Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2021

Open Access 01.12.2021 | Research article

In-hospital and 30-day major adverse cardiac events in patients referred for ST-segment elevation myocardial infarction in Dhaka, Bangladesh

verfasst von: Zubair Akhtar, Mohammad Abdul Aleem, Probir Kumar Ghosh, A. K. M. Monwarul Islam, Fahmida Chowdhury, C. Raina MacIntyre, Ole Fröbert

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2021

Abstract

Background

There is a paucity of data regarding acute phase (in-hospital and 30-day) major adverse cardiac events (MACE) following ST-segment elevation myocardial infarction (STEMI) in Bangladesh. This study aimed to document MACE during the acute phase post-STEMI to provide information.

Methods

We enrolled STEMI patients of the National Institute of Cardiovascular Disease, Dhaka, Bangladesh, from August 2017 to October 2018 and followed up through 30 days post-discharge for MACE, defined as the composite of all-cause death, myocardial infarction, and coronary revascularization. Demographic information, cardiovascular risk factors, and clinical data were registered in a case report form. The Cox proportional hazard model was used for univariate and multivariate analysis to identify potential risk factors for MACE.

Results

A total of 601 patients, mean age 51.6 ± 10.3 years, 93% male, were enrolled. The mean duration of hospital stay was 3.8 ± 2.4 days. We found 37 patients (6.2%) to experience an in-hospital event, and 45 (7.5%) events occurred within the 30 days post-discharge. In univariate analysis, a significantly increased risk of developing 30-day MACE was observed in patients with more than 12 years of formal education, diabetes mellitus, or a previous diagnosis of heart failure. In a multivariate analysis, the risk of developing 30-day MACE was increased in patients with heart failure (hazard ratio = 4.65; 95% CI 1.64–13.23).

Conclusions

A high risk of in-hospital and 30-day MACE in patients with STEMI exists in Bangladesh. Additional resources should be allocated providing guideline-recommended treatment for patients with myocardial infarction in Bangladesh.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ASA
Acetylsalicylic acid
ACE inhibitor
Angiotensin converting enzyme inhibitor
BMI
Body mass index
BP
Blood pressure
CABG
Cronary artery bypass grafting
CI
Confidence intervals
cTn-I
Cardiac troponin I
DM
Diabetes mellitus
ECG
Electrocardiogram
HbA1c
Glycated hemoglobin
HDL
High-density lipoprotein
HR
Hazard ratio
LDL
Low-density lipoprotein
MACE
Major adverse cardiac events
MI
Myocardial infarction
NICVD
National Institute of Cardiovascular Disease
PCI
Percutaneous coronary intervention
STEMI
ST-segment elevation myocardial infarction

Background

Acute coronary syndrome is among the leading causes of morbidity and mortality globally [1], but, while the incidence and mortality rates are declining in most developed nations, they are on the rise in developing countries [2, 3]. The decline may be attributed to increased adherence to treatment guidelines and changes in lifestyle and behavior [47]. ST-segment elevation myocardial infarction (STEMI) is the most common acute manifestation of coronary artery disease [8], accounting for approximately one-third of acute coronary syndromes in both developed and developing countries [9, 10]. In economically disadvantaged areas like Bangladesh, the prevalence of coronary artery disease and STEMI remains mostly unknown, and only small scale epidemiological surveys provide evidence of its increase [11].
Myocardial infarction is two to three times more common in patients who have survived an earlier STEMI than in the general population [12]. Older age, no revascularization procedure, and comorbidities have been identified as significant risk factors for recurrence [12]. Most studies of post-STEMI outcomes focus on the acute phase, in-hospital and 30 days post-discharge, after the index event [13, 14]. A literature search produced only a single study from Bangladesh describing post-STEMI outcomes as a composite of major adverse cardiac events (MACE) in a rural setting [15].
In a resource-limited setting, it is not always feasible to adopt the best treatment strategies for the management of STEMI. Differences in epidemiological, as well as clinical factors, may contribute to greater risk of adverse events following STEMI [16, 17] that can potentially impact patient-specific outcomes [18]. This situation exists even in the large tertiary care cardiac hospital in the capital city of Dhaka, as STEMI patients referred from throughout Bangladesh receive treatment here. Bangladesh, with rapidly progressing urbanization, is undergoing a demographic and epidemiological transition from infectious diseases to non-communicable diseases as primary areas of concern [19, 20]. Common behavioural, metabolic, and physiological risk factors of coronary artery disease are prevalent in the Bangladesh population [21, 22]. In light of this transition, and considering the paucity of in-hospital and 30-day MACE data in urban locations in Bangladesh, we aimed to determine MACE rates in the acute phase post-STEMI for evidence-based guidance to inform the mobilization of resources for therapeutic strategies in STEMI.

