Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 5-6/2017

31.07.2017 | Original Article

In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development

verfasst von: Audrey Aussel, Alexandra Montembault, Sébastien Malaise, Marie Pierre Foulc, William Faure, Sandro Cornet, Rachida Aid, Marc Chaouat, Thierry Delair, Didier Letourneur, Laurent David, Laurence Bordenave

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 5-6/2017

Einloggen, um Zugang zu erhalten

Abstract

Vascular grafts made of synthetic polymers perform poorly in cardiac and peripheral bypass applications. In these applications, chitosan-based materials can be produced and shaped to provide a novel scaffold for vascular tissue engineering. The goal of this study was to evaluate in vitro the mechanical properties of a novel chitosan formulation to assess its potential for this scaffold. Two chitosan-based hydrogel tubes were produced by modulating chitosan concentration. Based on the standard ISO 7198:1998, the hydrogel tubes were characterized in vitro in terms of suture retention strength, tensile strength, compliance, and burst pressure. By increasing chitosan concentration, suture retention value increased to reach 1.1 N; average burst strength and elastic moduli also increased significantly. The compliance seemed to exhibit a low value for chitosan tubes of high concentration. By modulating chitosan concentration, we produced scaffolds with suitable mechanical properties to be implanted in vivo and withstand physiological blood pressures.
Literatur
1.
Zurück zum Zitat Li, S., Sengupta, D., & Chien, S. (2014). Vascular tissue engineering: from in vitro to in situ. Wiley interdisciplinary reviews Systems biology and medicine, 6(1), 61–76.CrossRef Li, S., Sengupta, D., & Chien, S. (2014). Vascular tissue engineering: from in vitro to in situ. Wiley interdisciplinary reviews Systems biology and medicine, 6(1), 61–76.CrossRef
2.
Zurück zum Zitat Seifu, D. G., Purnama, A., Mequanint, K., & Mantovani, D. (2013). Small-diameter vascular tissue engineering. Nature Reviews Cardiology, 10(7), 410–421.CrossRef Seifu, D. G., Purnama, A., Mequanint, K., & Mantovani, D. (2013). Small-diameter vascular tissue engineering. Nature Reviews Cardiology, 10(7), 410–421.CrossRef
3.
Zurück zum Zitat Pashneh-Tala S, MacNeil S, Claeyssens F. (2015). The tissue-engineered vascular graft—past, present, and future. Tissue engineering Part B, Reviews, Pashneh-Tala S, MacNeil S, Claeyssens F. (2015). The tissue-engineered vascular graft—past, present, and future. Tissue engineering Part B, Reviews,
4.
Zurück zum Zitat Boucard, N., Viton, C., & Domard, A. (2005). New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules, 6(6), 3227–3237.CrossRef Boucard, N., Viton, C., & Domard, A. (2005). New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules, 6(6), 3227–3237.CrossRef
5.
Zurück zum Zitat Baldrick, P. (2010). The safety of chitosan as a pharmaceutical excipient. Regulatory toxicology and pharmacology : RTP, 56(3), 290–299.CrossRef Baldrick, P. (2010). The safety of chitosan as a pharmaceutical excipient. Regulatory toxicology and pharmacology : RTP, 56(3), 290–299.CrossRef
6.
Zurück zum Zitat Muzzarelli, R. A. (2010). Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Marine Drugs, 8(2), 292–312.CrossRef Muzzarelli, R. A. (2010). Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Marine Drugs, 8(2), 292–312.CrossRef
7.
Zurück zum Zitat Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., et al. (2016). Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PloS One, 11(7), e0158555.CrossRef Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., et al. (2016). Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PloS One, 11(7), e0158555.CrossRef
8.
Zurück zum Zitat Zhu, C., Ma, X., Xian, L., Zhou, Y., & Fan, D. (2014). Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering. Bio-medical Materials and Engineering, 24(6), 1999–2005.PubMed Zhu, C., Ma, X., Xian, L., Zhou, Y., & Fan, D. (2014). Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering. Bio-medical Materials and Engineering, 24(6), 1999–2005.PubMed
