Clin Nucl Med. 2023;48:143–9.PubMedCrossRef
118.
Zurück zum Zitat Song IU, Kim YD, Cho HJ, Chung SW, Chung YA. An FP-CIT PET comparison of the differences in dopaminergic neuronal loss between idiopathic Parkinson disease with dementia and without dementia. Alzheimer Dis Assoc Disord. 2013;27:51–5.PubMedCrossRef Song IU, Kim YD, Cho HJ, Chung SW, Chung YA. An FP-CIT PET comparison of the differences in dopaminergic neuronal loss between idiopathic Parkinson disease with dementia and without dementia. Alzheimer Dis Assoc Disord. 2013;27:51–5.PubMedCrossRef
119.
Zurück zum Zitat Chung SJ, Yoo HS, Oh JS, Kim JS, Ye BS, Sohn YH, et al. Effect of striatal dopamine depletion on cognition in de novo Parkinson’s disease. Parkinsonism Relat Disord. 2018;51:43–8.PubMedCrossRef Chung SJ, Yoo HS, Oh JS, Kim JS, Ye BS, Sohn YH, et al. Effect of striatal dopamine depletion on cognition in de novo Parkinson’s disease. Parkinsonism Relat Disord. 2018;51:43–8.PubMedCrossRef
120.
Zurück zum Zitat Oh YS, Yoo SW, Lyoo CH, Yoo JY, Yoon H, Ha S, et al. The Association of β-Amyloid with Cognition and Striatal Dopamine in Early. Non-Demented Parkinson’s Disease J Parkinsons Dis. 2021;11:605–13.PubMedCrossRef Oh YS, Yoo SW, Lyoo CH, Yoo JY, Yoon H, Ha S, et al. The Association of β-Amyloid with Cognition and Striatal Dopamine in Early. Non-Demented Parkinson’s Disease J Parkinsons Dis. 2021;11:605–13.PubMedCrossRef
121.
Zurück zum Zitat Park SB, Kwon KY, Lee JY, Im K, Sunwoo JS, Lee KB, et al. Lack of association between dopamine transporter loss and non-motor symptoms in patients with Parkinson’s disease: a detailed PET analysis of 12 striatal subregions. Neurol Sci. 2019;40:311–7.PubMedCrossRef Park SB, Kwon KY, Lee JY, Im K, Sunwoo JS, Lee KB, et al. Lack of association between dopamine transporter loss and non-motor symptoms in patients with Parkinson’s disease: a detailed PET analysis of 12 striatal subregions. Neurol Sci. 2019;40:311–7.PubMedCrossRef
122.
Zurück zum Zitat Yoo HS, Lee S, Chung SJ, Lee YH, Lee PH, Sohn YH, et al. Dopaminergic depletion, beta-amyloid burden, and cognition in Lewy body disease. Ann Neurol. 2020;87:739–50.PubMedCrossRef Yoo HS, Lee S, Chung SJ, Lee YH, Lee PH, Sohn YH, et al. Dopaminergic depletion, beta-amyloid burden, and cognition in Lewy body disease. Ann Neurol. 2020;87:739–50.PubMedCrossRef
123.
Zurück zum Zitat Carbon M, Ma Y, Barnes A, Dhawan V, Chaly T, Ghilardi MF, et al. Caudate nucleus: influence of dopaminergic input on sequence learning and brain activation in Parkinsonism. Neuroimage. 2004;21:1497–507.PubMedCrossRef Carbon M, Ma Y, Barnes A, Dhawan V, Chaly T, Ghilardi MF, et al. Caudate nucleus: influence of dopaminergic input on sequence learning and brain activation in Parkinsonism. Neuroimage. 2004;21:1497–507.PubMedCrossRef
124.
Zurück zum Zitat Niethammer M, Tang CC, Ma Y, Mattis PJ, Ko JH, Dhawan V, et al. Parkinson’s disease cognitive network correlates with caudate dopamine. Neuroimage. 2013;78:204–9.PubMedCrossRef Niethammer M, Tang CC, Ma Y, Mattis PJ, Ko JH, Dhawan V, et al. Parkinson’s disease cognitive network correlates with caudate dopamine. Neuroimage. 2013;78:204–9.PubMedCrossRef
125.