Methods

We conducted a prospective longitudinal observational study at the National Institute of Cardiovascular Diseases (NICVD), Dhaka, from August 2017 through October 2018. The NICVD is the largest public tertiary care cardiac hospital in Bangladesh, managing patients with cardiovascular disorders from throughout the country. Study-appointed physicians reviewed NICVD hospital admission records and visited patients admitted to the cardiology wards to identify potential subjects aged ≥ 18 years hospitalized with a STEMI. STEMI diagnosis was confirmed based on ST-segment elevation in the electrocardiogram in the hospital records. Informed written consent to participate in the study was obtained for collection of extensive baseline and outcome information. The study was approved by the icddr,b institutional review board prior to enrolling participants.

Data collection

Enrolled patients were followed up during hospitalization and for 30 days post-discharge. Study physicians recorded sociodemographic data, cardiovascular risk factors, and clinical data on a case report form. They also extracted data related to medical history from the medical records of the patient records file and verified through clinical examination. A respondent was considered hypertensive when the average of two or more diastolic blood pressure (BP) measurements on at least two subsequent visits was ≥ 90 mm Hg or when the average of multiple systolic BP readings on two or more subsequent visits was consistently ≥ 140 mm Hg in the hospital records [23]. A patient was confirmed to be diabetic based on either of the laboratory findings of plasma glucose: HbA1c ≥ 48 mmol/mol; random plasma glucose ≥ 11.1 mmol/l; fasting plasma glucose ≥ 7.0 mmol/l or oral glucose tolerance test 2-h glucose in venous plasma glucose ≥ 11.1 mmol/l [24]. A respondent was diagnosed with dyslipidemia according to American heart association’s classification corresponding to the a total cholesterol > 5.2 mmol/l (200 mg/dl) or low-density lipoprotein (LDL) > 3.4 mmol/l (130 mg/dl), high-density lipoprotein (HDL) < 0.9 mmol/l (35 mg/dl), or triglycerides > 1.7 mmol/l (150 mg/dl) or a combination thereof [25]. Body mass index (BMI) was calculated by body weight measured in kilograms divided by height in meters squared [26]. On day 31, following discharge from hospital, study physicians made calls to subjects/family members to record any MACE during the past 30 days. A MACE was defined as all-cause death, non-fatal myocardial infarction, or a revascularization procedure including Percutaneous coronary intervention (PCI) or Cronary artery bypass grafting (CABG) [27]. Similar to a previously published study, if more than one MACE occurred during the follow-up period, the most severe endpoint (all-cause death > myocardial infarction > revascularization) was selected for the 30-day MACE analysis [28]. Unplanned revascularizations were only considered for MACE.

Data analysis

Sociodemographic information and cardiovascular risk factors such as underlying chronic conditions, smoking, family history of cardiovascular disease, previous coronary revascularization procedures, and heart failure were summarized using descriptive statistics. Data of access to water, sanitation, hygiene, and characteristics of housing were collected to classify the wealth index [29] using a principal component analysis [30]. Clinical data including symptoms, cardiac troponin I (cTn-I) level at admission, and location of STEMI based on electrocardiogram/echocardiogram findings were summarized using descriptive statistics.
Pearson’s χ2 tests were used to analyse categorical variables, and non-parametric Wilcoxon rank-sum tests were conducted for continuous variables in patients with or without events in the 30-day follow-up period. The event rates and 95% confidence intervals (CI) were tabulated for the in-hospital and post-discharge 30-day follow-up periods.
Univariate and multivariate Cox regression models were used to estimate risk factors for events. Hazard ratios (HR) and the corresponding 95% CI adjusted for covariates were calculated. Based on literature review and clinical input, 12 risk factors were included in analysis: age, sex, wealth index, education level, location of residence (urban/rural), hypertension, diabetes mellitus (DM), dyslipidemia, previous myocardial infarction, tobacco use, family history of cardiovascular disease, and obesity. Covariates that were significant in the univariate analyses at the p ≤ 0.20 level were included in the multivariable model. A goodness-of-fit test of the multivariable model was conducted, and the p values from Wald tests of the individual variables were used to identify variables that could be excluded from the model to remove any residual effect. Based on the goodness-of-fit test, seven variables were included in the final Cox regression model. The HR for univariate and multivariate models, together with the respective 95% CI, are reported. Among the seven variables in the multivariate analysis, corresponding adjusted HRs were not reported for confounding variables of age and education. A p value ≤ 0.05 was considered significant. All analyses were performed using Stata v. 13 (StataCorp LP, College Station, TX, USA).

