Skip to main content
Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases 12/2018

29.09.2018 | Original Article

Impact of total laboratory automation on workflow and specimen processing time for culture of urine specimens

verfasst von: Melanie L. Yarbrough, William Lainhart, Allison R. McMullen, Neil W. Anderson, Carey-Ann D. Burnham

Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases | Ausgabe 12/2018

Einloggen, um Zugang zu erhalten

Abstract

Total laboratory automation (TLA) has the potential to reduce specimen processing time, improve standardization of cultures, and decrease turnaround time (TAT). The objective of this study was to perform a detailed interrogation of the impact of TLA implementation in all aspects of the workflow for routine culture of urine specimens. Using a detailed motion capture study, the time required for major steps of processing and result reporting were prospectively assessed for urine samples prior to (n = 215) and after (n = 203) implementation of the BD Kiestra TLA system. Specimens were plated on all shifts, but cultures were read only during the day shift for both time periods. Significant increases were noted in the time from receipt to inoculation (23.0 min versus 32.0 min, p < 0.001) and total processing time (28.0 min versus 66.0 min, p < 0.0001) for urine specimens post-TLA. Rates of positive (18.6% versus 16.3%) and negative (71.2% versus 79.3%) urine cultures remained stable through the pre- and post-TLA time periods (p = 0.58). There were no changes in TAT for organism identification or susceptibility results. The time to final report was decreased from 43.8 h pre-TLA to 42.0 h post-TLA, which was attributed to significant decreases in TAT for negative cultures (42.0 h versus 37.5 h, p = 0.01). These findings demonstrate that changes in laboratory workflow are necessary to maximize efficiency of TLA and optimize TAT.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sautter RL, Thomson RB Jr (2015) Consolidated clinical microbiology laboratories. J Clin Microbiol 53(5):1467–1472CrossRef Sautter RL, Thomson RB Jr (2015) Consolidated clinical microbiology laboratories. J Clin Microbiol 53(5):1467–1472CrossRef
2.
Zurück zum Zitat Garcia E, Ali AM, Soles RM, Lewis DG (2015) The American Society for Clinical Pathology’s 2014 vacancy survey of medical laboratories in the United States. Am J Clin Pathol 144(3):432–443CrossRef Garcia E, Ali AM, Soles RM, Lewis DG (2015) The American Society for Clinical Pathology’s 2014 vacancy survey of medical laboratories in the United States. Am J Clin Pathol 144(3):432–443CrossRef
3.
Zurück zum Zitat Genzen JR, Burnham CD, Felder RA, Hawker CD, Lippi G, Peck Palmer OM (2018) Challenges and opportunities in implementing total laboratory automation. Clin Chem 64(2):259–264CrossRef Genzen JR, Burnham CD, Felder RA, Hawker CD, Lippi G, Peck Palmer OM (2018) Challenges and opportunities in implementing total laboratory automation. Clin Chem 64(2):259–264CrossRef
4.
Zurück zum Zitat Bourbeau PP, Ledeboer NA (2013) Automation in clinical microbiology. J Clin Microbiol 51(6):1658–1665CrossRef Bourbeau PP, Ledeboer NA (2013) Automation in clinical microbiology. J Clin Microbiol 51(6):1658–1665CrossRef
5.
Zurück zum Zitat Ledeboer NA, Dallas SD (2014) The automated clinical microbiology laboratory: fact or fantasy? J Clin Microbiol 52(9):3140–3146CrossRef Ledeboer NA, Dallas SD (2014) The automated clinical microbiology laboratory: fact or fantasy? J Clin Microbiol 52(9):3140–3146CrossRef
6.
Zurück zum Zitat Croxatto A, Prod'hom G, Faverjon F, Rochais Y, Greub G (2016) Laboratory automation in clinical bacteriology: what system to choose?. Clin Microbiol Infect 22(3):217–235CrossRef Croxatto A, Prod'hom G, Faverjon F, Rochais Y, Greub G (2016) Laboratory automation in clinical bacteriology: what system to choose?. Clin Microbiol Infect 22(3):217–235CrossRef
7.
Zurück zum Zitat Da Rin G, Zoppelletto M, Lippi G (2016) Integration of diagnostic microbiology in a model of total laboratory automation. Lab Med 47(1):73–82CrossRef Da Rin G, Zoppelletto M, Lippi G (2016) Integration of diagnostic microbiology in a model of total laboratory automation. Lab Med 47(1):73–82CrossRef
8.