Zurück zum Zitat Kim H, Oh M, Oh JS, Moon H, Chung SJ, Lee CS, et al. Association of striatal dopaminergic neuronal integrity with cognitive dysfunction and cerebral cortical metabolism in Parkinson’s disease with mild cognitive impairment. Nucl Med Commun. 2019;40:1216–23.PubMedCrossRef Kim H, Oh M, Oh JS, Moon H, Chung SJ, Lee CS, et al. Association of striatal dopaminergic neuronal integrity with cognitive dysfunction and cerebral cortical metabolism in Parkinson’s disease with mild cognitive impairment. Nucl Med Commun. 2019;40:1216–23.PubMedCrossRef
126.
Zurück zum Zitat Son HJ, Jeong YJ, Yoon HJ, Kim JW, Choi GE, Park JH, et al. Parkinson disease-related cortical and striatal cognitive patterns in dual time F-18 FP CIT: evidence for neural correlates between the caudate and the frontal lobe. Q J Nucl Med Mol Imaging. 2019;63:379–86.PubMedCrossRef Son HJ, Jeong YJ, Yoon HJ, Kim JW, Choi GE, Park JH, et al. Parkinson disease-related cortical and striatal cognitive patterns in dual time F-18 FP CIT: evidence for neural correlates between the caudate and the frontal lobe. Q J Nucl Med Mol Imaging. 2019;63:379–86.PubMedCrossRef
127.
Zurück zum Zitat Baik K, Cha J, Ham JH, Baek GM, Sunwoo MK, Hong JY, et al. Dopaminergic modulation of resting-state functional connectivity in de novo patients with Parkinson’s disease. Hum Brain Mapp. 2014;35:5431–41.PubMedPubMedCentralCrossRef Baik K, Cha J, Ham JH, Baek GM, Sunwoo MK, Hong JY, et al. Dopaminergic modulation of resting-state functional connectivity in de novo patients with Parkinson’s disease. Hum Brain Mapp. 2014;35:5431–41.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Choi H, Cheon GJ, Kim HJ, Choi SH, Kim YI, Kang KW, et al. Gray matter correlates of dopaminergic degeneration in Parkinson’s disease: A hybrid PET/MR study using (18) F-FP-CIT. Hum Brain Mapp. 2016;37:1710–21.PubMedPubMedCentralCrossRef Choi H, Cheon GJ, Kim HJ, Choi SH, Kim YI, Kang KW, et al. Gray matter correlates of dopaminergic degeneration in Parkinson’s disease: A hybrid PET/MR study using (18) F-FP-CIT. Hum Brain Mapp. 2016;37:1710–21.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Chung SJ, Kim YJ, Kim YJ, Lee HS, Jeong SH, Hong JM, et al. Association Between White Matter Networks and the Pattern of Striatal Dopamine Depletion in Patients With Parkinson Disease. Neurology. 2022;99:E2672–82.PubMedCrossRef Chung SJ, Kim YJ, Kim YJ, Lee HS, Jeong SH, Hong JM, et al. Association Between White Matter Networks and the Pattern of Striatal Dopamine Depletion in Patients With Parkinson Disease. Neurology. 2022;99:E2672–82.PubMedCrossRef
130.
Zurück zum Zitat Fu Y, Zhou L, Li H, Hsiao JT, Li B, Tanglay O, et al. Adaptive structural changes in the motor cortex and white matter in Parkinson’s disease. Acta Neuropathol. 2022;144:861–79.PubMedPubMedCentralCrossRef Fu Y, Zhou L, Li H, Hsiao JT, Li B, Tanglay O, et al. Adaptive structural changes in the motor cortex and white matter in Parkinson’s disease. Acta Neuropathol. 2022;144:861–79.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Chung SJ, Kim YJ, Kim YJ, Lee HS, Yun M, Lee PH, et al. Potential Link Between Cognition and Motor Reserve in Patients With Parkinson’s Disease. J Mov Disord. 2022;15:249–57.PubMedPubMedCentralCrossRef Chung SJ, Kim YJ, Kim YJ, Lee HS, Yun M, Lee PH, et al. Potential Link Between Cognition and Motor Reserve in Patients With Parkinson’s Disease. J Mov Disord. 2022;15:249–57.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Yoon HJ, Cho K, Kim WG, Jeong YJ, Jeong JE, Kang DY. Heterogeneity by global and textural feature analysis in F-18 FP-CIT brain PET images for diagnosis of Parkinson’s disease. Medicine (Baltimore). 2021;100: e26961.PubMedCrossRef Yoon HJ, Cho K, Kim WG, Jeong YJ, Jeong JE, Kang DY. Heterogeneity by global and textural feature analysis in F-18 FP-CIT brain PET images for diagnosis of Parkinson’s disease. Medicine (Baltimore). 2021;100: e26961.PubMedCrossRef
133.