Results

From August 2017 through October 2018, 601 patients, mean age 51.6 [SD \(\pm\) 10.3] years, range 24–80, 93% (559) male, were diagnosed with STEMI based on clinical presentation at admission and electrocardiogram (ECG) findings and included in the study. No patient was lost to follow-up. Baseline data are presented in Table 1. Two-thirds (389/601) of patients had a family history of cardiovascular disease and 25% (148/601) had diabetes mellitus. Post-MI discharge, 95% (573/601) of patients were prescribed antiplatelet agents like acetylsalicylic acid (ASA) and P2Y12 inhibitors, 90% (540/601) were prescribed statins, 62% (371/601) were prescribed nitrates, 51% (305/601) were prescribed angiotensin-converting enzyme (ACE) inhibitors and 44% (266/601) were prescribed β-blockers (Table 1).
Table 1
Baseline characteristics of 601 STEMI patients in Dhaka, Bangladesh (August 2017–October 2018)
Characteristics
Number (%)
Age (years)
 Mean age (SD)
51.6 (± 10.3)
 < 40
75 (12.5)
 40–64
450 (74.9)
 ≥ 65
76 (12.7)
Sex
 Male
559 (93.0)
Location of residence
 Rural
275 (45.8)
 Urban
326 (54.2)
Education, years of school attendance
 None
154 (25.6)
 1–5
249 (41.4)
 6–10
60 (10.0)
 11–12
57 (9.5)
 ≥ 13
81 (13.5)
Wealth Index [29]
 Poorest
139 (23.1)
 Poorer
107 (17.8)
 Middle
122 (20.3)
 Wealthier
163 (27.1)
 Wealthiest
70 (11.7)
Medical history
 Hypertension
230 (38.3)
 Diabetes mellitus
148 (24.6)
 Dyslipidemia
60 (10.0)
 Family history of CVD
389 (64.7)
 Body Mass Index > 25
212 (37.3)
 Currently smoking
410 (68.2)
 Smokeless tobacco use
56 (12.2)
 Alcohol consumption
12 (2.0)
 Previous MI
54 (9.0)
 Previous heart failure
11 (1.8)
 Previous revascularization
8 (1.3)
Discharge medications
 ASA + P2Y12 inhibitor combination
573 (95.3)
 Statins
540 (89.9)
 Nitrates
371 (61.7)
 ACE inhibitors
305 (50.7)
 β-blockers
266 (44.3)
 Anti-diabetic agents
75 (12.5)
ACE inhibitor Angiotensin converting enzyme inhibitor, ASA acetylsalicylic acid, CVD cardiovascular disease, MI myocardial infarction, SD standard deviation
Presenting symptoms at hospital are listed in Table 2. An ECG was conducted in all cases. Cardiac troponin I (cTn-I) was not available for 67% (404/601) of cases; however, among those in which it was assessed, 84% (165/197) showed values above the 99th percentile of the upper reference limit. Significantly higher mean values of cTn-I were observed in patients who developed MACE during the 30-day follow-up period compared to patients who did not experience MACE (37.3 ng/ml [± SD 43.4] vs. 19.4 ng/ml [± SD 33.7], p = 0.002). Based on ECG/echocardiogram, the most common location of infarct was in the inferior (47%, 283/601) followed by the anterior (27%, 165/601) heart wall.
Table 2
