Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 11/2023

Open Access 14.08.2023 | Brief Report

Immune profile of patients with peritoneal carcinomatosis selected for CRS-HIPEC therapy

verfasst von: Julia Kleber, Jordi Yang Zhou, Florian Weber, Florian Bitterer, Patricia Hauer, Paul Kupke, Katharina Kronenberg, Edward K. Geissler, Hans J. Schlitt, Matthias Hornung, James A. Hutchinson, Jens M. Werner

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 11/2023

Abstract

Cytoreductive surgery (CRS) combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is a treatment option for peritoneal carcinomatosis (PC) from colorectal cancer (CRC), which is otherwise a terminal stage of disease. Nevertheless, survival outcomes are only marginally superior to other treatments. This fact highlights the need for better strategies to control intra-abdominal disease recurrence after CRS-HIPEC, including the complementary use of immunotherapies. The aim of this study was therefore to investigate the immune phenotype of T cells in patients with PC. Fifty three patients with CRC (34 patients with PC and 19 patients without PC) were enrolled in a prospective study (clinicaltrials.gov: NCT04108936). Peripheral blood and omental fat were collected to isolate peripheral blood mononuclear cells (PBMCs) and adipose tissue mononuclear cells (ATMCs). These cells were analysed by flow cytometry using a panel focused upon T cell memory differentiation and exhaustion markers. We found a more naïve profile for CD8+ T cells in peripheral blood and intra-abdominal fat of PC patients compared to comparator group (CG) patients. Furthermore, there was an over-representation of CD4+ T cells expressing inhibitory receptors in adipose tissue of PC patients, but not in blood. Our description of intraperitoneal T cell subsets gives us a better understanding of how peritoneal carcinomatosis shapes local immune responses.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s00262-023-03515-2.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Peritoneal carcinomatosis (PC) carries a poor prognosis and was considered as a terminal stage of disease until the introduction of cytoreductive surgery followed by hyperthermic intraperitoneal chemotherapy. Cytoreductive surgery (CRS) is a radical procedure that aims to completely resect all intra-abdominal tumour tissue. Hyperthermic intraperitoneal chemotherapy (HIPEC) involves local delivery of high-dose chemotherapeutics in warmed solutions with the intention of optimizing tumouricidal activity and minimizing systemic toxicity. Although CRS-HIPEC is regarded a promising treatment for patients with PC secondary to gastrointestinal [1] or ovarian cancer [2] without extra-abdominal disease, there remain unanswered questions about eligibility criteria and effectiveness of CRS-HIPEC beyond highly selected patient groups [3].
Patient selection for CRS-HIPEC is important for achieving complete cytoreduction, hence a useful therapeutic effect. Apart from the absence of widespread tumour dissemination or tumour complicated with obstruction or perforation, current guidelines emphasize patients’ fitness for therapy as a key eligibility criterion. Only patients with an ECOG (Eastern Cooperative Oncology Group) performance status of ≤ 2 points should be considered to receive a CRS-HIPEC procedure, which generally selects for younger patients [4].
Even if acceptable rates of mortality and morbidity are achievable through narrow patient selection, survival outcomes with CRS-HIPEC may only be marginally superior to other surgical approaches such as CRS alone [5]. The need for better strategies to control intra-abdominal disease recurrence after CRS-HIPEC has sparked interest in possible combination therapies, such as anti-PD-1 or other immune checkpoint inhibitors (ICIs) [6, 7]. A better understanding of T cell immunity in patients with widespread intraperitoneal metastases could lead to a more rational approach to immunotherapy for PC. Hence, in this study, we investigated the immune phenotype of T cells isolated from peripheral blood and omental fat of patients with PC secondary to colorectal carcinoma and compared these to patients with advanced colorectal carcinoma but without PC.