9.
Zurück zum Zitat Yao, Y., Wang, J., Cui, Y., Xu, R., Wang, Z., Zhang, J., et al. (2014). Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia, 10(6), 2739–2749.CrossRef Yao, Y., Wang, J., Cui, Y., Xu, R., Wang, Z., Zhang, J., et al. (2014). Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia, 10(6), 2739–2749.CrossRef
10.
Zurück zum Zitat Azevedo, E. P., Retarekar, R., Raghavan, M. L., & Kumar, V. (2013). Mechanical properties of cellulose: Chitosan blends for potential use as a coronary artery bypass graft. Journal of Biomaterials Science Polymer Edition, 24(3), 239–252.CrossRef Azevedo, E. P., Retarekar, R., Raghavan, M. L., & Kumar, V. (2013). Mechanical properties of cellulose: Chitosan blends for potential use as a coronary artery bypass graft. Journal of Biomaterials Science Polymer Edition, 24(3), 239–252.CrossRef
11.
Zurück zum Zitat Kong, X., Han, B., Li, H., Liang, Y., Shao, K., & Liu, W. (2012). New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. Journal of biomedical materials research Part A, 100(6), 1494–1504.CrossRef Kong, X., Han, B., Li, H., Liang, Y., Shao, K., & Liu, W. (2012). New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. Journal of biomedical materials research Part A, 100(6), 1494–1504.CrossRef
12.
Zurück zum Zitat Aussel A, Thebaud N, Berard X, Brizzi V, Delmond S, Bareille R, et al. (2017). Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation. Biomedical materials.In Press. Aussel A, Thebaud N, Berard X, Brizzi V, Delmond S, Bareille R, et al. (2017). Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation. Biomedical materials.In Press.
13.
Zurück zum Zitat Salacinski, H. J., Goldner, S., Giudiceandrea, A., Hamilton, G., Seifalian, A. M., Edwards, A., et al. (2001). The mechanical behavior of vascular grafts: a review. Journal of Biomaterials Applications, 15(3), 241–278.CrossRef Salacinski, H. J., Goldner, S., Giudiceandrea, A., Hamilton, G., Seifalian, A. M., Edwards, A., et al. (2001). The mechanical behavior of vascular grafts: a review. Journal of Biomaterials Applications, 15(3), 241–278.CrossRef
14.
Zurück zum Zitat Zilla, P., Bezuidenhout, D., & Human, P. (2007). Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials, 28(34), 5009–5027.CrossRef Zilla, P., Bezuidenhout, D., & Human, P. (2007). Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials, 28(34), 5009–5027.CrossRef
15.
Zurück zum Zitat Fiamingo, A., Montembault, A., Boitard, S. E., Naemetalla, H., Agbulut, O., Delair, T., et al. (2016). Chitosan hydrogels for the regeneration of infarcted myocardium: preparation, physicochemical characterization, and biological evaluation. Biomacromolecules, 17(5), 1662–1672.CrossRef Fiamingo, A., Montembault, A., Boitard, S. E., Naemetalla, H., Agbulut, O., Delair, T., et al. (2016). Chitosan hydrogels for the regeneration of infarcted myocardium: preparation, physicochemical characterization, and biological evaluation. Biomacromolecules, 17(5), 1662–1672.CrossRef
16.
Zurück zum Zitat Montembault, A., Viton, C., & Domard, A. (2005). Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials, 26(14), 1633–1643.CrossRef Montembault, A., Viton, C., & Domard, A. (2005). Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials, 26(14), 1633–1643.CrossRef
17.
Zurück zum Zitat Konig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C., Marini, A., et al. (2009). Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials, 30(8), 1542–1550.CrossRef Konig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C., Marini, A., et al. (2009). Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials, 30(8), 1542–1550.CrossRef
18.