Characteristics of STEMI patients at presentation in Dhaka, Bangladesh (August 2017–October 2018)
Characteristics
MACE n = 80
Without MACE n = 521
p value
Symptoms n (%)
 Chest discomfort
78 (97.5)
505 (96.9)
0.780
 Dyspnea
41 (51.3)
181 (34.7)
0.004
 Sweating
63 (78.8)
413 (79.3)
0.915
 Nausea
43 (53.8)
245 (47.0)
0.262
 Vomiting
31 (38.8)
197 (37.8)
0.872
 Fainting
6 (7.5)
29 (5.6)
0.492
Troponin I level at admissiona
 Mean Troponin I, ng/ml (SD)
37.3 (43.4)
19.4 (33.7)
0.002
 Not elevated, n (%)
2 (2.5)
30 (5.8)
Ref
 Elevated, n (%)
27 (33.8)
138 (26.6)
0.157
 Not available, n (%)
51 (63.8)
353 (67.8)
Location of STEMI n (%)
 Anterior
25 (31.3)
140 (26.9)
Ref
 Anteroseptal
10 (12.5)
79 (15.2)
0.383
 Inferior
36 (45.0)
247 (47.4)
0.467
 Lateral
2 (2.5)
9 (1.7)
0.775
 Other
7 (8.8)
46 (8.8)
0.718
Theh bold font was used to indicate that the value is statistically significant, i.e. p < 0.005
an = 197 subjects had Troponin I level assessed
The mean duration of hospital stay was 3.8 (± SD, 2.4) days. Hospitalization of patients who experienced in-hospital MACE was significantly longer than recorded for those who experienced post-discharge 30-day MACE (5.6 days, [± SD 4.5] vs. 3.7 days, [± SD 2.1]; p = 0.022). Thirty-seven (6.2%; 95% CI 4.2–8.1) in-hospital events included 19 (3.2%) all-cause deaths and 18 (3.0%) unplanned revascularization procedures. Within 30 days post-discharge, 45 (7.5%; 95% CI 5.4–9.6) MACE were recorded, including revascularization procedures (PCI or CABG) in 26 (4.3%) patients, 15 all-cause deaths (2.5%), and 4 (0.7%) recurrent MIs. Two patients undergoing unplanned revascularization during the hospital stay died during the 30-day follow-up period. In total, 80 MACE occurred during the in-hospital and 30-day follow-up, i.e. 13.3% (80/601) of all patients experienced a MACE (Table 3).
Table 3
In-hospital and 30-day MACE in STEMI patients in Dhaka, Bangladesh (August 2017–October 2018)
MACE
In hospital n (%)
30 day n (%)
Total
Overall
37 (6.2) (95% CI 4.2–8.1)
45 (7.5) (95% CI 5.4–9.6)
80a (13.3) (95% CI 10.6–16.0)
All-cause deaths
19 (3.2)
15 (2.5)
34 (5.7)
Revascularization
18 (3.0)
26 (4.3)
44 (7.3)
Recurrent MI
0
4 (0.7)
4 (0.7)
aTwo in-hopital MACE cases experienced more severe MACE post-discharge
The univariate analysis revealed significantly increased risk of MACE in patients with greater than 12 years of education, diabetes mellitus, or a previous history of heart failure. We also observed a numerically elevated risk (HR = 1.79; 95% CI 0.95–3.36) in patients ≥ 65 years, but this did not reach statistical significance. In multivariate analysis, after adjusting for age and education, heart failure (HR = 5.23; 95% CI 1.83–14.92) remained a significant risk factor for 30-day MACE (Fig. 1).