Materials and methods

Study design

A prospective, single-centre observational study was conducted with approval of the Ethics Committee of the University of Regensburg (15-101-0357). The study was registered with the Deutsche Krebsgesellschaft (StudyBoxNumber ST-U091) and ClinicalTrials.gov (NCT04108936). Inclusion criteria were patients with colorectal carcinoma (CRC) with or without peritoneal carcinomatosis (synchronous or metachronous) and age > 18 years. Between 2016 and 2021, 53 patients consented to participate. Thirty-four patients had PC from CRC, 15 synchronous, and 19 metachronous (Table 1). Nineteen patients had CRC with loco-regional disease but without PC or distant metastasis as a comparator group (CG). On the day of surgery, peripheral blood was collected preoperatively and samples of intra-abdominal fat from the omentum majus were harvested during standard-of-care surgical procedures. Tumours in the peritoneal cavity often metastasize first to the omentum, then throughout the abdomen before appearing in ascites. In the omentum, there are aggregates of leucocytes, known as milky spots or fat-associated lymphoid clusters (FALCs), which are embedded between adipocytes just beneath peritoneal mesothelial cells. Milky spots filter the peritoneal fluid, making them ideal locations to generate immune responses to any sort of antigens or pathogens in the peritoneal cavity [8].
Table 1
Summary of patient characteristics
 
Case
Control
p-value
n
%
n
%
 
Sex
Male
13
38.2%
16
84.2%
0.00161
Female
21
61.8%
3
15.8%
 
Age
Mean (SD)
56 (± 12)
 
69 (± 10)
 
0.00022
Median (IQR)
56 (± 16)
 
68 (± 9)
  
Range
28–82
 
52–88
  
Staging
Tis
1
3.0%
0
0.0%
 
Tx
1
3.0%
0
0.0%
 
T0
0
0.0%
1
5.3%
 
T1/2
0
0.0%
6
31.6%
 
T3/4
25
73.5%
10
52.6%
 
unknown
7
20.5%
2
10.5%
 
N0
7
20.6%
12
63.2%
 
N1
8
23.5%
3
15.8%
 
N2
7
20.6%
1
5.2%
 
unknown
12
35.3%
3
15.8%
 
Grading
G1
4
11.8%
6
31.6%
 
G2
8
23.5%
10
52.6%
 
G3
10
29.4%
0
0.0%
 
unknown
12
35.3%
3
15.8%
 
Resection status (case: CCR; control: R)
0
14
41.2%
19
100%
 
1
14
41.2%
0
0.0%
 
2
6
17.6%
0
0.0%
 
Peritoneal cancer index
 < 20
30
88.2%
not applicable
 
 > 20
4
11.8%
  
Preoperative chemotherapy
Yes
11
32.4%
2
10.5%
0.10241
No
23
67.6%
17
89.5%
 
Microsatellite status
Stable
24
70.6%
14
73.7%
0.72921
Instable
6
17.6%
5
26.3%
 
Unknown
4
11.8%
0
0.0%
 
Timepoint of peritoneal carcinomatosis
Synchronous
15
44.1%
not applicable
  
Metachronous
19
55.9%
   
SD Standard deviation, IQR Interquartile range
Staging depending on size and invasive growth. Grading depending on cellular differentiation. Resection status after surgical intervention: CCR Completeness of cytoreduction (0 = no visible residual disease; 1 = residual disease less than 2.5 mm; 2 = residual disease more than 2.5 mm). R Resection (0 = no residual tumour; 1 = microscopic residual tumour; 2 = macroscopic residual tumour). Peritoneal Cancer Index (PCI) depending on topographic dissemination. https://​doi.​org/​10.​1007/​978-1-4613-1247-5_​23
1Fisher’s exact test
22-tailed t-test

Sample processing

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll density gradient centrifugation. Adipose tissue mononuclear cells (ATMCs) were isolated from intra-abdominal fat samples, which were first dissected then dissociated into a single cell suspension using a GentleMACS device (Miltenyi). Samples were digested in 2 ml RPMI medium (Gibco) supplemented with 20 U/ml CLSPA (Worthington) for every 4 g fat, over 1 h at 37 °C. The resulting cell suspension was washed in RPMI, and the fat layer that formed after centrifugation was decanted before the cell pellet was resuspended and filtered through a 40-µm nylon mesh. The cell suspension was then separated by Ficoll density gradient centrifugation. Isolated PBMCs and ATMCs were stored in cryopreservation medium at 106 cells/100 µl [70% FCS (Gibco), 20% RPMI, 10% DMSO] in liquid nitrogen.

