Skip to main content
Erschienen in: Annals of Nuclear Medicine 5/2018

21.03.2018 | Original Article

Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction

verfasst von: Tobias Bexelius, Antti Sohlberg

Erschienen in: Annals of Nuclear Medicine | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

Objective

Statistical SPECT reconstruction can be very time-consuming especially when compensations for collimator and detector response, attenuation, and scatter are included in the reconstruction. This work proposes an accelerated SPECT reconstruction algorithm based on graphics processing unit (GPU) processing.

Methods

Ordered subset expectation maximization (OSEM) algorithm with CT-based attenuation modelling, depth-dependent Gaussian convolution-based collimator-detector response modelling, and Monte Carlo-based scatter compensation was implemented using OpenCL. The OpenCL implementation was compared against the existing multi-threaded OSEM implementation running on a central processing unit (CPU) in terms of scatter-to-primary ratios, standardized uptake values (SUVs), and processing speed using mathematical phantoms and clinical multi-bed bone SPECT/CT studies.

Results

The difference in scatter-to-primary ratios, visual appearance, and SUVs between GPU and CPU implementations was minor. On the other hand, at its best, the GPU implementation was noticed to be 24 times faster than the multi-threaded CPU version on a normal 128 × 128 matrix size 3 bed bone SPECT/CT data set when compensations for collimator and detector response, attenuation, and scatter were included.