Zurück zum Zitat Choi BW, Kang S, Kim HW, Kwon OD, Vu HD, Youn SW. Faster region-based convolutional neural network in the classification of different parkinsonism patterns of the striatum on maximum intensity projection images of [18 F]FP-CIT positron emission tomography. Diagnostics. 2021;11:1557.PubMedPubMedCentralCrossRef Choi BW, Kang S, Kim HW, Kwon OD, Vu HD, Youn SW. Faster region-based convolutional neural network in the classification of different parkinsonism patterns of the striatum on maximum intensity projection images of [18 F]FP-CIT positron emission tomography. Diagnostics. 2021;11:1557.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.PubMedCrossRef Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.PubMedCrossRef
135.
Zurück zum Zitat Suh M, Im JH, Choi H, Kim HJ, Cheon GJ, Jeon B. Unsupervised clustering of dopamine transporter PET imaging discovers heterogeneity of parkinsonism. Hum Brain Mapp. 2020;41:4744–52.PubMedPubMedCentralCrossRef Suh M, Im JH, Choi H, Kim HJ, Cheon GJ, Jeon B. Unsupervised clustering of dopamine transporter PET imaging discovers heterogeneity of parkinsonism. Hum Brain Mapp. 2020;41:4744–52.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Park HK, Lim YM, Kim JS, Lee MC, Kim SM, Kim BJ, et al. Nigrostriatal dysfunction in patients with amyotrophic lateral sclerosis and parkinsonism. J Neurol Sci. 2011;301:12–3.PubMedCrossRef Park HK, Lim YM, Kim JS, Lee MC, Kim SM, Kim BJ, et al. Nigrostriatal dysfunction in patients with amyotrophic lateral sclerosis and parkinsonism. J Neurol Sci. 2011;301:12–3.PubMedCrossRef
137.
Zurück zum Zitat Lim YM, Park HK, Kim JS, Lee CS, Chung SJ, Kim J, et al. Clinical and neuroimaging characteristics in neurodegenerative overlap syndrome. Neurol Sci. 2013;34:875–81.PubMedCrossRef Lim YM, Park HK, Kim JS, Lee CS, Chung SJ, Kim J, et al. Clinical and neuroimaging characteristics in neurodegenerative overlap syndrome. Neurol Sci. 2013;34:875–81.PubMedCrossRef
138.
Zurück zum Zitat Chung EJ, Hwang JH, Lee MJ, Hong JH, Ji KH, Yoo WK, et al. Expansion of the clinicopathological and mutational spectrum of Perry syndrome. Parkinsonism Relat Disord. 2014;20:388–93.PubMedCrossRef Chung EJ, Hwang JH, Lee MJ, Hong JH, Ji KH, Yoo WK, et al. Expansion of the clinicopathological and mutational spectrum of Perry syndrome. Parkinsonism Relat Disord. 2014;20:388–93.PubMedCrossRef
139.
Zurück zum Zitat Ryu HS, Hong CM. Brain F-18 FDG and F-18 FP-CIT PET/CT Findings of c.856_860delCTCTA Mutation McLeod Syndrome. Cogn Behav Neurol. 2021;34:207–11.PubMedCrossRef Ryu HS, Hong CM. Brain F-18 FDG and F-18 FP-CIT PET/CT Findings of c.856_860delCTCTA Mutation McLeod Syndrome. Cogn Behav Neurol. 2021;34:207–11.PubMedCrossRef
141.