Flow cytometry

Cells were thawed and 200 µl of cell suspension per well was transferred into 96-well plates. The cells were washed once with 200 µl Cell Staining Buffer (CSB from Biolegend) at 1400 rpm for 5 min. Cells were resuspended in 15 µl CSB supplemented with 15% FCR Block (Miltenyi) and incubated for 10 min at 4 °C. Fifty microliter of antibody mastermix for extracellular staining was then added to each well (Fig. S1). Samples were incubated for 30 min at 4 °C before being washed twice with 200 µl CSB. Finally, cells were filtered through a nylon mesh then were fixed in 200 µl of PBS supplemented with 0.5% IOTest3 (Beckman Coulter). As previously described, data were collected with a CytoFlex LX instrument (Beckman Coulter) and were subsequently analysed in Kaluza and CytoBank (Beckman Coulter) [9]. FlowSOM analysis was performed by applying an automated approach of clustering and visualization algorithms based on self-organizing maps [10].

Statistics

Mann–Whitney tests with Benjamini–Hochberg adjustment for multiple testing with a false-discovery rate (FDR) of 5% were used for significance testing of cell subset frequencies in PC and CG patients (IBM SPSS Statistics v28). Discriminatory features were evaluated by calculating the area-under-the-curve (AUC) of receiver operating characteristic (ROC) curves. Fisher’s exact test or a 2-tailed t-test was used for all tests of significance. Pearson R2 was used as a measure of bivariate linear correlation. All plots were generated using GraphPad Prism (GraphPad Prism v9.4.0).

Results

Immunophenotypic differences in PBMCs associated with PC patients

We first investigated whether patients with peritoneal carcinomatosis (PC) secondary to colorectal carcinoma could be distinguished from comparator group (CG) patients, who had colorectal carcinoma but not PC, by immunophenotyping of peripheral blood T cells. PBMC samples from PC and CG patients were analysed by flow cytometry using an antibody panel focused on T cell memory differentiation and exhaustion markers (Fig. S1). Data were analysed by first performing an unsupervised clustering of cells using FlowSOM, then comparing the frequencies of cells in clusters between PC and CG patients (Fig. 1A). Five closely related, differentially represented cell clusters were identified (Fig. 1B). Three of five clusters showed particular phenotypic similarity (Fig. 1C) and primarily accounted for metacluster 9 (Fig. 1D, E). Metacluster 9 (MC9) was represented in PC and CG patients (Fig. 1F), reaching statistic differences and was a good discriminatory marker of these subgroups (Fig. 1G). Notably, MC9 cell frequencies were not associated with patient sex (Fig. S2A). However, patients who received preoperative chemotherapy exhibited lower frequencies of cells in MC9 (Fig. S2B) and MC9 cell frequencies inversely correlated with patient age (Fig. S2C, D).
To identify the cell types circumscribed by MC9, we mapped MC9 onto manually gated flow cytometry data from PBMCs. MC9 cells were predominantly unactivated CD8+ CD45RA+ CCR7+ naïve T cells that broadly lacked expression of CD28, TIGIT, VISTA, CD39, CD57, HLA-DR, and PD-1 (CD279) (Fig. 2A-F). Hence, PC patients exhibited higher circulating frequencies of naïve CD8+ T cells.

