Skip to main content
Erschienen in: Neuropsychology Review 4/2009

01.12.2009 | Review

Implicit Learning in Aging: Extant Patterns and New Directions

verfasst von: Anna Rieckmann, Lars Bäckman

Erschienen in: Neuropsychology Review | Ausgabe 4/2009

Einloggen, um Zugang zu erhalten

Abstract

Research suggests that the striatum plays an important role in implicit learning (IL). The striatum exhibits marked age-related morphological and neurochemical losses. Yet, behavioral studies suggest that IL is generally well preserved in old age, and that age-related differences emerge only when highly complex IL tasks are used. In this review, we integrate behavioral and neuroimaging evidence on IL in aging. We suggest that relative stability of IL in old age may reflect neural reorganization that compensates for age-related losses in striatal functions. Specifically, there may be an age-related increase in reliance on extrastriatal regions (e.g., medial-temporal, frontal) during IL. This reorganization of function may be beneficial under less taxing performance conditions, but not when task demands become more challenging.
Literatur
Zurück zum Zitat Aizenstein, H. J., Butters, M. A., Clark, K. A., Figurski, J. L., Stenger, V. A., Nebes, R. D., et al. (2005). Prefrontal and striatal activation in elderly subjects during concurrent implicit and explicit sequence learning. Neurobiology of Aging, 27, 741–751.PubMedCrossRef Aizenstein, H. J., Butters, M. A., Clark, K. A., Figurski, J. L., Stenger, V. A., Nebes, R. D., et al. (2005). Prefrontal and striatal activation in elderly subjects during concurrent implicit and explicit sequence learning. Neurobiology of Aging, 27, 741–751.PubMedCrossRef
Zurück zum Zitat Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., et al. (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58, 261–272.PubMedCrossRef Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., et al. (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58, 261–272.PubMedCrossRef
Zurück zum Zitat Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Progress in Brain Research, 85, 119–146.PubMedCrossRef Alexander, G. E., Crutcher, M. D., & DeLong, M. R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Progress in Brain Research, 85, 119–146.PubMedCrossRef
Zurück zum Zitat Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Neurobiology of Aging, 26, 1245–1260.PubMedCrossRef Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Neurobiology of Aging, 26, 1245–1260.PubMedCrossRef
Zurück zum Zitat Atallah, H. E., Lopez-Paniagua, D., Rudy, J. W., & O’Reilly, R. C. (2007). Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nature Neuroscience, 10, 126–131.PubMedCrossRef Atallah, H. E., Lopez-Paniagua, D., Rudy, J. W., & O’Reilly, R. C. (2007). Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nature Neuroscience, 10, 126–131.PubMedCrossRef
Zurück zum Zitat Bäckman, L., Almkvist, O., Andersson, J., Nordberg, A., Winblad, B., Reineck, R., et al. (1997). Brain activation in young and older adults during implicit and explicit retrieval. Journal of Cognitive Neuroscience, 9, 378–391.CrossRef Bäckman, L., Almkvist, O., Andersson, J., Nordberg, A., Winblad, B., Reineck, R., et al. (1997). Brain activation in young and older adults during implicit and explicit retrieval. Journal of Cognitive Neuroscience, 9, 378–391.CrossRef
Zurück zum Zitat Bäckman, L., Almkvist, O., Nyberg, L., & Andersson, J. (2000). Functional changes in brain activity during priming in Alzheimer’s disease. Journal of Cognitive Neuroscience, 12, 134–141.PubMedCrossRef Bäckman, L., Almkvist, O., Nyberg, L., & Andersson, J. (2000). Functional changes in brain activity during priming in Alzheimer’s disease. Journal of Cognitive Neuroscience, 12, 134–141.PubMedCrossRef
Zurück zum Zitat Bäckman, L., & Dixon, R. A. (1992). Psychological compensation: a theoretical framework. Psychological Bulletin, 112, 259–283.PubMedCrossRef Bäckman, L., & Dixon, R. A. (1992). Psychological compensation: a theoretical framework. Psychological Bulletin, 112, 259–283.PubMedCrossRef
Zurück zum Zitat Bäckman, L., Lindenberger, U., Li, S.C., & Nyberg, L. (in press). Linking cognitive aging to alterations in dopaminergic neurotransmitter functioning: Recent data and future avenues. Neuroscience and Biobehavioral Reviews. Bäckman, L., Lindenberger, U., Li, S.C., & Nyberg, L. (in press). Linking cognitive aging to alterations in dopaminergic neurotransmitter functioning: Recent data and future avenues. Neuroscience and Biobehavioral Reviews.
Zurück zum Zitat Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30, 791–807.PubMedCrossRef Bäckman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: current status and future prospects. Neuroscience and Biobehavioral Reviews, 30, 791–807.PubMedCrossRef
Zurück zum Zitat Bäckman, L., Small, B. J., & Wahlin, Å. (2001). Aging and memory: Cognitive and biological perspectives. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (5th ed., pp. 349–377). San Diego, CA: Academic. Bäckman, L., Small, B. J., & Wahlin, Å. (2001). Aging and memory: Cognitive and biological perspectives. In J. E. Birren & K. W. Schaie (Eds.), Handbook of the psychology of aging (5th ed., pp. 349–377). San Diego, CA: Academic.
Zurück zum Zitat Beauchamp, M. H., Dagher, A., Panisset, M., & Doyon, J. (2008). Neural substrates of cognitive skill learning in Parkinson’s disease. Brain and Cognition, 68, 134–143.PubMedCrossRef Beauchamp, M. H., Dagher, A., Panisset, M., & Doyon, J. (2008). Neural substrates of cognitive skill learning in Parkinson’s disease. Brain and Cognition, 68, 134–143.PubMedCrossRef
Zurück zum Zitat Bennett, I. J., Howard, J. H., Jr., & Howard, D. (2007). Age-Related differences in implicit learning of subtle third-order sequential structure. Journal of Gerontology: Psychological Sciences, 62B, 98–103. Bennett, I. J., Howard, J. H., Jr., & Howard, D. (2007). Age-Related differences in implicit learning of subtle third-order sequential structure. Journal of Gerontology: Psychological Sciences, 62B, 98–103.
Zurück zum Zitat Berry, D. C. (1997). How implicit is implicit learning? Oxford: Oxford University Press. Berry, D. C. (1997). How implicit is implicit learning? Oxford: Oxford University Press.
Zurück zum Zitat Berry, D. C., & Dienes, Z. (1993). Implicit learning: Theoretical and empirical issues. Hove, UK: Lawrence Erlbaum Associates. Berry, D. C., & Dienes, Z. (1993). Implicit learning: Theoretical and empirical issues. Hove, UK: Lawrence Erlbaum Associates.