Discussion

Our prospective study from the largest tertiary cardiac hospital in Bangladesh revealed that 13% of patients admitted with STEMI experienced a MACE within the 30 days post-discharge (Fig. 2). This finding is lower than the 23% MACE within 30 days post-STEMI found in a study in rural Bangladesh [15].
Our 30-day MACE rate following STEMI is much higher compared to reports from the Netherlands (3%), India (5%), and Brazil (10%) [3133]. The in-hospital MACE rate was lower in our study population compared with results of recent studies from China (12%), Canada (9%), and India (8%) [32, 34, 35]. We were, however, unable to compare our results with regional data because of the paucity of data available of in-hospital MACE in Bangladesh.
Revascularization procedures were the most frequent post-discharge MACE in our study. While most studies report the frequency and predictors of mortality following index MI, especially STEMI [36, 37], focus on rehospitalization and revascularization procedures are warranted, as they consume significant healthcare resources and affect patient quality of life [38, 39]. In our study, no patient underwent primary PCI. This may be because of prolonged symptom onset to hospital arrival time [15]. Revascularization procedures are frequently delayed in Bangladesh, where the majority (67%) of healthcare expenditure is out-of-pocket [40]. Most revascularization procedures are often delayed during which patients and family secure financial resources for the intervention, a practice not compatible with treatment guidelines for acute MI of the European Society of Cardiology [41].
Studies have documented that MACE and mortality after MI is higher in females than in males worldwide, and women are less likely to receive optimal treatment, including post-discharge preventive medication even in high-income settings [2, 42, 43]. A higher rate of MACE and mortality among women has been attributed to biological sex differences and gender differences influenced by social, environmental, and community factors [44, 45]. In a large registry-based study from 125 centres in India, only 22.6% of patients with acute coronary syndrome were female [46]. There were few female patients (7%) in our study. This underrepresentation of females as participants was also a factor in previous studies conducted in Bangladesh and neighboring countries, and represents the known lower risk of cardiovascular disease in women prior to menopause [15, 4750]. Women tend to show atypical symptoms of acute coronary events and are less likely to present with chest pain [51]. Hence, they are less likely to seek hospital care [52] and optimal treatment [53]. According to the Bangladesh demographic and health survey report of 2014, only 14.1% of women have decision-making capacity with respect to their own healthcare, and three in ten women reported that their husband is the main decision maker for their healthcare [54]. Women are underrepresented in cardiology studies and our findings are a stark reminder that female sex should be considered in designing and analyzing future studies [55].
Social and cultural factors may also explain delayed hospitalization or not seeking healthcare. A quarter of our study participants had no formal education, and 41% had education only at the primary level (Table 1). Prevous studies in Bangladesh have documented a low level of education limiting access to healthcare and negatively affecting health care seeking decisions [56, 57].
We found an elevated risk of MACE among patients aged ≥ 65 years that did not reach statistical significance, most likely because of the low numbers of such patients (13%) in our cohort. Nevertheless, increasing age is considered a significant risk factor for mortality after an acute myocardial infarction [5860]. The choice of treatment for the elderly should be determined by early clinical assessment, time of presentation after STEMI, and underlying comorbidities [61].
We also found 25% of our respondents with DM to have a numerically higher risk of MACE, but it did not reach statistical significance. The role of DM in ACS deserves much clinical and therapeutic attention. The inflammatory status and altered glucose homeostasis with DM could cause endothelial dysfunction [62, 63] even in the absence of significant coronary artery stenoses [63] such as in the condition of acute myocardial infarction specifically for patients with multi-vessel coronary stenosis [64] and high thrombus burden in STEMI [65]. Furthermore, altered endothelial function may result in restenosis after revascularization by PCI [66] and may sustain a high thrombus burden [67]. Control of inflammatory status could be an appropriate therapeutic option to reduce the burden of cardiovascular disease [62]. Hypoglycemic drugs with anti-inflammatory properties may ameliorate conditions by directly stabilizing coronary plaques [64]. Even after STEMI and guideline-recommended treatment, glycemic control not only has shown to reduce thrombus burden [68] but also improve myocardial repair [69].
We found a statistically significant higher risk of 30-day MACE among patients who had a history of heart failure before the recent STEMI. Heart failure, together with MI, has been considered a major driver of morbidity and mortality. With an established contribution of heart failure to morbidity and mortality after MI, early risk stratification through clinical and laboratory assessment, together with preventative therapeutic strategies, is required to reduce in-hospital and 30-day MACE [70].
Several limitations warrant attention while interpreting our study findings. First, this was a relatively small observational study in a single specialized cardiac hospital in the capital city of Bangladesh, and study results may not generalize to the entire country. Further studies from multiple centers should be undertaken to ascertain rates of MACE after STEMI in larger cohorts. Secondly, in a number of patients with dyspnea a diagnosis of heart failure was likely missed due to strained resources and this might explain the low number of patients diagnosed with heart failure available for our analyses. Thirdly, data of the 30-day follow-up was obtained through phone calls by study physicians with no documented evidence of patients’ adherence to post-discharge therapy and of MACE outcomes to verify responses from patients and or family members. In addition, troponin levels were not available for most partipants. In future studies, review of records of the treatment provided is recommended in determining MACE outcomes. Despite these limitations, this research offers essential information of in-hospital and 30-day MACE after STEMI in Bangladesh.