Immunophenotypic differences in ATMCs associated with PC patients

We next asked whether the cell subset distribution associated with PC in PBMC samples was reflected in adipose tissue mononuclear cell (ATMCs) samples. Flow cytometry data were captured from ATMC samples with the same methods used for PBMC analysis. The same FlowSOM clustering from PBMC samples was applied to ATMCs in order to identify differentially represented cell subsets. Notably, clusters 71 and 81 that contribute to MC9 were over-represented in ATMC samples (Fig. 3A). MC9 was also significantly over-represented in PC versus CG samples (Fig. 3B) and was a good discriminatory marker of patient subgroups (Fig. 3C). Phenotypic analysis of MC9 cells from ATMCs confirmed they were naïve CD8+ T cells (Fig. S3). Thus, over-representation of MC9 in adipose tissue seems to be a consistent immunological feature of PC patients.
Besides clusters 71 and 81, we observed a relative over-representation of clusters 35, 36, 70, 80, and 99 in PC patients; in addition, clusters 18, 19, 40, and 98 were under-represented (Fig. 3D, E). Of special interest, clusters 35 and 36 represented activated CD4+ memory T cells (Tmem) with elevated expression of inhibitory receptors, including PD-1, TIGIT, and VISTA (Fig. 3F & S4). Over-representation of these Tmem in ATMCs from PC versus CG patients, and only in fat, not in blood samples hints at a possible tumour-driven immune response leading to T cell exhaustion, anergy, or regulation [11].

Discussion

Here, we compared immune phenotypes between patients with PC from CRC and patients with loco-regional CRC without distant metastasis. We made two interesting immunological observations about these two groups of patients: First, PC patients had a higher frequency of naïve CD8+ T cells compared to CG patients both in peripheral blood and omental adipose tissue. And second, PC patients had a CD4+ Tmem subset of adipose tissue-derived T cells that expressed elevated levels of PD-1, TIGIT, and VISTA.
We observed a significant over-representation of naïve CD8+ T cells in peripheral blood and omental fat in PC patients compared to non-PC patients. Notably, PC patients selected for CRS-HIPEC were generally younger than CG patients. Age-related decline of naïve CD8+ T cell frequency is a well-described phenomenon in healthy and diseased people [12]. Therefore, selection of PC patients according to fitness for surgery, which biases towards younger patients, is a likely explanation for this finding. Nevertheless, a more naïve T cell profile may be favourable in terms of response to immunotherapy [13].
A third of our PC patients received preoperative chemotherapy and all of them were metachronous PC. These patients were treated according to guidelines for management of colorectal cancer so that they received folinic acid, 5-fluorouracil, oxaliplatin or irinotecan (FOLFOX/ FOLFOXIRI). Some patients additionally received bevacizumab, a therapeutic antibody against vascular endothelial growth factor, to inhibit neovascularization. We cannot exclude that prior chemotherapy, rather than tumour-related effects, might account for some of the immunological differences observed in our study [14] since temporal changes have been reported in the peripheral immune cell composition and cytokine production in response to chemoradiation therapy in rectal cancer patients. Especially, the proportion of CD4+ T cells among total lymphocytes was relatively higher than that of CD8+ T cells during chemoradiation therapy. However, after treatment termination, the proportion of CD8+ T cells increased and was similar to the proportion of CD4+ T cells [15].