Zurück zum Zitat Brooks, D. N., & Baddeley, A. D. (1976). What can amnesic patients learn? Neuropsychologia, 14, 111–122.PubMedCrossRef Brooks, D. N., & Baddeley, A. D. (1976). What can amnesic patients learn? Neuropsychologia, 14, 111–122.PubMedCrossRef
Zurück zum Zitat Cabeza, R. (2001). Cognitive neuroscience of aging: contributions of functional neuroimaging. Scandinavian Journal of Psychology, 42, 277–286.PubMedCrossRef Cabeza, R. (2001). Cognitive neuroscience of aging: contributions of functional neuroimaging. Scandinavian Journal of Psychology, 42, 277–286.PubMedCrossRef
Zurück zum Zitat Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage, 17, 1394–1402.PubMedCrossRef Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage, 17, 1394–1402.PubMedCrossRef
Zurück zum Zitat Chang, Q., & Gold, P. E. (2003). Switching memory systems during learning: changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. The Journal of Neuroscience, 23, 3001–3005.PubMed Chang, Q., & Gold, P. E. (2003). Switching memory systems during learning: changes in patterns of brain acetylcholine release in the hippocampus and striatum in rats. The Journal of Neuroscience, 23, 3001–3005.PubMed
Zurück zum Zitat Cherry, K. E., & Stadler, M. A. (1995). Implicit learning of a nonverbal sequence in younger and older adults. Psychology & Aging, 10, 379–394.CrossRef Cherry, K. E., & Stadler, M. A. (1995). Implicit learning of a nonverbal sequence in younger and older adults. Psychology & Aging, 10, 379–394.CrossRef
Zurück zum Zitat Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2, 406–416.CrossRef Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2, 406–416.CrossRef
Zurück zum Zitat Cohen, N. J., Eichenbaum, H., DeAcedo, B. S., & Corkin, S. (1985). Different memory systems underlying acquisition of procedural and declarative knowledge. In D. S. Olton, E. Gamzu & S. Corkin (Eds.), Memory dysfunctions: An integration of animal and human research from preclinical and clinical perspectives (pp. 54–71). New York: New York Academy of Sciences. Cohen, N. J., Eichenbaum, H., DeAcedo, B. S., & Corkin, S. (1985). Different memory systems underlying acquisition of procedural and declarative knowledge. In D. S. Olton, E. Gamzu & S. Corkin (Eds.), Memory dysfunctions: An integration of animal and human research from preclinical and clinical perspectives (pp. 54–71). New York: New York Academy of Sciences.
Zurück zum Zitat Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory, 5, 131–178.PubMedCrossRef Cohen, N. J., Poldrack, R. A., & Eichenbaum, H. (1997). Memory for items and memory for relations in the procedural/declarative memory framework. Memory, 5, 131–178.PubMedCrossRef
Zurück zum Zitat Curran, T. (1997). Effects of aging on implicit sequence learning: accounting for sequence structure and explicit knowledge. Psychological Research, 60, 24–41.PubMedCrossRef Curran, T. (1997). Effects of aging on implicit sequence learning: accounting for sequence structure and explicit knowledge. Psychological Research, 60, 24–41.PubMedCrossRef
Zurück zum Zitat Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 189–202.CrossRef Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 189–202.CrossRef
Zurück zum Zitat Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., & Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24, 1013–1019.PubMedCrossRef Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., & Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24, 1013–1019.PubMedCrossRef
Zurück zum Zitat Davis, H. P., Klebe, K. J., Bever, B., & Spring, A. (1998). The effect of age on the learning of a nondeclarative category classification task. Experimental Aging Research, 24, 273–287.PubMedCrossRef Davis, H. P., Klebe, K. J., Bever, B., & Spring, A. (1998). The effect of age on the learning of a nondeclarative category classification task. Experimental Aging Research, 24, 273–287.PubMedCrossRef
Zurück zum Zitat Dennis, N. A., Howard, J. H., Jr., & Howard, D. V. (2003). Age deficits in learning sequences of spoken words. Journal of Gerontology Series B: Psychological Sciences and Social Sciences, 58B, 224–227. Dennis, N. A., Howard, J. H., Jr., & Howard, D. V. (2003). Age deficits in learning sequences of spoken words. Journal of Gerontology Series B: Psychological Sciences and Social Sciences, 58B, 224–227.
Zurück zum Zitat Dennis, N. A., Howard, J. H., Jr., & Howard, D. V. (2006). Implicit sequence learning without motor sequencing in young and old adults. Experimental Brain Research, 175, 153–164.CrossRef Dennis, N. A., Howard, J. H., Jr., & Howard, D. V. (2006). Implicit sequence learning without motor sequencing in young and old adults. Experimental Brain Research, 175, 153–164.CrossRef
Zurück zum Zitat D’Eredita, M. A., & Hoyer, W. J. (1999). An examination of the effects of adult age on explicit and implicit learning of figural sequences. Memory & Cognition, 27, 890–895. D’Eredita, M. A., & Hoyer, W. J. (1999). An examination of the effects of adult age on explicit and implicit learning of figural sequences. Memory & Cognition, 27, 890–895.
Zurück zum Zitat Dixon, R. A., Wahlin, Å., Maitland, S. B., Hultsch, D. F., Hertzog, C., & Bäckman, L. (2004). Episodic memory change in late adulthood: Generalizability across samples and performance indices. Memory & Cognition, 32, 768–778. Dixon, R. A., Wahlin, Å., Maitland, S. B., Hultsch, D. F., Hertzog, C., & Bäckman, L. (2004). Episodic memory change in late adulthood: Generalizability across samples and performance indices. Memory & Cognition, 32, 768–778.
Zurück zum Zitat Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 41–50.PubMedCrossRef Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1, 41–50.PubMedCrossRef
Zurück zum Zitat Exner, C., Koschack, J., & Irle, E. (2002). The differential role of premotor frontal cortex and basal ganglia in motor sequence learning: evidence from focal basal ganglia lesions. Learning & Memory, 9, 376–386.CrossRef Exner, C., Koschack, J., & Irle, E. (2002). The differential role of premotor frontal cortex and basal ganglia in motor sequence learning: evidence from focal basal ganglia lesions. Learning & Memory, 9, 376–386.CrossRef
Zurück zum Zitat Feeney, J. J., Howard, J. H., Jr., & Howard, D. V. (2002). Implicit learning of higher order sequences in middle age. Psychology & Aging, 17, 351–355.CrossRef Feeney, J. J., Howard, J. H., Jr., & Howard, D. V. (2002). Implicit learning of higher order sequences in middle age. Psychology & Aging, 17, 351–355.CrossRef
Zurück zum Zitat Fera, F., Weickert, T. W., Goldberg, T. E., Tessitore, A., Hariri, A., Das, S., et al. (2005). Neural mechanisms underlying probabilistic category learning in normal aging. Journal of Neuroscience, 25, 11340–11348.PubMedCrossRef Fera, F., Weickert, T. W., Goldberg, T. E., Tessitore, A., Hariri, A., Das, S., et al. (2005). Neural mechanisms underlying probabilistic category learning in normal aging. Journal of Neuroscience, 25, 11340–11348.PubMedCrossRef
Zurück zum Zitat Fletcher, P. C., Zafiris, O., Frith, C. D., Honey, R. A. E., Corlett, P. R., Zilles, K., et al. (2005). On the benefits of not trying: Brain activity and connectivity reflecting the interactions of explicit and implicit sequence learning. Cerebral Cortex, 15, 1002–1015.PubMedCrossRef Fletcher, P. C., Zafiris, O., Frith, C. D., Honey, R. A. E., Corlett, P. R., Zilles, K., et al. (2005). On the benefits of not trying: Brain activity and connectivity reflecting the interactions of explicit and implicit sequence learning. Cerebral Cortex, 15, 1002–1015.PubMedCrossRef
Zurück zum Zitat Foerde, K., Knowlton, B. J., & Poldrack, R. A. (2006). Modulation of competing memory systems by distraction. Proceedings of the National Academy of Sciences, 103, 11778–11783.CrossRef Foerde, K., Knowlton, B. J., & Poldrack, R. A. (2006). Modulation of competing memory systems by distraction. Proceedings of the National Academy of Sciences, 103, 11778–11783.CrossRef
Zurück zum Zitat Frensch, P. A. (1998). One concept, multiple meanings: On how to define the concept of implicit learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 47–105). Thousand Oaks, CA: Sage. Frensch, P. A. (1998). One concept, multiple meanings: On how to define the concept of implicit learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 47–105). Thousand Oaks, CA: Sage.