Zurück zum Zitat Zhang, L., Ao, Q., Wang, A., Lu, G., Kong, L., Gong, Y., et al. (2006). A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. Journal of biomedical materials research Part A, 77(2), 277–284.CrossRef Zhang, L., Ao, Q., Wang, A., Lu, G., Kong, L., Gong, Y., et al. (2006). A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. Journal of biomedical materials research Part A, 77(2), 277–284.CrossRef
19.
Zurück zum Zitat Kong, X., Han, B., Wang, H., Li, H., Xu, W., & Liu, W. (2012). Mechanical properties of biodegradable small-diameter chitosan artificial vascular prosthesis. Journal of biomedical materials research Part A, 100(8), 1938–1945.CrossRef Kong, X., Han, B., Wang, H., Li, H., Xu, W., & Liu, W. (2012). Mechanical properties of biodegradable small-diameter chitosan artificial vascular prosthesis. Journal of biomedical materials research Part A, 100(8), 1938–1945.CrossRef
20.
Zurück zum Zitat Ladet, S., David, L., & Domard, A. (2008). Multi-membrane hydrogels. Nature, 452(7183), 76–79.CrossRef Ladet, S., David, L., & Domard, A. (2008). Multi-membrane hydrogels. Nature, 452(7183), 76–79.CrossRef
21.
Zurück zum Zitat Rami, L., Malaise, S., Delmond, S., Fricain, J. C., Siadous, R., Schlaubitz, S., et al. (2014). Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering. Journal of biomedical materials research Part A, 102(10), 3666–3676.CrossRef Rami, L., Malaise, S., Delmond, S., Fricain, J. C., Siadous, R., Schlaubitz, S., et al. (2014). Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering. Journal of biomedical materials research Part A, 102(10), 3666–3676.CrossRef
22.
Zurück zum Zitat Hamedani BA, Navidbakhsh M, Tafti HA. (2012). Comparison between mechanical properties of human saphenous vein and umbilical vein. Biomedical engineering online, 11. Hamedani BA, Navidbakhsh M, Tafti HA. (2012). Comparison between mechanical properties of human saphenous vein and umbilical vein. Biomedical engineering online, 11.
23.
Zurück zum Zitat Syedain, Z. H., Meier, L. A., Lahti, M. T., Johnson, S. L., & Tranquillo, R. T. (2014). Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Engineering Part A, 20(11–12), 1726–1734.CrossRef Syedain, Z. H., Meier, L. A., Lahti, M. T., Johnson, S. L., & Tranquillo, R. T. (2014). Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Engineering Part A, 20(11–12), 1726–1734.CrossRef
24.
Zurück zum Zitat Dahl, S. L., Kypson, A. P., Lawson, J. H., Blum, J. L., Strader, J. T., Li, Y., et al. (2011). Readily available tissue-engineered vascular grafts. Science Translational Medicine, 3(68), 68ra69.CrossRef Dahl, S. L., Kypson, A. P., Lawson, J. H., Blum, J. L., Strader, J. T., Li, Y., et al. (2011). Readily available tissue-engineered vascular grafts. Science Translational Medicine, 3(68), 68ra69.CrossRef
25.
Zurück zum Zitat Roh, J. D., Nelson, G. N., Brennan, M. P., Mirensky, T. L., Yi, T., Hazlett, T. F., et al. (2008). Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials, 29(10), 1454–1463.CrossRef Roh, J. D., Nelson, G. N., Brennan, M. P., Mirensky, T. L., Yi, T., Hazlett, T. F., et al. (2008). Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials, 29(10), 1454–1463.CrossRef
26.
Zurück zum Zitat Centola, M., Rainer, A., Spadaccio, C., De Porcellinis, S., Genovese, J. A., & Trombetta, M. (2010). Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication, 2(1), 014102.CrossRef Centola, M., Rainer, A., Spadaccio, C., De Porcellinis, S., Genovese, J. A., & Trombetta, M. (2010). Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication, 2(1), 014102.CrossRef
27.
Zurück zum Zitat Drilling, S., Gaumer, J., & Lannutti, J. (2009). Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure. Journal of biomedical materials research Part A, 88(4), 923–934.CrossRef Drilling, S., Gaumer, J., & Lannutti, J. (2009). Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure. Journal of biomedical materials research Part A, 88(4), 923–934.CrossRef
28.
Zurück zum Zitat Lee, K. W., Stolz, D. B., & Wang, Y. (2011). Substantial expression of mature elastin in arterial constructs. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2705–2710.CrossRef Lee, K. W., Stolz, D. B., & Wang, Y. (2011). Substantial expression of mature elastin in arterial constructs. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2705–2710.CrossRef