Zurück zum Zitat Tang S, Dou X, Zhang Y. 18F-FP-CIT PET/CT in a case of probable sporadic Creutzfeldt-Jakob disease with parkinsonism as initial symptom. Prion. 2022;16:91–4.PubMedPubMedCentralCrossRef Tang S, Dou X, Zhang Y. 18F-FP-CIT PET/CT in a case of probable sporadic Creutzfeldt-Jakob disease with parkinsonism as initial symptom. Prion. 2022;16:91–4.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Lee K, Park DG, Kim MS, An YS, Yoon JH. Dual-Phase 18 F-FP-CIT PET in 2 Different Clinical Phenotypes of Sporadic Creutzfeldt-Jakob Disease. Clin Nucl Med. 2022;47:e548–9.PubMedCrossRef Lee K, Park DG, Kim MS, An YS, Yoon JH. Dual-Phase 18 F-FP-CIT PET in 2 Different Clinical Phenotypes of Sporadic Creutzfeldt-Jakob Disease. Clin Nucl Med. 2022;47:e548–9.PubMedCrossRef
143.
Zurück zum Zitat Kim YJ, Lyoo CH, Hong S, Kim NY, Lee MS. Neuroimaging studies and whole exome sequencing of PLA2G6-associated neurodegeneration in a family with intrafamilial phenotypic heterogeneity. Parkinsonism Relat Disord. 2015;21:402–6.PubMedCrossRef Kim YJ, Lyoo CH, Hong S, Kim NY, Lee MS. Neuroimaging studies and whole exome sequencing of PLA2G6-associated neurodegeneration in a family with intrafamilial phenotypic heterogeneity. Parkinsonism Relat Disord. 2015;21:402–6.PubMedCrossRef
144.
Zurück zum Zitat Kwon KY, Koh SB. A pilot study of F-18 FP-CIT PET imaging in early-onset patients with parkinson’s disease: parkin versus non-parkin mutation. Neuroquantology. 2018;16:52–6.CrossRef Kwon KY, Koh SB. A pilot study of F-18 FP-CIT PET imaging in early-onset patients with parkinson’s disease: parkin versus non-parkin mutation. Neuroquantology. 2018;16:52–6.CrossRef
145.
Zurück zum Zitat Kim JI, Choi JK, Lee JW, Kim J, Ki CS, Hong JY. A novel missense mutation in GCH1 gene in a Korean family with Segawa disease. Brain Dev. 2015;37:359–61.PubMedCrossRef Kim JI, Choi JK, Lee JW, Kim J, Ki CS, Hong JY. A novel missense mutation in GCH1 gene in a Korean family with Segawa disease. Brain Dev. 2015;37:359–61.PubMedCrossRef
146.
Zurück zum Zitat Shin JH, Lee WW, Lee JY, Kim HJ, Jeon B. GCH-1 genetic variant may cause Parkinsonism by unmasking the subclinical nigral pathology. J Neurol. 2020;267:1952–9.PubMedCrossRef Shin JH, Lee WW, Lee JY, Kim HJ, Jeon B. GCH-1 genetic variant may cause Parkinsonism by unmasking the subclinical nigral pathology. J Neurol. 2020;267:1952–9.PubMedCrossRef
147.
Zurück zum Zitat Kim EY, Kim SY, Seo Y, Shin C. Nearly Abolished Dopamine Transporter Uptake in a Patient With a Novel FBXO7 Mutation. J Mov Disord. 2022;15:269–72.PubMedPubMedCentralCrossRef Kim EY, Kim SY, Seo Y, Shin C. Nearly Abolished Dopamine Transporter Uptake in a Patient With a Novel FBXO7 Mutation. J Mov Disord. 2022;15:269–72.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Kim MS, Park DG, An YS, Yoon JH. Dual-phase (18) F-FP-CIT positron emission tomography and cardiac (123) I-MIBG scintigraphy of Parkinson’s disease patients with GBA mutations: evidence of the body-first type? Eur J Neurol. 2023;30:344–52.PubMedCrossRef Kim MS, Park DG, An YS, Yoon JH. Dual-phase (18) F-FP-CIT positron emission tomography and cardiac (123) I-MIBG scintigraphy of Parkinson’s disease patients with GBA mutations: evidence of the body-first type? Eur J Neurol. 2023;30:344–52.PubMedCrossRef
149.