Zurück zum Zitat Faron ML, Buchan BW, Coon C, Liebregts T, van Bree A, Jansz AR, Soucy G, Korver J, Ledeboer NA (2016) Automatic digital analysis of chromogenic media for vancomycin-resistant-enterococcus screens using Copan WASPLab. J Clin Microbiol 54(10):2464–2469CrossRef Faron ML, Buchan BW, Coon C, Liebregts T, van Bree A, Jansz AR, Soucy G, Korver J, Ledeboer NA (2016) Automatic digital analysis of chromogenic media for vancomycin-resistant-enterococcus screens using Copan WASPLab. J Clin Microbiol 54(10):2464–2469CrossRef
9.
Zurück zum Zitat Faron ML, Buchan BW, Vismara C, Lacchini C, Bielli A, Gesu G, Liebregts T, van Bree A, Jansz A, Soucy G, Korver J, Ledeboer NA (2016) Automated scoring of chromogenic media for detection of methicillin-resistant staphylococcus aureus by use of WASPLab image analysis software. J Clin Microbiol 54(3):620–624CrossRef Faron ML, Buchan BW, Vismara C, Lacchini C, Bielli A, Gesu G, Liebregts T, van Bree A, Jansz A, Soucy G, Korver J, Ledeboer NA (2016) Automated scoring of chromogenic media for detection of methicillin-resistant staphylococcus aureus by use of WASPLab image analysis software. J Clin Microbiol 54(3):620–624CrossRef
10.
Zurück zum Zitat Kirn TJ (2016) Automatic digital plate reading for surveillance cultures. J Clin Microbiol 54(10):2424–2426CrossRef Kirn TJ (2016) Automatic digital plate reading for surveillance cultures. J Clin Microbiol 54(10):2424–2426CrossRef
11.
Zurück zum Zitat McAdam AJ (2018) Total laboratory automation in clinical microbiology: a micro-comic strip. J Clin Microbiol 56 (4) McAdam AJ (2018) Total laboratory automation in clinical microbiology: a micro-comic strip. J Clin Microbiol 56 (4)
12.
Zurück zum Zitat Burckhardt I, Panitz J, Burckhardt F, Zimmermann S (2017) Identification of Streptococcus pneumoniae: development of a standardized protocol for optochin susceptibility testing using total lab automation. Biomed Res Int 2017:4174168CrossRef Burckhardt I, Panitz J, Burckhardt F, Zimmermann S (2017) Identification of Streptococcus pneumoniae: development of a standardized protocol for optochin susceptibility testing using total lab automation. Biomed Res Int 2017:4174168CrossRef
13.
Zurück zum Zitat Hombach M, Jetter M, Blochliger N, Kolesnik-Goldmann N, Bottger EC (2017) Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study. J Antimicrob Chemother 72(6):1659–1668CrossRef Hombach M, Jetter M, Blochliger N, Kolesnik-Goldmann N, Bottger EC (2017) Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study. J Antimicrob Chemother 72(6):1659–1668CrossRef
14.
Zurück zum Zitat Bailey A, Ledeboer N, Burnham CA (2018) Clinical microbiology is growing up: the total laboratory automation revolution. Clin Chem in press Bailey A, Ledeboer N, Burnham CA (2018) Clinical microbiology is growing up: the total laboratory automation revolution. Clin Chem in press
15.
Zurück zum Zitat Dauwalder O, Landrieve L, Laurent F, de Montclos M, Vandenesch F, Lina G (2016) Does bacteriology laboratory automation reduce time to results and increase quality management?. Clin Microbiol Infect 22(3):236–243CrossRef Dauwalder O, Landrieve L, Laurent F, de Montclos M, Vandenesch F, Lina G (2016) Does bacteriology laboratory automation reduce time to results and increase quality management?. Clin Microbiol Infect 22(3):236–243CrossRef
16.
Zurück zum Zitat Croxatto A, Dijkstra K, Prod’hom G, Greub G (2015) Comparison of inoculation with the InoqulA and WASP automated systems with manual inoculation. J Clin Microbiol 53(7):2298–2307CrossRef Croxatto A, Dijkstra K, Prod’hom G, Greub G (2015) Comparison of inoculation with the InoqulA and WASP automated systems with manual inoculation. J Clin Microbiol 53(7):2298–2307CrossRef
17.
Zurück zum Zitat Froment P, Marchandin H, Vande Perre P, Lamy B (2014) Automated versus manual sample inoculations in routine clinical microbiology: a performance evaluation of the fully automated InoqulA instrument. J Clin Microbiol 52(3):796–802CrossRef Froment P, Marchandin H, Vande Perre P, Lamy B (2014) Automated versus manual sample inoculations in routine clinical microbiology: a performance evaluation of the fully automated InoqulA instrument. J Clin Microbiol 52(3):796–802CrossRef
18.