Conclusions

The study shows a considerable risk of in-hospital and 30-day MACE occurring in patients referred with STEMI in Bangladesh. Our findings highlight the need for resources to provide guideline-recommended treatment for patients with myocardial infarction.

Acknowledgements

The authors are grateful to the study data collection team and study participants for their valuable data. We also acknowledge the support of NICVD authority in conducting this study.
The study was approved by the icddr,b institutional review board prior to enrolling participants, and informed written consent to participate in the study was obtained.
Not applicable.

Competing interests

None of the authors have any financial, personal, or professional relationships to disclose.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
5.
Zurück zum Zitat O’Gara PT, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(4):e78–140.CrossRef O’Gara PT, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(4):e78–140.CrossRef
6.
Zurück zum Zitat Wright RS, et al. 2011 ACCF/AHA Focused update of the guidelines for the management of patients with unstable Angina/Non-ST-elevation myocardial infarction (updating the 2007 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American College of Emergency Physicians, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;57(19):1920–59. https://doi.org/10.1016/j.jacc.2011.02.009.CrossRefPubMed Wright RS, et al. 2011 ACCF/AHA Focused update of the guidelines for the management of patients with unstable Angina/Non-ST-elevation myocardial infarction (updating the 2007 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American College of Emergency Physicians, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;57(19):1920–59. https://​doi.​org/​10.​1016/​j.​jacc.​2011.​02.​009.CrossRefPubMed
12.
Zurück zum Zitat Smolina K, Wright FL, Rayner M, Goldacre MJ. Long-term survival and recurrence after acute myocardial infarction in England, 2004 to 2010. Circ Cardiovasc Qual Outcomes. 2012;5(4):532–40.CrossRef Smolina K, Wright FL, Rayner M, Goldacre MJ. Long-term survival and recurrence after acute myocardial infarction in England, 2004 to 2010. Circ Cardiovasc Qual Outcomes. 2012;5(4):532–40.CrossRef
16.
Zurück zum Zitat Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.CrossRef Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.CrossRef
17.
Zurück zum Zitat Donahoe SM, et al. Diabetes and mortality following acute coronary syndromes. JAMA. 2007;298(7):765–75.CrossRef Donahoe SM, et al. Diabetes and mortality following acute coronary syndromes. JAMA. 2007;298(7):765–75.CrossRef
18.
Zurück zum Zitat Arnold SV, et al. Predicting adverse outcomes after myocardial infarction among patients with diabetes mellitus. Circ Cardiovasc Qual Outcomes. 2016;9(4):372–9.CrossRef Arnold SV, et al. Predicting adverse outcomes after myocardial infarction among patients with diabetes mellitus. Circ Cardiovasc Qual Outcomes. 2016;9(4):372–9.CrossRef
22.
Zurück zum Zitat World Health Organization. Noncommunicable diseases country profiles 2018; 2018. World Health Organization. Noncommunicable diseases country profiles 2018; 2018.
23.
Zurück zum Zitat Carretero OA, Oparil S. Essential hypertension: part I: definition and etiology. Circulation. 2000;101(3):329–35.CrossRef Carretero OA, Oparil S. Essential hypertension: part I: definition and etiology. Circulation. 2000;101(3):329–35.CrossRef
24.
Zurück zum Zitat Kerner W, Brückel J. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122(07):384–6.CrossRef Kerner W, Brückel J. Definition, classification and diagnosis of diabetes mellitus. Exp Clin Endocrinol Diabetes. 2014;122(07):384–6.CrossRef
26.
Zurück zum Zitat Quetelet LAJ. Sur l'homme et le développement de ses facultés, ou Essai de physique sociale; 1869. Quetelet LAJ. Sur l'homme et le développement de ses facultés, ou Essai de physique sociale; 1869.
29.
Zurück zum Zitat Rutstein SO, Johnson K. DHS comparative reports 6: the DHS wealth index. Calverton: ORC Macro; 2004. Rutstein SO, Johnson K. DHS comparative reports 6: the DHS wealth index. Calverton: ORC Macro; 2004.
30.
Zurück zum Zitat Vyas S, Kumaranayake L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan. 2006;21(6):459–68.CrossRef Vyas S, Kumaranayake L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy Plan. 2006;21(6):459–68.CrossRef