Zurück zum Zitat Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory & Cognition, 22, 95–110. Frensch, P. A., & Miner, C. S. (1994). Effects of presentation rate and individual differences in short-term memory capacity on an indirect measure of serial learning. Memory & Cognition, 22, 95–110.
Zurück zum Zitat Frensch, P. A., & Rünger, D. (2003). Implicit learning. Current Directions in Psychological Science, 12, 13–18.CrossRef Frensch, P. A., & Rünger, D. (2003). Implicit learning. Current Directions in Psychological Science, 12, 13–18.CrossRef
Zurück zum Zitat Gabrieli, J. D. (1998). Cognitive neuroscience of human memory. Annual Review of Psychology, 49, 87–115.PubMedCrossRef Gabrieli, J. D. (1998). Cognitive neuroscience of human memory. Annual Review of Psychology, 49, 87–115.PubMedCrossRef
Zurück zum Zitat Gagnon, S., Bedard, M. J., & Turcotte, J. (2005). The effect of old age on supra-span learning of visuo-spatial sequences under incidental and intentional encoding instructions. Brain and Cognition, 59, 225–235.PubMedCrossRef Gagnon, S., Bedard, M. J., & Turcotte, J. (2005). The effect of old age on supra-span learning of visuo-spatial sequences under incidental and intentional encoding instructions. Brain and Cognition, 59, 225–235.PubMedCrossRef
Zurück zum Zitat Gaillard, V., Arnaud, D., Michiels, S., & Cleeremans, A. (2009). Effects of age and practice in sequence learning: A graded account of ageing, learning, and control. European Journal of Cognitive Psychology., 21, 255–282.CrossRef Gaillard, V., Arnaud, D., Michiels, S., & Cleeremans, A. (2009). Effects of age and practice in sequence learning: A graded account of ageing, learning, and control. European Journal of Cognitive Psychology., 21, 255–282.CrossRef
Zurück zum Zitat Gaillard, V., Vandenberghe, M., Destrebecqz, A., & Cleeremans, A. (2006). First- and third-person approaches in implicit learning research. Consciousness and Cognition, 15, 709–722.PubMedCrossRef Gaillard, V., Vandenberghe, M., Destrebecqz, A., & Cleeremans, A. (2006). First- and third-person approaches in implicit learning research. Consciousness and Cognition, 15, 709–722.PubMedCrossRef
Zurück zum Zitat Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: an adaptive network model. Journal of Experimental Psychology: General, 117, 227–247.CrossRef Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: an adaptive network model. Journal of Experimental Psychology: General, 117, 227–247.CrossRef
Zurück zum Zitat Grafton, S. T., Hazeltine, E., & Ivry, R. B. (1998). Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience, 18, 9420–9428.PubMed Grafton, S. T., Hazeltine, E., & Ivry, R. B. (1998). Abstract and effector-specific representations of motor sequences identified with PET. Journal of Neuroscience, 18, 9420–9428.PubMed
Zurück zum Zitat Grieve, S. M., Clark, C. R., Williams, L. M., Peduto, A. J., & Gordon, E. (2005). Preservation of limbic and paralimbic structures in aging, 25, 391–401. Grieve, S. M., Clark, C. R., Williams, L. M., Peduto, A. J., & Gordon, E. (2005). Preservation of limbic and paralimbic structures in aging, 25, 391–401.
Zurück zum Zitat Hackert, V. H., den Heijer, T., Oudkerk, M., Koudstaal, P. J., Hofman, A., & Breteler, M. M. B. (2002). Hippocampal head size associated with verbal memory performance in nondemented elderly. NeuroImage, 17, 1356–1372.CrossRef Hackert, V. H., den Heijer, T., Oudkerk, M., Koudstaal, P. J., Hofman, A., & Breteler, M. M. B. (2002). Hippocampal head size associated with verbal memory performance in nondemented elderly. NeuroImage, 17, 1356–1372.CrossRef
Zurück zum Zitat Harrington, D. L., & Haaland, K. Y. (1992). Skill learning in the elderly: diminished implicit and explicit memory for a motor sequence. Psychology & Aging, 7, 425–434.CrossRef Harrington, D. L., & Haaland, K. Y. (1992). Skill learning in the elderly: diminished implicit and explicit memory for a motor sequence. Psychology & Aging, 7, 425–434.CrossRef
Zurück zum Zitat Head, D., Raz, N., Gunning-Dixon, F., Williamson, A., & Acker, J. (2002). Age-Related differences in the course of cognitive skill acquisition: The role of regional cortical shrinkage and cognitive resources. Psychology and Aging, 17, 72–84.PubMedCrossRef Head, D., Raz, N., Gunning-Dixon, F., Williamson, A., & Acker, J. (2002). Age-Related differences in the course of cognitive skill acquisition: The role of regional cortical shrinkage and cognitive resources. Psychology and Aging, 17, 72–84.PubMedCrossRef
Zurück zum Zitat Head, D., Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22, 491–507.PubMedCrossRef Head, D., Rodrigue, K. M., Kennedy, K. M., & Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22, 491–507.PubMedCrossRef
Zurück zum Zitat Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 55, 593–607.PubMed Heyes, C. M., & Foster, C. L. (2002). Motor learning by observation: evidence from a serial reaction time task. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 55, 593–607.PubMed
Zurück zum Zitat Hicks, L. H. (1964). Effects of overtraining on acquisition and reversal of place and response learning. Psychological Reports, 15, 49–462. Hicks, L. H. (1964). Effects of overtraining on acquisition and reversal of place and response learning. Psychological Reports, 15, 49–462.