Zurück zum Zitat Graham M, Tilson L, Streitberg R, Hamblin J, Korman TM (2016) Improved standardization and potential for shortened time to results with BD Kiestra total laboratory automation of early urine cultures: a prospective comparison with manual processing. Diagn Microbiol Infect Dis 86(1):1–4CrossRef Graham M, Tilson L, Streitberg R, Hamblin J, Korman TM (2016) Improved standardization and potential for shortened time to results with BD Kiestra total laboratory automation of early urine cultures: a prospective comparison with manual processing. Diagn Microbiol Infect Dis 86(1):1–4CrossRef
19.
Zurück zum Zitat Mutters NT, Hodiamont CJ, de Jong MD, Overmeijer HP, van den Boogaard M, Visser CE (2014) Performance of Kiestra total laboratory automation combined with MS in clinical microbiology practice. Ann Lab Med 34(2):111–117CrossRef Mutters NT, Hodiamont CJ, de Jong MD, Overmeijer HP, van den Boogaard M, Visser CE (2014) Performance of Kiestra total laboratory automation combined with MS in clinical microbiology practice. Ann Lab Med 34(2):111–117CrossRef
20.
Zurück zum Zitat Theparee T, Das S, Thomson RB, Jr. (2018) Total laboratory automation and matrix-assisted laser desorption ionization-time of flight mass spectrometry improve turnaround times in the clinical microbiology laboratory: a retrospective analysis. J Clin Microbiol 56 (1) Theparee T, Das S, Thomson RB, Jr. (2018) Total laboratory automation and matrix-assisted laser desorption ionization-time of flight mass spectrometry improve turnaround times in the clinical microbiology laboratory: a retrospective analysis. J Clin Microbiol 56 (1)
21.
Zurück zum Zitat Buchan BW, Olson WJ, Mackey TL, Ledeboer NA (2014) Clinical evaluation of the walk-away specimen processor and ESwab for recovery of Streptococcus agalactiae isolates in prenatal screening specimens. J Clin Microbiol 52(6):2166–2168CrossRef Buchan BW, Olson WJ, Mackey TL, Ledeboer NA (2014) Clinical evaluation of the walk-away specimen processor and ESwab for recovery of Streptococcus agalactiae isolates in prenatal screening specimens. J Clin Microbiol 52(6):2166–2168CrossRef
22.
Zurück zum Zitat Strauss S, Bourbeau PP (2015) Impact of introduction of the BD Kiestra InoqulA on urine culture results in a hospital clinical microbiology laboratory. J Clin Microbiol 53(5):1736–1740CrossRef Strauss S, Bourbeau PP (2015) Impact of introduction of the BD Kiestra InoqulA on urine culture results in a hospital clinical microbiology laboratory. J Clin Microbiol 53(5):1736–1740CrossRef
23.
Zurück zum Zitat Klein S, Nurjadi D, Horner S, Heeg K, Zimmermann S, Burckhardt I (2018) Significant increase in cultivation of Gardnerella vaginalis, Alloscardovia omnicolens, Actinotignum schaalii, and Actinomyces spp. in urine samples with total laboratory automation. Eur J Clin Microbiol Infect Dis 37(7):1305–1311CrossRef Klein S, Nurjadi D, Horner S, Heeg K, Zimmermann S, Burckhardt I (2018) Significant increase in cultivation of Gardnerella vaginalis, Alloscardovia omnicolens, Actinotignum schaalii, and Actinomyces spp. in urine samples with total laboratory automation. Eur J Clin Microbiol Infect Dis 37(7):1305–1311CrossRef
24.
Zurück zum Zitat Lainhart W, Burnham CA (2018) Enhanced recovery of fastidious organisms from urine culture in the setting of total laboratory automation. J Clin Microbiol 56 (8) Lainhart W, Burnham CA (2018) Enhanced recovery of fastidious organisms from urine culture in the setting of total laboratory automation. J Clin Microbiol 56 (8)
25.
Zurück zum Zitat Dauwalder O, Vandenesch F (2014) Clinical microbiology laboratory: from the Pasteur model to the 24/7 clinical chemistry concept. Clin Microbiol Infect 20(10):O593–O594CrossRef Dauwalder O, Vandenesch F (2014) Clinical microbiology laboratory: from the Pasteur model to the 24/7 clinical chemistry concept. Clin Microbiol Infect 20(10):O593–O594CrossRef
Metadaten
Titel
Impact of total laboratory automation on workflow and specimen processing time for culture of urine specimens
verfasst von
Melanie L. Yarbrough
William Lainhart
Allison R. McMullen
Neil W. Anderson
Carey-Ann D. Burnham
Publikationsdatum
29.09.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Clinical Microbiology & Infectious Diseases / Ausgabe 12/2018
Print ISSN: 0934-9723
Elektronische ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-018-3391-7

Weitere Artikel der Ausgabe 12/2018

European Journal of Clinical Microbiology & Infectious Diseases 12/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.