We speculate that the over-representation of CD4+ Tmem cells expressing inhibitory receptors from adipose tissue of PC patients reflects tumour-driven T cell exhaustion [16]. In particular, we discovered CD4+ Tmem over-expressing PD-1, TIGIT, and VISTA. Therefore, these receptors might represent valuable therapeutic targets in PC patients. Defining an approach to address these targets is challenging. In particular, systemic drug administration has the disadvantage of having limited access to the abdominal compartment and the possibility of producing systemic toxicity [17]. Therefore, the direct administration of immunotherapies into the peritoneal cavity represents an interesting strategy.
So far, catumaxomab had been the only in Europe approved monoclonal antibody used for intraperitoneal application and treatment of malignant ascites. Catumaxomab is a trivalent antibody that crosslinks CD3+ T cells with epithelial cell adhesion molecule (EpCAM) expressing tumours in the presence of FcR-bearing myeloid antigen presenting cells, which primes cellular and humoral responses against tumour antigens [18]. Beneficial effects of catumaxomab cotreatment were reported in several studies in patients with a range of tumour entities [19]. Of interest, Ströhlein et al. [20] showed an acceptable safety profile for intraperitoneal use of catumaxomab in patients with PC secondary to colon, gastric, and pancreatic cancer . Recent investigations in murine models of PC provide encouraging preclinical results for intraperitoneal immunotherapy [21]. However, catumaxomab was voluntarily withdrawn due to commercial reasons. Another immunotherapy approach is the treatment with Chimeric Antigen Receptor (CAR)-T cells. CAR-T cell therapy was first used in haematological malignancies and obtained promising results. This led to the development of CAR-T cells for targeting solid tumours. However, their use in solid tumour and their efficacy have not at all achieved the expected results [22]. Second-generation CAR-T cells targeting CEA to treat peritoneal carcinomatosis have been used in murine model, demonstrating that local peritoneal infusion of CAR-T cells was superior to systemic administration [23]. Furthermore, using a PC mouse model of MC38 colon cancer, it has been shown that intraperitoneal immunotherapy with oncolytic vaccinia virus is able to restore peritoneal anticancer immunity and potentiate immune checkpoint blockade to suppress PC and malignant ascites [24].
In conclusion, our study revealed a more naïve profile for CD8+ T cells in peripheral blood and omental fat of PC patients. More importantly, we discovered an over-representation of CD4+ memory T cells expressing inhibitory receptors in omental fat of PC patients, but not in their blood or adipose tissue of non-PC patients, which suggests local anti-tumour immunity might be compromised. The favourable systemic immune profile of PC patients leads us to the proposition that intraperitoneal application of therapeutic antibodies against PD-1, TIGIT, or VISTA could enhance their local efficacy whilst minimizing systemic toxicity.