Conclusions

GPU SPECT reconstructions show great promise as an every day clinical reconstruction tool.
Literatur
1.
Zurück zum Zitat Narayanan MV, King MA, Pretorius PH, Dahlberg ST, Spencer F, Simon E, et al. Human-observer receiver-operating-characteristic evaluation of attenuation, scatter, and resolution compensation strategies for (99 m)Tc myocardial perfusion imaging. J Nucl Med. 2003;44:1725–34.PubMed Narayanan MV, King MA, Pretorius PH, Dahlberg ST, Spencer F, Simon E, et al. Human-observer receiver-operating-characteristic evaluation of attenuation, scatter, and resolution compensation strategies for (99 m)Tc myocardial perfusion imaging. J Nucl Med. 2003;44:1725–34.PubMed
2.
Zurück zum Zitat Niu X, Yang Y, Jin M, Wernick MN, King MA. Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction. Med Phys. 2011;38:6571–84.CrossRefPubMedPubMedCentral Niu X, Yang Y, Jin M, Wernick MN, King MA. Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction. Med Phys. 2011;38:6571–84.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:761 – 82.CrossRefPubMed Zaidi H, Koral KF. Scatter modelling and compensation in emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:761 – 82.CrossRefPubMed
4.
Zurück zum Zitat Frey EC, Gilland KL, Tsui BM. Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT. IEEE Trans Med Imaging. 2002;21:1040–50.CrossRefPubMed Frey EC, Gilland KL, Tsui BM. Application of task-based measures of image quality to optimization and evaluation of three-dimensional reconstruction-based compensation methods in myocardial perfusion SPECT. IEEE Trans Med Imaging. 2002;21:1040–50.CrossRefPubMed
5.
Zurück zum Zitat Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13:601–9.CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag. 1994;13:601–9.CrossRef
6.
Zurück zum Zitat Di Bella EVR, Barclay AB, Eisner RL, Schafer RW. A comparison of rotation-based methods for iterative reconstruction algorithms. IEEE Trans Nucl Sci. 1996;43:3370–6.CrossRef Di Bella EVR, Barclay AB, Eisner RL, Schafer RW. A comparison of rotation-based methods for iterative reconstruction algorithms. IEEE Trans Nucl Sci. 1996;43:3370–6.CrossRef
7.
Zurück zum Zitat Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol. 2008;53:N277–N285.CrossRefPubMed Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol. 2008;53:N277–N285.CrossRefPubMed
8.
Zurück zum Zitat Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S. et. al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55:59–67.CrossRefPubMed Jambor I, Kuisma A, Ramadan S, Huovinen R, Sandell M, Kajander S. et. al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55:59–67.CrossRefPubMed
9.
Zurück zum Zitat Delcroix O, Robin P, Gouillou M, Le Duc-Pennec A, Alavi Z, Le Roux PY, et al. New SPECT/CT reconstruction algorithm: reliability and accuracy in clinical routine for non-oncologic bone diseases. EJNMMI Res. 2018;8:14.CrossRefPubMedPubMedCentral Delcroix O, Robin P, Gouillou M, Le Duc-Pennec A, Alavi Z, Le Roux PY, et al. New SPECT/CT reconstruction algorithm: reliability and accuracy in clinical routine for non-oncologic bone diseases. EJNMMI Res. 2018;8:14.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Pedemonte S, Bousse A, Erlandsson K, Modat M, Arridge S, Hutton BF, et al. GPU accelerated rotation-based emission tomography reconstruction. IEEE Nuclear Science Symposium Conference Record 2010;2657–2661. Pedemonte S, Bousse A, Erlandsson K, Modat M, Arridge S, Hutton BF, et al. GPU accelerated rotation-based emission tomography reconstruction. IEEE Nuclear Science Symposium Conference Record 2010;2657–2661.
11.
Zurück zum Zitat Ha S, Matej S, Ispiryan M, Mueller K. GPU-accelerated forward and back-projections with spatially varying kernels for 3D DIRECT TOF PET reconstruction. IEEE Trans Nucl Sci. 2013;60:166–73.CrossRefPubMedPubMedCentral Ha S, Matej S, Ispiryan M, Mueller K. GPU-accelerated forward and back-projections with spatially varying kernels for 3D DIRECT TOF PET reconstruction. IEEE Trans Nucl Sci. 2013;60:166–73.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kangasmaa TS, Constable C, Hippeläinen E, Sohlberg AO. Multicenter evaluation of single-photon emission computed tomography quantification with third-party reconstruction software. Nucl Med Commun. 2016;37:983–7.CrossRefPubMed Kangasmaa TS, Constable C, Hippeläinen E, Sohlberg AO. Multicenter evaluation of single-photon emission computed tomography quantification with third-party reconstruction software. Nucl Med Commun. 2016;37:983–7.CrossRefPubMed
13.
Zurück zum Zitat Kangasmaa TS, Kuikka JT, Vanninen EJ, Mussalo HM, Laitinen TP, Sohlberg AO. Half-time myocardial perfusion SPECT imaging with attenuation and Monte Carlo-based scatter correction. Nucl Med Commun. 2011;32:1040–5.CrossRefPubMed Kangasmaa TS, Kuikka JT, Vanninen EJ, Mussalo HM, Laitinen TP, Sohlberg AO. Half-time myocardial perfusion SPECT imaging with attenuation and Monte Carlo-based scatter correction. Nucl Med Commun. 2011;32:1040–5.CrossRefPubMed
14.
Zurück zum Zitat Hippeläinen E, Tenhunen M, Mäenpää H, Sohlberg A. Quantitative accuracy of Lu-177 SPECT reconstruction using different compensation methods: phantom and patient studies. EJNMMI Res. 2016;6:16.CrossRefPubMedPubMedCentral Hippeläinen E, Tenhunen M, Mäenpää H, Sohlberg A. Quantitative accuracy of Lu-177 SPECT reconstruction using different compensation methods: phantom and patient studies. EJNMMI Res. 2016;6:16.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Woliner-van der Weg W, Deden LN, Meeuwis AP, Koenrades M, Peeters LH, Kuipers H, Laanstra GJ, Gotthardt M, Slump CH, Visser EP. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using 111In-exendin. EJNMMI Phys. 2016;3:29.CrossRefPubMedPubMedCentral Woliner-van der Weg W, Deden LN, Meeuwis AP, Koenrades M, Peeters LH, Kuipers H, Laanstra GJ, Gotthardt M, Slump CH, Visser EP. A 3D-printed anatomical pancreas and kidney phantom for optimizing SPECT/CT reconstruction settings in beta cell imaging using 111In-exendin. EJNMMI Phys. 2016;3:29.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Woodcock E, Murphy T, Hemmings P, Longworth S. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Proc Conf Appl Comput Methods Reactor Probl. 1965;557:2. Woodcock E, Murphy T, Hemmings P, Longworth S. Techniques used in the GEM code for Monte Carlo neutronics calculations in reactors and other systems of complex geometry. Proc Conf Appl Comput Methods Reactor Probl. 1965;557:2.
17.
Zurück zum Zitat Berger M, Hubbell J. XCOM. Photon cross sections on a personal computer. Natl Bur Stand Washington, DC (USA). Cent Radiat Res. 1987. Berger M, Hubbell J. XCOM. Photon cross sections on a personal computer. Natl Bur Stand Washington, DC (USA). Cent Radiat Res. 1987.
18.
Zurück zum Zitat De Jong HWAM., Slijpen ETP, Beekman FJ. Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection. IEEE Trans Nucl Sci. 2001;48:58–64.CrossRef De Jong HWAM., Slijpen ETP, Beekman FJ. Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection. IEEE Trans Nucl Sci. 2001;48:58–64.CrossRef
19.
Zurück zum Zitat Salmon JK, Moraes MA, Dror RO, Shaw DE. Parallel random numbers: as easy as 1, 2, 3. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis 2011;1–12. Salmon JK, Moraes MA, Dror RO, Shaw DE. Parallel random numbers: as easy as 1, 2, 3. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis 2011;1–12.
20.
Zurück zum Zitat Doornik JA. Conversion of high-period random numbers to floating point. ACM Trans Model Comput Simul. 2007;17:3.CrossRef Doornik JA. Conversion of high-period random numbers to floating point. ACM Trans Model Comput Simul. 2007;17:3.CrossRef
21.
Zurück zum Zitat Satish N, Harris M, Garland M. Designing efficient sorting algorithms for manycore GPUs. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing. 2009. pp. 1–10. Satish N, Harris M, Garland M. Designing efficient sorting algorithms for manycore GPUs. In: Proceedings of the 2009 IEEE International Symposium on Parallel and Distributed Processing. 2009. pp. 1–10.
22.
Zurück zum Zitat Zelen M, Severo NC. Probability functions. Handb Math Funct 1964 5;925–995. Zelen M, Severo NC. Probability functions. Handb Math Funct 1964 5;925–995.
23.
24.
Zurück zum Zitat Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imag 2009;28:435–445.CrossRef Pratx G, Chinn G, Olcott PD, Levin CS. Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imag 2009;28:435–445.CrossRef
25.
Zurück zum Zitat Despres P, Jia X. A review of GPU-based medical image reconstruction. Phys Med. 2017;42:76–92.CrossRefPubMed Despres P, Jia X. A review of GPU-based medical image reconstruction. Phys Med. 2017;42:76–92.CrossRefPubMed
Metadaten
Titel
Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction
verfasst von
Tobias Bexelius
Antti Sohlberg
Publikationsdatum
21.03.2018
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 5/2018
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-018-1252-1

Weitere Artikel der Ausgabe 5/2018

Annals of Nuclear Medicine 5/2018 Zur Ausgabe