Zurück zum Zitat Howard, D. V., & Howard, J. H., Jr. (1989). Age differences in learning serial patterns: direct versus indirect measures. Psychology and Aging, 4, 357–364.PubMedCrossRef Howard, D. V., & Howard, J. H., Jr. (1989). Age differences in learning serial patterns: direct versus indirect measures. Psychology and Aging, 4, 357–364.PubMedCrossRef
Zurück zum Zitat Howard, D. V., & Howard, J. H., Jr. (1992). Adult age differences in the rate of learning serial patterns: evidence from direct and indirect tests. Psychology and Aging, 7, 232–241.PubMedCrossRef Howard, D. V., & Howard, J. H., Jr. (1992). Adult age differences in the rate of learning serial patterns: evidence from direct and indirect tests. Psychology and Aging, 7, 232–241.PubMedCrossRef
Zurück zum Zitat Howard, J. H., Jr., & Howard, D. V. (1997). Age differences in implicit learning of higher order dependencies in serial patterns. Psychology and Aging, 12, 634–656.PubMedCrossRef Howard, J. H., Jr., & Howard, D. V. (1997). Age differences in implicit learning of higher order dependencies in serial patterns. Psychology and Aging, 12, 634–656.PubMedCrossRef
Zurück zum Zitat Howard, D. V., & Howard, J. H., Jr. (2001). When it does hurt to try: Adult age differences in the effects of instructions on implicit pattern learning. Psychonomic Bulletin & Review, 8, 798–805. Howard, D. V., & Howard, J. H., Jr. (2001). When it does hurt to try: Adult age differences in the effects of instructions on implicit pattern learning. Psychonomic Bulletin & Review, 8, 798–805.
Zurück zum Zitat Howard, J. H., Jr., Howard, D. V., Dennis, N. A., & Kelly, A. J. (2008a). Implicit learning of predicitive relationships in three-element visual sequences by young and old adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1139–1157.CrossRef Howard, J. H., Jr., Howard, D. V., Dennis, N. A., & Kelly, A. J. (2008a). Implicit learning of predicitive relationships in three-element visual sequences by young and old adults. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34, 1139–1157.CrossRef
Zurück zum Zitat Howard, J. H., Jr., Howard, D. V., Dennis, N. A., LaVine, S., & Valentino, K. (2008b). Aging and implicit learning of an invariant association. Journal of Gerontology: Psychological Sciences, 63B, 100–105. Howard, J. H., Jr., Howard, D. V., Dennis, N. A., LaVine, S., & Valentino, K. (2008b). Aging and implicit learning of an invariant association. Journal of Gerontology: Psychological Sciences, 63B, 100–105.
Zurück zum Zitat Howard, J. H., Jr., Howard, D. V., Dennis, N. A., & Yankovich, H. (2007). Event timing and age deficits in higher-order sequence learning. Aging, Neuropsychology, and Cognition, 14, 1–22.CrossRef Howard, J. H., Jr., Howard, D. V., Dennis, N. A., & Yankovich, H. (2007). Event timing and age deficits in higher-order sequence learning. Aging, Neuropsychology, and Cognition, 14, 1–22.CrossRef
Zurück zum Zitat Howard, J. H., Jr., Howard, D. V., Dennis, N. A., Yankovich, H., & Vaidya, C. J. (2004a). Implicit spatial contextual learning in healthy aging. Neuropsychology, 18, 124–134.CrossRef Howard, J. H., Jr., Howard, D. V., Dennis, N. A., Yankovich, H., & Vaidya, C. J. (2004a). Implicit spatial contextual learning in healthy aging. Neuropsychology, 18, 124–134.CrossRef
Zurück zum Zitat Howard, D. V., Howard, J. H., Jr., Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. (2004b). Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychology and Aging, 19, 79–92.CrossRef Howard, D. V., Howard, J. H., Jr., Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. (2004b). Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychology and Aging, 19, 79–92.CrossRef
Zurück zum Zitat Hoyer, W. J., & Lincourt, A. E. (1998). Aging and the development of learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 445–470). Thousand Oaks, CA: Sage. Hoyer, W. J., & Lincourt, A. E. (1998). Aging and the development of learning. In M. A. Stadler & P. A. Frensch (Eds.), Handbook of implicit learning (pp. 445–470). Thousand Oaks, CA: Sage.
Zurück zum Zitat Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L., & Kennard, C. (1995). Serial reaction time learning and Parkinson’s disease: evidence for a procedural learning deficit. Neuropsychologia, 33, 577–593.PubMedCrossRef Jackson, G. M., Jackson, S. R., Harrison, J., Henderson, L., & Kennard, C. (1995). Serial reaction time learning and Parkinson’s disease: evidence for a procedural learning deficit. Neuropsychologia, 33, 577–593.PubMedCrossRef
Zurück zum Zitat Jimenez, L. (2008). Taking patterns for chunks: Is there any evidence of chunk learning in continuous serial reaction-time tasks? Psychological Research, 71, 387–396.CrossRef Jimenez, L. (2008). Taking patterns for chunks: Is there any evidence of chunk learning in continuous serial reaction-time tasks? Psychological Research, 71, 387–396.CrossRef
Zurück zum Zitat Kelly, S. W., & Burton, A. M. (2001). Learning complex sequences: No role for observation? Psychological Research, 65, 15–23.PubMedCrossRef Kelly, S. W., & Burton, A. M. (2001). Learning complex sequences: No role for observation? Psychological Research, 65, 15–23.PubMedCrossRef
Zurück zum Zitat Kemper, T. L. (1994). Neuroanatomical and neuropathological changes during aging and dementia. In M. L. Albert & J. E. Knoefel (Eds.), Clinical Neurology of Aging (2nd ed., pp. 3–67). New York: Oxford University Press. Kemper, T. L. (1994). Neuroanatomical and neuropathological changes during aging and dementia. In M. L. Albert & J. E. Knoefel (Eds.), Clinical Neurology of Aging (2nd ed., pp. 3–67). New York: Oxford University Press.