Acknowledgements

The authors are grateful to Rita Brunner-Ploss for her outstanding technical support.

Declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of University of Regensburg (15-101-0357).
Written informed consent was obtained from all individual participants included in the study.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Supplementary Information

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Bushati M, Rovers KP, Sommariva A, Sugarbaker PH, Morris DL, Yonemura Y et al (2018) The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: results of a worldwide web-based survey of the peritoneal surface oncology group international (PSOGI). Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 44:1942–1948 Bushati M, Rovers KP, Sommariva A, Sugarbaker PH, Morris DL, Yonemura Y et al (2018) The current practice of cytoreductive surgery and HIPEC for colorectal peritoneal metastases: results of a worldwide web-based survey of the peritoneal surface oncology group international (PSOGI). Eur J Surg Oncol J Eur Soc Surg Oncol Br Assoc Surg Oncol 44:1942–1948
2.
Zurück zum Zitat van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM et al (2018) Hyperthermic intraperitoneal chemotherapy in ovarian cancer. New Engl J Med 378:230–240CrossRefPubMed van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM et al (2018) Hyperthermic intraperitoneal chemotherapy in ovarian cancer. New Engl J Med 378:230–240CrossRefPubMed
3.
Zurück zum Zitat Hornung M, Werner JM, Schlitt HJ (2017) Applications of hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. Exp Rev Anticancer Ther 17:841–850CrossRef Hornung M, Werner JM, Schlitt HJ (2017) Applications of hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. Exp Rev Anticancer Ther 17:841–850CrossRef
4.
Zurück zum Zitat Esquivel J, Sticca R, Sugarbaker P, Levine E, Yan TD, Alexander R et al (2007) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. society of surgical oncology. Ann Surg Oncol 14:128–133CrossRefPubMed Esquivel J, Sticca R, Sugarbaker P, Levine E, Yan TD, Alexander R et al (2007) Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. society of surgical oncology. Ann Surg Oncol 14:128–133CrossRefPubMed
5.
Zurück zum Zitat Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M et al (2021) Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 22:256–266CrossRefPubMed Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M et al (2021) Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 22:256–266CrossRefPubMed
7.
Zurück zum Zitat Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B et al (2019) Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer 121:809–818CrossRefPubMedPubMedCentral Sahin IH, Akce M, Alese O, Shaib W, Lesinski GB, El-Rayes B et al (2019) Immune checkpoint inhibitors for the treatment of MSI-H/MMR-D colorectal cancer and a perspective on resistance mechanisms. Br J Cancer 121:809–818CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S (2021) Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 109:717–729CrossRefPubMed Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S (2021) Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 109:717–729CrossRefPubMed
9.
Zurück zum Zitat Hutchinson JA, Kronenberg K, Riquelme P, Wenzel JJ, Glehr G, Schilling HL et al (2021) Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat Commun 12:1439CrossRefPubMedPubMedCentral Hutchinson JA, Kronenberg K, Riquelme P, Wenzel JJ, Glehr G, Schilling HL et al (2021) Virus-specific memory T cell responses unmasked by immune checkpoint blockade cause hepatitis. Nat Commun 12:1439CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Quintelier K, Couckuyt A, Emmaneel A, Aerts J, Saeys Y, Van Gassen S (2021) Analyzing high-dimensional cytometry data using FlowSOM. Nat Protoc 16:3775–3801CrossRefPubMed Quintelier K, Couckuyt A, Emmaneel A, Aerts J, Saeys Y, Van Gassen S (2021) Analyzing high-dimensional cytometry data using FlowSOM. Nat Protoc 16:3775–3801CrossRefPubMed
11.
Zurück zum Zitat Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk S, Ahrens N et al (2018) TIGIT(+) iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 9:2858CrossRefPubMedPubMedCentral Riquelme P, Haarer J, Kammler A, Walter L, Tomiuk S, Ahrens N et al (2018) TIGIT(+) iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 9:2858CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kverneland AH, Streitz M, Geissler E, Hutchinson J, Vogt K, Boes D et al (2016) Age and gender leucocytes variances and references values generated using the standardized ONE-study protocol. Cytometry A 89:543–564CrossRefPubMed Kverneland AH, Streitz M, Geissler E, Hutchinson J, Vogt K, Boes D et al (2016) Age and gender leucocytes variances and references values generated using the standardized ONE-study protocol. Cytometry A 89:543–564CrossRefPubMed
13.
Zurück zum Zitat Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC et al (2016) Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537:417–421CrossRefPubMedPubMedCentral Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC et al (2016) Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537:417–421CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39:74–88CrossRefPubMed Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G (2013) Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39:74–88CrossRefPubMed