31.
Zurück zum Zitat Vos NS, et al. Prehospital prasugrel versus ticagrelor in real-world patients with ST-elevation myocardial infarction referred for primary PCI: procedural and 30-day outcomes. J Invasive Cardiol. 2018;30(12):431–6.PubMed Vos NS, et al. Prehospital prasugrel versus ticagrelor in real-world patients with ST-elevation myocardial infarction referred for primary PCI: procedural and 30-day outcomes. J Invasive Cardiol. 2018;30(12):431–6.PubMed
40.
Zurück zum Zitat Mustafa A, Rahman A,Hossain N, Begum T. Bangladesh National Health Accounts 1997–2015 (BNHA-V); 2018. Mustafa A, Rahman A,Hossain N, Begum T. Bangladesh National Health Accounts 1997–2015 (BNHA-V); 2018.
41.
Zurück zum Zitat Ibanez B, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.CrossRef Ibanez B, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119–77.CrossRef
42.
Zurück zum Zitat Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics—2015 update: a report from the American heart association. Circulation. 2015;131(4):e29–322. https://doi.org/10.1161/CIR.0000000000000152. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics—2015 update: a report from the American heart association. Circulation. 2015;131(4):e29–322. https://​doi.​org/​10.​1161/​CIR.​0000000000000152​.
43.
Zurück zum Zitat Khan E, et al. Differences in management and outcomes for men and women with ST-elevation myocardial infarction. Med J Aust. 2018;209(3):118–23.CrossRef Khan E, et al. Differences in management and outcomes for men and women with ST-elevation myocardial infarction. Med J Aust. 2018;209(3):118–23.CrossRef
44.
Zurück zum Zitat Institute of Medicine Committee on Understanding the Biology of S, Gender D. The National Academies Collection: reports funded by National Institutes of Health. In: Wizemann TM, Pardue ML, editors. Exploring the biological contributions to human health: does sex matter. Washington: National Academies Press; 2001. Institute of Medicine Committee on Understanding the Biology of S, Gender D. The National Academies Collection: reports funded by National Institutes of Health. In: Wizemann TM, Pardue ML, editors. Exploring the biological contributions to human health: does sex matter. Washington: National Academies Press; 2001.
45.
Zurück zum Zitat Institute of Medicine Committee on Women’s Health R. Women’s health research: progress, pitfalls, and promise. Washington: National Academies Press; 2010. Institute of Medicine Committee on Women’s Health R. Women’s health research: progress, pitfalls, and promise. Washington: National Academies Press; 2010.
61.
Zurück zum Zitat Carro A, Kaski JC. Myocardial infarction in the elderly. Aging Dis. 2011;2(2):116–37.PubMed Carro A, Kaski JC. Myocardial infarction in the elderly. Aging Dis. 2011;2(2):116–37.PubMed
63.
Zurück zum Zitat Sardu C, et al. Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the CODYCE multicenter prospective study. Diabetes Care. 2019;42(10):1946–55. https://doi.org/10.2337/dc18-2356.CrossRefPubMed Sardu C, et al. Effects of metformin therapy on coronary endothelial dysfunction in patients with prediabetes with stable angina and nonobstructive coronary artery stenosis: the CODYCE multicenter prospective study. Diabetes Care. 2019;42(10):1946–55. https://​doi.​org/​10.​2337/​dc18-2356.CrossRefPubMed
Metadaten
Titel
In-hospital and 30-day major adverse cardiac events in patients referred for ST-segment elevation myocardial infarction in Dhaka, Bangladesh
verfasst von
Zubair Akhtar
Mohammad Abdul Aleem
Probir Kumar Ghosh
A. K. M. Monwarul Islam
Fahmida Chowdhury
C. Raina MacIntyre
Ole Fröbert
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2021
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-01896-9

Weitere Artikel der Ausgabe 1/2021

BMC Cardiovascular Disorders 1/2021 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Chronisches Koronarsyndrom: Gefahr von Hospitalisierung wegen Herzinsuffizienz

06.05.2024 Herzinsuffizienz Nachrichten

Obwohl ein rezidivierender Herzinfarkt bei chronischem Koronarsyndrom wahrscheinlich die Hauptsorge sowohl der Patienten als auch der Ärzte ist, sind andere Ereignisse womöglich gefährlicher. Laut einer französischen Studie stellt eine Hospitalisation wegen Herzinsuffizienz eine größere Gefahr dar.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.