Zurück zum Zitat Kemps, E., & Newson, R. (2006). Comparison of adult age differences in verbal and visuo-spatial memory: the importance of ‘pure’, parallel and validated measures. Journal of Clinical and Experimental Neuropsychology, 28, 341–356.PubMedCrossRef Kemps, E., & Newson, R. (2006). Comparison of adult age differences in verbal and visuo-spatial memory: the importance of ‘pure’, parallel and validated measures. Journal of Clinical and Experimental Neuropsychology, 28, 341–356.PubMedCrossRef
Zurück zum Zitat Knopman, D., & Nissen, M. J. (1991). Procedural learning is impaired in Huntington’s disease: evidence from the serial reaction time task. Neuropsychologia, 29, 245–254.PubMedCrossRef Knopman, D., & Nissen, M. J. (1991). Procedural learning is impaired in Huntington’s disease: evidence from the serial reaction time task. Neuropsychologia, 29, 245–254.PubMedCrossRef
Zurück zum Zitat Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273, 1399–1402.PubMedCrossRef Knowlton, B. J., Mangels, J. A., & Squire, L. R. (1996). A neostriatal habit learning system in humans. Science, 273, 1399–1402.PubMedCrossRef
Zurück zum Zitat Kreitzer, A. C., & Malenka, R. C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature, 445, 643–647.PubMedCrossRef Kreitzer, A. C., & Malenka, R. C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature, 445, 643–647.PubMedCrossRef
Zurück zum Zitat Langley, L. K., & Madden, D. J. (2000). Functional neuroimaging of memory: implications for cognitive aging. Microscopy Research and Technique, 51, 75–84.PubMedCrossRef Langley, L. K., & Madden, D. J. (2000). Functional neuroimaging of memory: implications for cognitive aging. Microscopy Research and Technique, 51, 75–84.PubMedCrossRef
Zurück zum Zitat Lee, A. S., Duman, R. S., & Pittenger, C. (2008). A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proceedings of the National Academy of Sciences of the United States of America, 105, 17163–17168.PubMedCrossRef Lee, A. S., Duman, R. S., & Pittenger, C. (2008). A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proceedings of the National Academy of Sciences of the United States of America, 105, 17163–17168.PubMedCrossRef
Zurück zum Zitat Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. Journal of Cognitive Neuroscience, 16, 427–438.PubMedCrossRef Lieberman, M. D., Chang, G. Y., Chiao, J., Bookheimer, S. Y., & Knowlton, B. J. (2004). An event-related fMRI study of artificial grammar learning in a balanced chunk strength design. Journal of Cognitive Neuroscience, 16, 427–438.PubMedCrossRef
Zurück zum Zitat Locascio, J. J., Corkin, S., & Growdon, J. H. (2003). Relation between clinical characteristics of Parkinson’s disease and cognitive decline. Journal of Clinical and Experimental Neuropsychology, 25, 94–109.PubMedCrossRef Locascio, J. J., Corkin, S., & Growdon, J. H. (2003). Relation between clinical characteristics of Parkinson’s disease and cognitive decline. Journal of Clinical and Experimental Neuropsychology, 25, 94–109.PubMedCrossRef
Zurück zum Zitat Lungu, O. V., Wächter, T., Liu, T., Willinghamn, D. T., & Ashe, J. (2004). Probability detection mechanisms and motor learning. Experimental Brain Research, 159, 135–150.CrossRef Lungu, O. V., Wächter, T., Liu, T., Willinghamn, D. T., & Ashe, J. (2004). Probability detection mechanisms and motor learning. Experimental Brain Research, 159, 135–150.CrossRef
Zurück zum Zitat Merikle, P. M., & Daneman, M. (1996). Memory for unconsciously perceived events: evidence from anesthetized patients. Consciousness and Cognition, 5, 525–541.PubMedCrossRef Merikle, P. M., & Daneman, M. (1996). Memory for unconsciously perceived events: evidence from anesthetized patients. Consciousness and Cognition, 5, 525–541.PubMedCrossRef
Zurück zum Zitat Meulemans, T., & Van Der Linden, M. (1997). Does the artificial grammar learning paradigm involve the acquisition of complex information? Psychologica Belgica, 37, 69–88. Meulemans, T., & Van Der Linden, M. (1997). Does the artificial grammar learning paradigm involve the acquisition of complex information? Psychologica Belgica, 37, 69–88.
Zurück zum Zitat Meulemans, T., Van Der Linden, M., & Perruchet, P. (1998). Implicit sequence learning in children. Journal of Experimental Child Psychology, 69, 199–221.PubMedCrossRef Meulemans, T., Van Der Linden, M., & Perruchet, P. (1998). Implicit sequence learning in children. Journal of Experimental Child Psychology, 69, 199–221.PubMedCrossRef
Zurück zum Zitat Midford, R., & Kirsner, K. (2005). Implicit and explicit learning in aged and young adults. Aging, Neuropsychology, and Cognition, 12, 359–387.CrossRef Midford, R., & Kirsner, K. (2005). Implicit and explicit learning in aged and young adults. Aging, Neuropsychology, and Cognition, 12, 359–387.CrossRef
Zurück zum Zitat Miller, A. K. H., Alston, R. L., & Corselllis, J. A. N. (1980). Variation with age in the volumes of grey and white matter in the cerebral hemispheres. Neuropathology & Applied Neurobiology, 6, 119–132.CrossRef Miller, A. K. H., Alston, R. L., & Corselllis, J. A. N. (1980). Variation with age in the volumes of grey and white matter in the cerebral hemispheres. Neuropathology & Applied Neurobiology, 6, 119–132.CrossRef
Zurück zum Zitat Moody, T. D., Bookheimer, S. Y., Vanek, Z., & Knowlton, B. J. (2004). An implicit learning task activates medial temporal lobe in patients with Parkinson’s disease. Behavioral Neuroscience, 118, 438–442.PubMedCrossRef Moody, T. D., Bookheimer, S. Y., Vanek, Z., & Knowlton, B. J. (2004). An implicit learning task activates medial temporal lobe in patients with Parkinson’s disease. Behavioral Neuroscience, 118, 438–442.PubMedCrossRef
Zurück zum Zitat Myerson, J., Hale, S., Rhee, S. H., & Jenkins, L. (1999). Selective interference with verbal and spatial working memory in young and older adults. Journal of Gerontology Series B: Psychological Sciences and Social Sciences, 54B, 161–164. Myerson, J., Hale, S., Rhee, S. H., & Jenkins, L. (1999). Selective interference with verbal and spatial working memory in young and older adults. Journal of Gerontology Series B: Psychological Sciences and Social Sciences, 54B, 161–164.
Zurück zum Zitat Negash, S., Howard, D. V., Japikse, K. C., & Howard, J. H., Jr. (2003). Age-related differences in implicit learning of non-spatial sequences. Aging, Neuropsychology and Cognition, 10, 108–121.CrossRef Negash, S., Howard, D. V., Japikse, K. C., & Howard, J. H., Jr. (2003). Age-related differences in implicit learning of non-spatial sequences. Aging, Neuropsychology and Cognition, 10, 108–121.CrossRef
Zurück zum Zitat Nejati, V., Garusi Farshi, M. T., Ashayeri, H., & Aghdasi, M. T. (2008). Dual task interference in implicit sequence learning by young and old adults. International Journal of Geriatric Psychiatry, 23, 801–804.PubMedCrossRef Nejati, V., Garusi Farshi, M. T., Ashayeri, H., & Aghdasi, M. T. (2008). Dual task interference in implicit sequence learning by young and old adults. International Journal of Geriatric Psychiatry, 23, 801–804.PubMedCrossRef
Zurück zum Zitat Nissen, M. J., & Bullemer, P. T. (1987). Attentional requirements for learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.CrossRef Nissen, M. J., & Bullemer, P. T. (1987). Attentional requirements for learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.CrossRef
Zurück zum Zitat Nyberg, L., Maitland, S. B., Rönnlund, M., Bäckman, L., Dixon, R. A., Wahlin, Å., et al. (2003). Selective adult age differences in an age-invariant multi-factor model of declarative memory. Psychology and Aging, 18, 149–160.PubMedCrossRef Nyberg, L., Maitland, S. B., Rönnlund, M., Bäckman, L., Dixon, R. A., Wahlin, Å., et al. (2003). Selective adult age differences in an age-invariant multi-factor model of declarative memory. Psychology and Aging, 18, 149–160.PubMedCrossRef
Zurück zum Zitat Packard, M. G. (1999). Glutamate infused post-training into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proceedings of the National Academy of Sciences of the United States of America, 93, 8683–8687. Packard, M. G. (1999). Glutamate infused post-training into the hippocampus or caudate-putamen differentially strengthens place and response learning. Proceedings of the National Academy of Sciences of the United States of America, 93, 8683–8687.