29.
Zurück zum Zitat He, W., Nieponice, A., Soletti, L., Hong, Y., Gharaibeh, B., Crisan, M., et al. (2010). Pericyte-based human tissue engineered vascular grafts. Biomaterials, 31(32), 8235–8244.CrossRef He, W., Nieponice, A., Soletti, L., Hong, Y., Gharaibeh, B., Crisan, M., et al. (2010). Pericyte-based human tissue engineered vascular grafts. Biomaterials, 31(32), 8235–8244.CrossRef
30.
Zurück zum Zitat Soletti, L., Hong, Y., Guan, J., Stankus, J. J., El-Kurdi, M. S., Wagner, W. R., et al. (2010). A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomaterialia, 6(1), 110–122.CrossRef Soletti, L., Hong, Y., Guan, J., Stankus, J. J., El-Kurdi, M. S., Wagner, W. R., et al. (2010). A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomaterialia, 6(1), 110–122.CrossRef
31.
Zurück zum Zitat Kim, S.-H., Mun, C. H., Jung, Y., Kim, S.-H., Kim, D.-I., & Kim, S. H. (2013). Mechanical properties of compliant double layered poly(L-lactide-co-ɛ-caprolactone) vascular graft. Macromolecular Research, 21(8), 886–891.CrossRef Kim, S.-H., Mun, C. H., Jung, Y., Kim, S.-H., Kim, D.-I., & Kim, S. H. (2013). Mechanical properties of compliant double layered poly(L-lactide-co-ɛ-caprolactone) vascular graft. Macromolecular Research, 21(8), 886–891.CrossRef
32.
Zurück zum Zitat Rapoport, H. S., Fish, J., Basu, J., Campbell, J., Genheimer, C., Payne, R., et al. (2012). Construction of a tubular scaffold that mimics J-shaped stress/strain mechanics using an innovative electrospinning technique. Tissue engineering Part C, Methods, 18(8), 567–574.CrossRef Rapoport, H. S., Fish, J., Basu, J., Campbell, J., Genheimer, C., Payne, R., et al. (2012). Construction of a tubular scaffold that mimics J-shaped stress/strain mechanics using an innovative electrospinning technique. Tissue engineering Part C, Methods, 18(8), 567–574.CrossRef
33.
Zurück zum Zitat Madhavan, K., Elliott, W. H., Bonani, W., Monnet, E., & Tan, W. (2013). Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. Journal of biomedical materials research Part B, Applied biomaterials, 101(4), 506–519.CrossRef Madhavan, K., Elliott, W. H., Bonani, W., Monnet, E., & Tan, W. (2013). Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. Journal of biomedical materials research Part B, Applied biomaterials, 101(4), 506–519.CrossRef
34.
Zurück zum Zitat Tai, N. R., Salacinski, H. J., Edwards, A., Hamilton, G., & Seifalian, A. M. (2000). Compliance properties of conduits used in vascular reconstruction. The British Journal of Surgery, 87(11), 1516–1524.CrossRef Tai, N. R., Salacinski, H. J., Edwards, A., Hamilton, G., & Seifalian, A. M. (2000). Compliance properties of conduits used in vascular reconstruction. The British Journal of Surgery, 87(11), 1516–1524.CrossRef
35.
Zurück zum Zitat Seifalian A.M. GA, Schmitz-Rixen T., Hamilton G. (1999). Noncompliance: the silent acceptance of a Villain. Tissue Engineering of Prosthetic Vascular Grafts, Chapter 2. Seifalian A.M. GA, Schmitz-Rixen T., Hamilton G. (1999). Noncompliance: the silent acceptance of a Villain. Tissue Engineering of Prosthetic Vascular Grafts, Chapter 2.
36.
Zurück zum Zitat Marelli, B., Achilli, M., Alessandrino, A., Freddi, G., Tanzi, M. C., Fare, S., et al. (2012). Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromolecular Bioscience, 12(11), 1566–1574.CrossRef Marelli, B., Achilli, M., Alessandrino, A., Freddi, G., Tanzi, M. C., Fare, S., et al. (2012). Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromolecular Bioscience, 12(11), 1566–1574.CrossRef
37.
Zurück zum Zitat L'Heureux, N., Dusserre, N., Konig, G., Victor, B., Keire, P., Wight, T. N., et al. (2006). Human tissue-engineered blood vessels for adult arterial revascularization. Nature Medicine, 12(3), 361–365.CrossRef L'Heureux, N., Dusserre, N., Konig, G., Victor, B., Keire, P., Wight, T. N., et al. (2006). Human tissue-engineered blood vessels for adult arterial revascularization. Nature Medicine, 12(3), 361–365.CrossRef