Zurück zum Zitat Pak K, Seo S, Lee MJ, Im HJ, Kim K, Kim IJ. Limited power of dopamine transporter mRNA mapping for predicting dopamine transporter availability. Synapse. 2022;76: e22226.PubMedCrossRef Pak K, Seo S, Lee MJ, Im HJ, Kim K, Kim IJ. Limited power of dopamine transporter mRNA mapping for predicting dopamine transporter availability. Synapse. 2022;76: e22226.PubMedCrossRef
150.
Zurück zum Zitat Pak K, Seok JW, Nam HY, Seo S, Lee MJ, Kim K, et al. The association of DAT gene methylation with striatal DAT availability in healthy subjects. EJNMMI Res. 2021;11:58.PubMedPubMedCentralCrossRef Pak K, Seok JW, Nam HY, Seo S, Lee MJ, Kim K, et al. The association of DAT gene methylation with striatal DAT availability in healthy subjects. EJNMMI Res. 2021;11:58.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Kwon KY, Koh SB. A pilot study of F-18 FP-cit pet imaging in early-onset patients with parkinson’s disease: Parkin versus non-parkin mutation. NeuroQuantology. 2018;16:52–6.CrossRef Kwon KY, Koh SB. A pilot study of F-18 FP-cit pet imaging in early-onset patients with parkinson’s disease: Parkin versus non-parkin mutation. NeuroQuantology. 2018;16:52–6.CrossRef
152.
Zurück zum Zitat Xia Y, Jiang C, Cao Z, Shi K, Wang Y. Co-transplantation of macaque autologous Schwann cells and human embryonic nerve stem cells in treatment of macaque Parkinson’s disease. Asian Pac J Trop Med. 2012;5:7–14.PubMedCrossRef Xia Y, Jiang C, Cao Z, Shi K, Wang Y. Co-transplantation of macaque autologous Schwann cells and human embryonic nerve stem cells in treatment of macaque Parkinson’s disease. Asian Pac J Trop Med. 2012;5:7–14.PubMedCrossRef
153.
Zurück zum Zitat Im HJ, Hwang DW, Lee HK, Jang J, Lee S, Youn H, et al. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease. Mol Imaging. 2013;12:224–34.PubMedCrossRef Im HJ, Hwang DW, Lee HK, Jang J, Lee S, Youn H, et al. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease. Mol Imaging. 2013;12:224–34.PubMedCrossRef
154.
Zurück zum Zitat Jang W, Park J, Shin KJ, Kim JS, Kim JS, Youn J, et al. Safety and efficacy of recombinant human erythropoietin treatment of non-motor symptoms in Parkinson’s disease. J Neurol Sci. 2014;337:47–54.PubMedCrossRef Jang W, Park J, Shin KJ, Kim JS, Kim JS, Youn J, et al. Safety and efficacy of recombinant human erythropoietin treatment of non-motor symptoms in Parkinson’s disease. J Neurol Sci. 2014;337:47–54.PubMedCrossRef
155.
Zurück zum Zitat Park BN, Kim JH, Lee K, Park SH, An YS. Improved dopamine transporter binding activity after bone marrow mesenchymal stem cell transplantation in a rat model of Parkinson’s disease: small animal positron emission tomography study with F-18 FP-CIT. Eur Radiol. 2015;25:1487–96.PubMedCrossRef Park BN, Kim JH, Lee K, Park SH, An YS. Improved dopamine transporter binding activity after bone marrow mesenchymal stem cell transplantation in a rat model of Parkinson’s disease: small animal positron emission tomography study with F-18 FP-CIT. Eur Radiol. 2015;25:1487–96.PubMedCrossRef
156.
Zurück zum Zitat Oh SJ, Ahn H, Jung KH, Han SJ, Nam KR, Kang KJ, et al. Evaluation of the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson’s Animal Model. Mol Imaging Biol. 2020;22:1031–42.PubMedCrossRef Oh SJ, Ahn H, Jung KH, Han SJ, Nam KR, Kang KJ, et al. Evaluation of the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson’s Animal Model. Mol Imaging Biol. 2020;22:1031–42.PubMedCrossRef
157.