Zurück zum Zitat Packard, M. G. (2009). Exhumed from thought: Basal ganglia and response learning in the plus-maze. Behavioral Brain Research, 199, 24–31.CrossRef Packard, M. G. (2009). Exhumed from thought: Basal ganglia and response learning in the plus-maze. Behavioral Brain Research, 199, 24–31.CrossRef
Zurück zum Zitat Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563–593.PubMedCrossRef Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563–593.PubMedCrossRef
Zurück zum Zitat Packard, M. G., & McGaugh, J. L. (1996). Inactivation of the hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65–72.PubMedCrossRef Packard, M. G., & McGaugh, J. L. (1996). Inactivation of the hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65–72.PubMedCrossRef
Zurück zum Zitat Park, D. C. (2000). The basic mechanisms accounting for age-related decline in cognitive function. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A primer Vol. 11 (pp. 3–19). Philadelphia: Psychology Press. Park, D. C. (2000). The basic mechanisms accounting for age-related decline in cognitive function. In D. C. Park & N. Schwarz (Eds.), Cognitive aging: A primer Vol. 11 (pp. 3–19). Philadelphia: Psychology Press.
Zurück zum Zitat Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10, 233–238.PubMedCrossRef Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: one phenomenon, two approaches. Trends in Cognitive Sciences, 10, 233–238.PubMedCrossRef
Zurück zum Zitat Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L. H., Ingvar, M., et al. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16, 907–815.PubMedCrossRef Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L. H., Ingvar, M., et al. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16, 907–815.PubMedCrossRef
Zurück zum Zitat Poldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., et al. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550.PubMedCrossRef Poldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., et al. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550.PubMedCrossRef
Zurück zum Zitat Poldrack, R. A., Prabhakaran, V., Seger, C. A., & Gabrieli, J. D. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13, 564–574.PubMedCrossRef Poldrack, R. A., Prabhakaran, V., Seger, C. A., & Gabrieli, J. D. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13, 564–574.PubMedCrossRef
Zurück zum Zitat Poldrack, R. A., & Rodriguez, P. (2004). How do memory systems interact? Evidence from human classification learning. Neurobiology of Learning and Memory, 82, 324–332.PubMedCrossRef Poldrack, R. A., & Rodriguez, P. (2004). How do memory systems interact? Evidence from human classification learning. Neurobiology of Learning and Memory, 82, 324–332.PubMedCrossRef
Zurück zum Zitat Price, A. L. (2005). Cortico-striatal contributions to category learning: dissociating the verbal and implicit systems. Behavorial Neuroscience, 119, 1438–1447.CrossRef Price, A. L. (2005). Cortico-striatal contributions to category learning: dissociating the verbal and implicit systems. Behavorial Neuroscience, 119, 1438–1447.CrossRef
Zurück zum Zitat Prull, M. W., Gabrieli, J. D. E., & Bunge, S. A. (2000). Age-related changes in memory: A cognitive neuroscience perspective. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition (2nd ed., pp. 91–153). Mahwah: Erlbaum. Prull, M. W., Gabrieli, J. D. E., & Bunge, S. A. (2000). Age-related changes in memory: A cognitive neuroscience perspective. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition (2nd ed., pp. 91–153). Mahwah: Erlbaum.
Zurück zum Zitat Rajah, M. N., & D'Esposito, M. (2005). Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain, 128, 1964–1983.PubMedCrossRef Rajah, M. N., & D'Esposito, M. (2005). Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain, 128, 1964–1983.PubMedCrossRef
Zurück zum Zitat Rakshi, J. S., Uema, T., Ito, K., Bailey, D. L., Morrish, P. K., Ashburner, J., et al. (1999). Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [(18)F]dopa-PET study. Brain, 122, 1637–1650.PubMedCrossRef Rakshi, J. S., Uema, T., Ito, K., Bailey, D. L., Morrish, P. K., Ashburner, J., et al. (1999). Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease A 3D [(18)F]dopa-PET study. Brain, 122, 1637–1650.PubMedCrossRef
Zurück zum Zitat Rauch, S. L., Wedig, M. M., Wright, C. I., Martis, B., McMullin, K. G., Shin, L. M., et al. (2007). Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive-compulsive disorder. Biological Psychiatry, 61, 330–336.PubMedCrossRef Rauch, S. L., Wedig, M. M., Wright, C. I., Martis, B., McMullin, K. G., Shin, L. M., et al. (2007). Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive-compulsive disorder. Biological Psychiatry, 61, 330–336.PubMedCrossRef
Zurück zum Zitat Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A., Brown, H. D., et al. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5, 124–132.PubMedCrossRef Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A., Brown, H. D., et al. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5, 124–132.PubMedCrossRef
Zurück zum Zitat Rausch, R., & Ary, C. M. (1990). Supraspan learning in patients with unilateral anterior temporal lobe resections. Neuropsychologia, 28, 111–120.PubMedCrossRef Rausch, R., & Ary, C. M. (1990). Supraspan learning in patients with unilateral anterior temporal lobe resections. Neuropsychologia, 28, 111–120.PubMedCrossRef
Zurück zum Zitat Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689.PubMedCrossRef Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15, 1676–1689.PubMedCrossRef
Zurück zum Zitat Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. American Journal of Neuroradiology, 24, 1849–1856.PubMed Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. American Journal of Neuroradiology, 24, 1849–1856.PubMed
Zurück zum Zitat Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–863.CrossRef Reber, A. S. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior, 6, 855–863.CrossRef
Zurück zum Zitat Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118, 219–235.CrossRef Reber, A. S. (1989). Implicit learning and tacit knowledge. Journal of Experimental Psychology: General, 118, 219–235.CrossRef
Zurück zum Zitat Reber, P. J., Knowlton, B. J., & Squire, L. R. (1996). Dissociable properties of memory systems: Differences in the flexibility of declarative and nondeclarative knowledge. Behavioral Neuroscience, 110, 861–871.PubMedCrossRef Reber, P. J., Knowlton, B. J., & Squire, L. R. (1996). Dissociable properties of memory systems: Differences in the flexibility of declarative and nondeclarative knowledge. Behavioral Neuroscience, 110, 861–871.PubMedCrossRef
Zurück zum Zitat Reber, A. S., & Kotovsky, K. (1992, July). Learning and problem solving under a memory load. Paper presented at the Fourteenth Annual Conference of the Cognitive Science Society, Bloomington, Indiana Reber, A. S., & Kotovsky, K. (1992, July). Learning and problem solving under a memory load. Paper presented at the Fourteenth Annual Conference of the Cognitive Science Society, Bloomington, Indiana
Zurück zum Zitat Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning & Memory, 1, 217–229. Reber, P. J., & Squire, L. R. (1994). Parallel brain systems for learning with and without awareness. Learning & Memory, 1, 217–229.