38.
Zurück zum Zitat Soffer, L., Wang, X., Zhang, X., Kluge, J., Dorfmann, L., Kaplan, D. L., et al. (2008). Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. Journal of Biomaterials Science Polymer Edition, 19(5), 653–664.CrossRef Soffer, L., Wang, X., Zhang, X., Kluge, J., Dorfmann, L., Kaplan, D. L., et al. (2008). Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. Journal of Biomaterials Science Polymer Edition, 19(5), 653–664.CrossRef
39.
Zurück zum Zitat Schneider, K. H., Aigner, P., Holnthoner, W., Monforte, X., Nurnberger, S., Runzler, D., et al. (2016). Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomaterialia, 29, 125–134.CrossRef Schneider, K. H., Aigner, P., Holnthoner, W., Monforte, X., Nurnberger, S., Runzler, D., et al. (2016). Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomaterialia, 29, 125–134.CrossRef
40.
Zurück zum Zitat Tosun, Z., Villegas-Montoya, C., & McFetridge, P. S. (2011). The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues. Journal of Vascular Surgery, 54(5), 1451–1460.CrossRef Tosun, Z., Villegas-Montoya, C., & McFetridge, P. S. (2011). The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues. Journal of Vascular Surgery, 54(5), 1451–1460.CrossRef
41.
Zurück zum Zitat Tajaddini, A., Kilpatrick, D. L., Schoenhagen, P., Tuzcu, E. M., Lieber, M., & Vince, D. G. (2005). Impact of age and hyperglycemia on the mechanical behavior of intact human coronary arteries: an ex vivo intravascular ultrasound study. American Journal of Physiology Heart and Circulatory Physiology, 288(1), H250–H255.CrossRef Tajaddini, A., Kilpatrick, D. L., Schoenhagen, P., Tuzcu, E. M., Lieber, M., & Vince, D. G. (2005). Impact of age and hyperglycemia on the mechanical behavior of intact human coronary arteries: an ex vivo intravascular ultrasound study. American Journal of Physiology Heart and Circulatory Physiology, 288(1), H250–H255.CrossRef
42.
Zurück zum Zitat Chaouat, M., Le Visage, C., Baille, W. E., Escoubet, B., Chaubet, F., Mateescu, M. A., et al. (2008). A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Advanced Functional Materials, 18(19), 2855–2861.CrossRef Chaouat, M., Le Visage, C., Baille, W. E., Escoubet, B., Chaubet, F., Mateescu, M. A., et al. (2008). A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Advanced Functional Materials, 18(19), 2855–2861.CrossRef
43.
Zurück zum Zitat Zhu, G., Yuan, Q., Hock Yeo, J., & Nakao, M. (2015). Thermal treatment of expanded polytetraflu-oroethylene (ePTFE) membranes for reconstruction of a valved conduit. Bio-medical Materials and Engineering, 26(Suppl 1), S55–S62.CrossRef Zhu, G., Yuan, Q., Hock Yeo, J., & Nakao, M. (2015). Thermal treatment of expanded polytetraflu-oroethylene (ePTFE) membranes for reconstruction of a valved conduit. Bio-medical Materials and Engineering, 26(Suppl 1), S55–S62.CrossRef
44.
Zurück zum Zitat Sell, S. A., McClure, M. J., Barnes, C. P., Knapp, D. C., Walpoth, B. H., Simpson, D. G., et al. (2006). Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomedical Materials, 1(2), 72–80.CrossRef Sell, S. A., McClure, M. J., Barnes, C. P., Knapp, D. C., Walpoth, B. H., Simpson, D. G., et al. (2006). Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomedical Materials, 1(2), 72–80.CrossRef
Metadaten
Titel
In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development
verfasst von
Audrey Aussel
Alexandra Montembault
Sébastien Malaise
Marie Pierre Foulc
William Faure
Sandro Cornet
Rachida Aid
Marc Chaouat
Thierry Delair
Didier Letourneur
Laurent David
Laurence Bordenave
Publikationsdatum
31.07.2017
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 5-6/2017
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9763-z

Weitere Artikel der Ausgabe 5-6/2017

Journal of Cardiovascular Translational Research 5-6/2017 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.