Zurück zum Zitat Zhu Y, Tang X, Cheng Z, Dong Q, Ruan G. The anti-inflammatory effect of preventive intervention with ketogenic diet mediated by the histone acetylation of mGluR5 promotor region in rat parkinson’s disease model: a dual-tracer PET study. Parkinsons Dis. 2022;2022:3506213.PubMedPubMedCentral Zhu Y, Tang X, Cheng Z, Dong Q, Ruan G. The anti-inflammatory effect of preventive intervention with ketogenic diet mediated by the histone acetylation of mGluR5 promotor region in rat parkinson’s disease model: a dual-tracer PET study. Parkinsons Dis. 2022;2022:3506213.PubMedPubMedCentral
158.
Zurück zum Zitat Lee SH, Kim M, Lee J, Kim JW, Kim MS, Jo S, et al. Clinical factors and dopamine transporter availability for the prediction of outcomes after globus pallidus deep brain stimulation in Parkinson’s disease. Sci Rep. 2022;12:16870.PubMedPubMedCentralCrossRef Lee SH, Kim M, Lee J, Kim JW, Kim MS, Jo S, et al. Clinical factors and dopamine transporter availability for the prediction of outcomes after globus pallidus deep brain stimulation in Parkinson’s disease. Sci Rep. 2022;12:16870.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Yu KJ, Lee BJ, Han J, Park D. Usefulness of F-18 FP-CIT PET to predict dopamine-responsive hand tremor in patients other than Parkinson’s disease: Two case reports. Medicine (Baltimore). 2018;97: e10983.PubMedCrossRef Yu KJ, Lee BJ, Han J, Park D. Usefulness of F-18 FP-CIT PET to predict dopamine-responsive hand tremor in patients other than Parkinson’s disease: Two case reports. Medicine (Baltimore). 2018;97: e10983.PubMedCrossRef
161.
Zurück zum Zitat Meles SK, Vadasz D, Renken RJ, Sittig-Wiegand E, Mayer G, Depboylu C, et al. FDG PET, dopamine transporter SPECT, and olfaction: Combining biomarkers in REM sleep behavior disorder. Mov Disord. 2017;32:1482–6.PubMedPubMedCentralCrossRef Meles SK, Vadasz D, Renken RJ, Sittig-Wiegand E, Mayer G, Depboylu C, et al. FDG PET, dopamine transporter SPECT, and olfaction: Combining biomarkers in REM sleep behavior disorder. Mov Disord. 2017;32:1482–6.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Cooper CA, Chahine LM. Biomarkers in prodromal Parkinson disease: a qualitative review. J Int Neuropsychol Soc. 2016;22:956–67.PubMedCrossRef Cooper CA, Chahine LM. Biomarkers in prodromal Parkinson disease: a qualitative review. J Int Neuropsychol Soc. 2016;22:956–67.PubMedCrossRef
163.
Zurück zum Zitat Wu Y, Le W, Jankovic J. Preclinical biomarkers of Parkinson disease. Arch Neurol. 2011;68:22–30.PubMedCrossRef Wu Y, Le W, Jankovic J. Preclinical biomarkers of Parkinson disease. Arch Neurol. 2011;68:22–30.PubMedCrossRef
164.
Zurück zum Zitat Stiasny-Kolster K, Doerr Y, Moller JC, Hoffken H, Behr TM, Oertel WH, et al. Combination of “idiopathic” REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain. 2005;128:126–37.PubMedCrossRef Stiasny-Kolster K, Doerr Y, Moller JC, Hoffken H, Behr TM, Oertel WH, et al. Combination of “idiopathic” REM sleep behaviour disorder and olfactory dysfunction as possible indicator for alpha-synucleinopathy demonstrated by dopamine transporter FP-CIT-SPECT. Brain. 2005;128:126–37.PubMedCrossRef
Metadaten
Titel
Imaging Procedure and Clinical Studies of [18F]FP-CIT PET
verfasst von
Changhwan Sung
Seung Jun Oh
Jae Seung Kim
Publikationsdatum
17.01.2024
Verlag
Springer Nature Singapore
Erschienen in
Nuclear Medicine and Molecular Imaging
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-024-00840-x