Zurück zum Zitat Rieckmann, A., & Fischer, H. (2009). & Bäckman, L. Activation in striatum and medial-temporal lobe during implicit learning in younger and older adults: Relations to performance. Manuscript submitted for publication. Rieckmann, A., & Fischer, H. (2009). & Bäckman, L. Activation in striatum and medial-temporal lobe during implicit learning in younger and older adults: Relations to performance. Manuscript submitted for publication.
Zurück zum Zitat Robertson, E. M., & Pascual-Leone, A. (2001). Aspects of sensory guidance in sequence learning. Experimental Brain Research, 137, 336–345.CrossRef Robertson, E. M., & Pascual-Leone, A. (2001). Aspects of sensory guidance in sequence learning. Experimental Brain Research, 137, 336–345.CrossRef
Zurück zum Zitat Rose, M., Haider, H., Weiller, C., & Büchel, C. (2002). The role of the medial temporal lobe structures in implicit learning: An event-related fMRI study. Neuron, 36, 1221–1231.PubMedCrossRef Rose, M., Haider, H., Weiller, C., & Büchel, C. (2002). The role of the medial temporal lobe structures in implicit learning: An event-related fMRI study. Neuron, 36, 1221–1231.PubMedCrossRef
Zurück zum Zitat Salthouse, T. A. (1995). Differential age-related influences on memory for verbal-symbolic information and visual-spatial information? Journal of Gerontology: Psychological Sciences, 50B, 193–201. Salthouse, T. A. (1995). Differential age-related influences on memory for verbal-symbolic information and visual-spatial information? Journal of Gerontology: Psychological Sciences, 50B, 193–201.
Zurück zum Zitat Salthouse, T. A., McGuthry, K. E., & Hambrick, D. Z. (1999). A framework for analyzing and interpreting differential aging patterns: Application to three measures of implicit learning. Aging, Neuropsychology and Cognition, 6, 1–18.CrossRef Salthouse, T. A., McGuthry, K. E., & Hambrick, D. Z. (1999). A framework for analyzing and interpreting differential aging patterns: Application to three measures of implicit learning. Aging, Neuropsychology and Cognition, 6, 1–18.CrossRef
Zurück zum Zitat Schacter, D. L. (1987). Implicit expressions of memory in organic amnesia: learning of new facts and associations. Human Neurobiology, 6, 107–118.PubMed Schacter, D. L. (1987). Implicit expressions of memory in organic amnesia: learning of new facts and associations. Human Neurobiology, 6, 107–118.PubMed
Zurück zum Zitat Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025.PubMedCrossRef Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025.PubMedCrossRef
Zurück zum Zitat Schmitter-Edgecombe, M., & Nissley, H. M. (2002). Effects of aging on implicit covariation learning. Aging, Neuropsychology and Cognition, 9, 61–75.CrossRef Schmitter-Edgecombe, M., & Nissley, H. M. (2002). Effects of aging on implicit covariation learning. Aging, Neuropsychology and Cognition, 9, 61–75.CrossRef
Zurück zum Zitat Schugens, M. M., Daum, I., Spindler, M., & Birbaumer, N. (1997). Differential effects of aging on explicit and implicit memory. Aging, Neuropsychology, and Cognition, 4, 33–44.CrossRef Schugens, M. M., Daum, I., Spindler, M., & Birbaumer, N. (1997). Differential effects of aging on explicit and implicit memory. Aging, Neuropsychology, and Cognition, 4, 33–44.CrossRef
Zurück zum Zitat Seger, C. A., & Cincotta, C. M. (2006). Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cerebral Cortex, 16, 1546–1555.PubMedCrossRef Seger, C. A., & Cincotta, C. M. (2006). Dynamics of frontal, striatal, and hippocampal systems during rule learning. Cerebral Cortex, 16, 1546–1555.PubMedCrossRef
Zurück zum Zitat Seidler, R. D. (2006). Differential effects of age on sequence learning and sensorimotor adaptation. Brain Research Bulletin, 70, 337–346.PubMedCrossRef Seidler, R. D. (2006). Differential effects of age on sequence learning and sensorimotor adaptation. Brain Research Bulletin, 70, 337–346.PubMedCrossRef
Zurück zum Zitat Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17, 367–447.CrossRef Shanks, D. R., & St. John, M. F. (1994). Characteristics of dissociable human learning systems. Behavioral and Brain Sciences, 17, 367–447.CrossRef
Zurück zum Zitat Shea, C. H., Park, J. H., & Braden, H. W. (2006). Age-related effects in sequential motor learning. Physical Therapy, 86, 478–488.PubMed Shea, C. H., Park, J. H., & Braden, H. W. (2006). Age-related effects in sequential motor learning. Physical Therapy, 86, 478–488.PubMed
Zurück zum Zitat Shohamy, D., Myers, C. S., Kalanithi, J., & Gluck, M. A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience & Biobehavioral Reviews, 32, 219–236.CrossRef Shohamy, D., Myers, C. S., Kalanithi, J., & Gluck, M. A. (2008). Basal ganglia and dopamine contributions to probabilistic category learning. Neuroscience & Biobehavioral Reviews, 32, 219–236.CrossRef
Zurück zum Zitat Smith, J. G., & McDowall, J. (2004). Impaired higher-order implicit sequence learning on the verbal version of the serial reaction time task in patients with Parkinson's disease. Neuropsychology, 18, 679–691.PubMedCrossRef Smith, J. G., & McDowall, J. (2004). Impaired higher-order implicit sequence learning on the verbal version of the serial reaction time task in patients with Parkinson's disease. Neuropsychology, 18, 679–691.PubMedCrossRef
Zurück zum Zitat Smith, J. G., & McDowall, J. (2006). The implicit learning deficit in patients with Parkinson´s disease: A matter of impaired sequence integration ? Neuropsychologica, 44, 275–288.CrossRef Smith, J. G., & McDowall, J. (2006). The implicit learning deficit in patients with Parkinson´s disease: A matter of impaired sequence integration ? Neuropsychologica, 44, 275–288.CrossRef
Zurück zum Zitat Smith, J. G., Siegert, R., & McDowall, J. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson’s disease. Brain and Cognition, 45, 378–391.PubMedCrossRef Smith, J. G., Siegert, R., & McDowall, J. (2001). Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson’s disease. Brain and Cognition, 45, 378–391.PubMedCrossRef
Zurück zum Zitat Song, S., Howard, J. H., Jr., & Howard, D. V. (2007). Implicit probabilistic sequence learning is independent of explicit awareness. Learning and Memory, 14, 167–176.PubMedCrossRef Song, S., Howard, J. H., Jr., & Howard, D. V. (2007). Implicit probabilistic sequence learning is independent of explicit awareness. Learning and Memory, 14, 167–176.PubMedCrossRef
Zurück zum Zitat Song, S., Howard, J. H., Jr., & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189, 145–58.CrossRef Song, S., Howard, J. H., Jr., & Howard, D. V. (2008). Perceptual sequence learning in a serial reaction time task. Experimental Brain Research, 189, 145–58.CrossRef
Zurück zum Zitat Song, S., Marks, B., Howard, J. H., Jr., & Howard, D. V. (2009). Evidence for parallel explicit and implicit sequence learning systems in older adults. Behavioral Brain Research, 196, 328–332.CrossRef Song, S., Marks, B., Howard, J. H., Jr., & Howard, D. V. (2009). Evidence for parallel explicit and implicit sequence learning systems in older adults. Behavioral Brain Research, 196, 328–332.CrossRef
Zurück zum Zitat Squire, L. R., & Frambach, M. (1990). Cognitive skill learning in amnesia. Psychobiology, 18, 109–117. Squire, L. R., & Frambach, M. (1990). Cognitive skill learning in amnesia. Psychobiology, 18, 109–117.