15.
Zurück zum Zitat Lee YJ, Lee SB, Beak SK, Han YD, Cho MS, Hur H et al (2018) Temporal changes in immune cell composition and cytokines in response to chemoradiation in rectal cancer. Sci Rep 8:7565CrossRefPubMedPubMedCentral Lee YJ, Lee SB, Beak SK, Han YD, Cho MS, Hur H et al (2018) Temporal changes in immune cell composition and cytokines in response to chemoradiation in rectal cancer. Sci Rep 8:7565CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kang D, Kim IH (2022) Molecular mechanisms and potential rationale of immunotherapy in peritoneal metastasis of advanced gastric cancer. Biomedicines. 10(6):1376CrossRefPubMedPubMedCentral Kang D, Kim IH (2022) Molecular mechanisms and potential rationale of immunotherapy in peritoneal metastasis of advanced gastric cancer. Biomedicines. 10(6):1376CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Jäger M, Schoberth A, Ruf P, Hess J, Hennig M, Schmalfeldt B et al (2012) Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Res 72:24–32CrossRefPubMed Jäger M, Schoberth A, Ruf P, Hess J, Hennig M, Schmalfeldt B et al (2012) Immunomonitoring results of a phase II/III study of malignant ascites patients treated with the trifunctional antibody catumaxomab (anti-EpCAM x anti-CD3). Cancer Res 72:24–32CrossRefPubMed
20.
Zurück zum Zitat Ströhlein MA, Lordick F, Rüttinger D, Grützner KU, Schemanski OC, Jäger M et al (2011) Immunotherapy of peritoneal carcinomatosis with the antibody catumaxomab in colon, gastric, or pancreatic cancer: an open-label, multicenter, phase I/II trial. Onkologie 34:101–108CrossRefPubMed Ströhlein MA, Lordick F, Rüttinger D, Grützner KU, Schemanski OC, Jäger M et al (2011) Immunotherapy of peritoneal carcinomatosis with the antibody catumaxomab in colon, gastric, or pancreatic cancer: an open-label, multicenter, phase I/II trial. Onkologie 34:101–108CrossRefPubMed
21.
Zurück zum Zitat Thadi A, Khalili M, Morano WF, Richard SD, Katz SC, Bowne WB (2018) Early investigations and recent advances in intraperitoneal immunotherapy for peritoneal metastasis. Vaccines (Basel). 6(3):54CrossRefPubMedPubMedCentral Thadi A, Khalili M, Morano WF, Richard SD, Katz SC, Bowne WB (2018) Early investigations and recent advances in intraperitoneal immunotherapy for peritoneal metastasis. Vaccines (Basel). 6(3):54CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Qian S, Villarejo-Campos P, Guijo I, Hernández-Villafranca S, García-Olmo D, González-Soares S et al (2022) Update for advance car-t therapy in solid tumors, clinical application in peritoneal carcinomatosis from colorectal cancer and future prospects. Front Immunol 13:841425CrossRefPubMedPubMedCentral Qian S, Villarejo-Campos P, Guijo I, Hernández-Villafranca S, García-Olmo D, González-Soares S et al (2022) Update for advance car-t therapy in solid tumors, clinical application in peritoneal carcinomatosis from colorectal cancer and future prospects. Front Immunol 13:841425CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Katz SC, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ et al (2016) Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther 23:142–148CrossRefPubMedPubMedCentral Katz SC, Point GR, Cunetta M, Thorn M, Guha P, Espat NJ et al (2016) Regional CAR-T cell infusions for peritoneal carcinomatosis are superior to systemic delivery. Cancer Gene Ther 23:142–148CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Lee YS, Lee WS, Kim CW, Lee SJ, Yang H, Kong SJ et al (2020) Oncolytic vaccinia virus reinvigorates peritoneal immunity and cooperates with immune checkpoint inhibitor to suppress peritoneal carcinomatosis in colon cancer. J Immunother Cancer 8:e000857CrossRefPubMedPubMedCentral Lee YS, Lee WS, Kim CW, Lee SJ, Yang H, Kong SJ et al (2020) Oncolytic vaccinia virus reinvigorates peritoneal immunity and cooperates with immune checkpoint inhibitor to suppress peritoneal carcinomatosis in colon cancer. J Immunother Cancer 8:e000857CrossRefPubMedPubMedCentral
Metadaten
Titel
Immune profile of patients with peritoneal carcinomatosis selected for CRS-HIPEC therapy
verfasst von
Julia Kleber
Jordi Yang Zhou
Florian Weber
Florian Bitterer
Patricia Hauer
Paul Kupke
Katharina Kronenberg
Edward K. Geissler
Hans J. Schlitt
Matthias Hornung
James A. Hutchinson
Jens M. Werner
Publikationsdatum
14.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 11/2023
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-023-03515-2

Weitere Artikel der Ausgabe 11/2023

Cancer Immunology, Immunotherapy 11/2023 Zur Ausgabe

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Bessere Prognose mit links- statt rechtsseitigem Kolon-Ca.

06.05.2024 Kolonkarzinom Nachrichten

Menschen mit linksseitigem Kolonkarzinom leben im Mittel zweieinhalb Jahre länger als solche mit rechtsseitigem Tumor. Auch aktuell ist das Sterberisiko bei linksseitigen Tumoren US-Daten zufolge etwa um 11% geringer als bei rechtsseitigen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.