Zurück zum Zitat Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44, 453–495.PubMedCrossRef Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44, 453–495.PubMedCrossRef
Zurück zum Zitat Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S. E., Videen, T. O., & Raichle, M. E. (1992). Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proceedings of the National Academy of Sciences USA, 89, 1837–1841.CrossRef Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S. E., Videen, T. O., & Raichle, M. E. (1992). Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proceedings of the National Academy of Sciences USA, 89, 1837–1841.CrossRef
Zurück zum Zitat Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences USA, 93, 13515–13522.CrossRef Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences USA, 93, 13515–13522.CrossRef
Zurück zum Zitat Turcotte, J., Gagnon, S., & Poirier, M. (2005). The effect of old age on the learning of supraspan sequences. Psychology and Aging, 20, 251–260.PubMedCrossRef Turcotte, J., Gagnon, S., & Poirier, M. (2005). The effect of old age on the learning of supraspan sequences. Psychology and Aging, 20, 251–260.PubMedCrossRef
Zurück zum Zitat Verhaeghen, P., Marcoen, A., & Goossens, L. (1993). Facts and fiction about memory aging: A quantitative integration of research findings. Journal of Gerontology: Psychological Sciences, 48B, 157–171. Verhaeghen, P., Marcoen, A., & Goossens, L. (1993). Facts and fiction about memory aging: A quantitative integration of research findings. Journal of Gerontology: Psychological Sciences, 48B, 157–171.
Zurück zum Zitat Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P., et al. (2004). Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron, 43, 427–435.PubMedCrossRef Voermans, N. C., Petersson, K. M., Daudey, L., Weber, B., Van Spaendonck, K. P., Kremer, H. P., et al. (2004). Interaction between the human hippocampus and the caudate nucleus during route recognition. Neuron, 43, 427–435.PubMedCrossRef
Zurück zum Zitat Werheid, K., Zysset, S., Muller, A., Reuter, M., & von Cramon, D. Y. (2003). Rule learning in a serial reaction time task: an fMRI study on patients with early Parkinson's disease. Cognitive Brain Research, 16, 273–284.PubMedCrossRef Werheid, K., Zysset, S., Muller, A., Reuter, M., & von Cramon, D. Y. (2003). Rule learning in a serial reaction time task: an fMRI study on patients with early Parkinson's disease. Cognitive Brain Research, 16, 273–284.PubMedCrossRef
Zurück zum Zitat Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory & Cognition, 27, 561–572. Willingham, D. B. (1999). Implicit motor sequence learning is not purely perceptual. Memory & Cognition, 27, 561–572.
Zurück zum Zitat Willingham, D. D., & Goedert-Eschman, K. (1999). The relation between implicit and explicit learning: Evidence for parallel development. Psychological Science, 10, 531–534.CrossRef Willingham, D. D., & Goedert-Eschman, K. (1999). The relation between implicit and explicit learning: Evidence for parallel development. Psychological Science, 10, 531–534.CrossRef
Zurück zum Zitat Willingham, D. B., & Koroshetz, W. J. (1993). Evidence for dissociable motor skills in Huntington’s disease patients. Psychobiology, 21, 173–182. Willingham, D. B., & Koroshetz, W. J. (1993). Evidence for dissociable motor skills in Huntington’s disease patients. Psychobiology, 21, 173–182.
Zurück zum Zitat Willingham, D., Koroshetz, W., & Peterson, E. (1996). Motor skills have diverse neural bases: Spared and impaired skill acquisition in Huntington's disease. Neuropsychology, 10, 315–321.CrossRef Willingham, D., Koroshetz, W., & Peterson, E. (1996). Motor skills have diverse neural bases: Spared and impaired skill acquisition in Huntington's disease. Neuropsychology, 10, 315–321.CrossRef
Zurück zum Zitat Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 1047–1060.CrossRef Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory, & Cognition, 15, 1047–1060.CrossRef
Zurück zum Zitat Willingham, D. B., & Preuss, L. (1995). The death of implicit memory. Psyche, 2, 1–10. Willingham, D. B., & Preuss, L. (1995). The death of implicit memory. Psyche, 2, 1–10.
Zurück zum Zitat Willingham, D. B., Salidis, J., & Gabrieli, J. D. E. (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Journal of Neurophysiology, 88, 1451–1460.PubMed Willingham, D. B., Salidis, J., & Gabrieli, J. D. E. (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Journal of Neurophysiology, 88, 1451–1460.PubMed
Zurück zum Zitat Zacks, R. T., Hasher, L., & Li, K. Z. H. (2000). Human Memory. In T. A. Salthouse & F. I. M. Craik (Eds.), Handbook of aging and cognition (2nd ed., pp. 293–357). Mahwah: Erlbaum. Zacks, R. T., Hasher, L., & Li, K. Z. H. (2000). Human Memory. In T. A. Salthouse & F. I. M. Craik (Eds.), Handbook of aging and cognition (2nd ed., pp. 293–357). Mahwah: Erlbaum.
Metadaten
Titel
Implicit Learning in Aging: Extant Patterns and New Directions
verfasst von
Anna Rieckmann
Lars Bäckman
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Neuropsychology Review / Ausgabe 4/2009
Print ISSN: 1040-7308
Elektronische ISSN: 1573-6660
DOI
https://doi.org/10.1007/s11065-009-9117-y

Weitere Artikel der Ausgabe 4/2009

Neuropsychology Review 4/2009 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.