Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 6/2020

11.02.2020 | Original Article

In vivo imaging of cell proliferation in meningioma using 3′-deoxy-3′-[18F]fluorothymidine PET/MRI

verfasst von: Asma Bashir, Tina Binderup, Mark Bitsch Vestergaard, Helle Broholm, Lisbeth Marner, Morten Ziebell, Kåre Fugleholm, Andreas Kjær, Ian Law

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Positron emission tomography (PET) with 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) provides a noninvasive assessment of tumour proliferation in vivo and could be a valuable imaging modality for assessing malignancy in meningiomas. We investigated a range of static and dynamic [18F]FLT metrics by correlating the findings with cellular biomarkers of proliferation and angiogenesis.

Methods

Seventeen prospectively recruited adult patients with intracranial meningiomas underwent a 60-min dynamic [18F]FLT PET following surgery. Maximum and mean standardized uptake values (SUVmax, SUVmean) with and without normalization to healthy brain tissue and blood radioactivity obtained from 40 to 60 min summed dynamic images (PET40–60) and ~ 60-min blood samples were calculated. Kinetic modelling using a two-tissue reversible compartmental model with a fractioned blood volume (VB) was performed to determine the total distribution volume (VT). Expressions of proliferation and angiogenesis with key parameters including Ki-67 index, phosphohistone-H3 (phh3), MKI67, thymidine kinase 1 (TK1), proliferating cell nuclear antigen (PCNA), Kirsten RAt Sarcoma viral oncogene homolog (KRAS), TIMP metallopeptidase inhibitor 3 (TIMP3), and vascular endothelial growth factor A (VEGFA) were determined by immunohistochemistry and/or quantitative polymerase chain reaction.

Results

Immunohistochemistry revealed 13 World Health Organization (WHO) grade I and four WHO grade II meningiomas. SUVmax and SUVmean normalized to blood radioactivity from PET40–60 and blood sampling, and VT were able to significantly differentiate between WHO grades with the best results for maximum and mean tumour-to-whole-blood ratios (sensitivity 100%, specificity 94–95%, accuracy 99%; P = 0.003). Static [18F]FLT metrics were significantly correlated with proliferative biomarkers, especially Ki-67 index, phh3, and TK1, while no correlations were found with VEGFA or VB. Using Ki-67 index with a threshold > 4%, the majority of [18F]FLT metrics showed a high ability to identify aggressive meningiomas with SUVmean demonstrating the best performance (sensitivity 80%, specificity 81%, accuracy 80%; P = 0.024).

Conclusion

[18F]FLT PET could be a useful imaging modality for assessing cellular proliferation in meningiomas.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Backer-Grøndahl T, Moen BH, Torp SH. The histopathological spectrum of human meningiomas. Int J Clin Exp Pathol. 2012;5:231–42.PubMedPubMedCentral Backer-Grøndahl T, Moen BH, Torp SH. The histopathological spectrum of human meningiomas. Int J Clin Exp Pathol. 2012;5:231–42.PubMedPubMedCentral
2.
Zurück zum Zitat Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.PubMedCrossRef Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131:803–20.PubMedCrossRef
3.
Zurück zum Zitat Pearson BE, Markert JM, Fisher WS, et al. Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria. Neurosurg Focus. 2008;24:E3.PubMedCrossRef Pearson BE, Markert JM, Fisher WS, et al. Hitting a moving target: evolution of a treatment paradigm for atypical meningiomas amid changing diagnostic criteria. Neurosurg Focus. 2008;24:E3.PubMedCrossRef
4.
Zurück zum Zitat Goldbrunner R, Minniti G, Preusser M, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17:e383–91.PubMedCrossRef Goldbrunner R, Minniti G, Preusser M, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17:e383–91.PubMedCrossRef
5.
Zurück zum Zitat Rogers L, Zhang P, Vogelbaum MA, et al. Intermediate-risk meningioma: initial outcomes from NRG Oncology RTOG 059. J Neurosurg. 2018;129:35–47.PubMedCrossRef Rogers L, Zhang P, Vogelbaum MA, et al. Intermediate-risk meningioma: initial outcomes from NRG Oncology RTOG 059. J Neurosurg. 2018;129:35–47.PubMedCrossRef
6.
Zurück zum Zitat Chalkidou A, Landau DB, Odell EW, et al. Correlation between Ki-67 immunohistochemistry and 18F-Fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2012;48:3499–513.PubMedCrossRef Chalkidou A, Landau DB, Odell EW, et al. Correlation between Ki-67 immunohistochemistry and 18F-Fluorothymidine uptake in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2012;48:3499–513.PubMedCrossRef
7.
Zurück zum Zitat Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.PubMed Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.PubMed
8.
Zurück zum Zitat Barthel H, Perumal M, Latigo J, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging. 2005;32:257–63.PubMedCrossRef Barthel H, Perumal M, Latigo J, et al. The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging. 2005;32:257–63.PubMedCrossRef
9.
Zurück zum Zitat Wagner M, Seitz U, Buck A, et al. 3′-[F-18]fluoro-3′-deoxythymidine ([F-18]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res. 2008;63:2681–7. Wagner M, Seitz U, Buck A, et al. 3′-[F-18]fluoro-3′-deoxythymidine ([F-18]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res. 2008;63:2681–7.
10.
Zurück zum Zitat Wang H, Zhang J, Tian J, et al. Using dual-tracer PET to predict the biologic behavior of human colorectal cancer. J Nucl Med. 2009;50:1857–64.PubMedCrossRef Wang H, Zhang J, Tian J, et al. Using dual-tracer PET to predict the biologic behavior of human colorectal cancer. J Nucl Med. 2009;50:1857–64.PubMedCrossRef
11.
Zurück zum Zitat Brockenbrough JS, Souquet T, Morihara JK, et al. Tumor 3′-deoxy-3′-(18)F-fluorothymidine ((18)F-FLT) uptake by PET correlates with thymidine kinase 1 expression: static and kinetic analysis of (18)F-FLT PET studies in lung tumors. J Nucl Med. 2011;52:1181–8.PubMedCrossRef Brockenbrough JS, Souquet T, Morihara JK, et al. Tumor 3′-deoxy-3′-(18)F-fluorothymidine ((18)F-FLT) uptake by PET correlates with thymidine kinase 1 expression: static and kinetic analysis of (18)F-FLT PET studies in lung tumors. J Nucl Med. 2011;52:1181–8.PubMedCrossRef
13.
Zurück zum Zitat Zhang CC, Yan Z, Li W, et al. [18F]FLT-PET imaging does not always “light up” proliferating tumor cells. Clin Cancer Res. 2003;63:2681–7. Zhang CC, Yan Z, Li W, et al. [18F]FLT-PET imaging does not always “light up” proliferating tumor cells. Clin Cancer Res. 2003;63:2681–7.
14.
Zurück zum Zitat Jacobs AH, Thomas A, Kracht LW, et al. 18F-fluro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med. 2005;46:1948–58.PubMed Jacobs AH, Thomas A, Kracht LW, et al. 18F-fluro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med. 2005;46:1948–58.PubMed
15.
Zurück zum Zitat Muzi M, Spence AM, O’Sullivan F, et al. Kinetic analysis of 3′-deoxy-3’-18F-fluorothymidine in patients with gliomas. J Nucl Med. 2006;47:1612–21.PubMed Muzi M, Spence AM, O’Sullivan F, et al. Kinetic analysis of 3′-deoxy-3’-18F-fluorothymidine in patients with gliomas. J Nucl Med. 2006;47:1612–21.PubMed
16.
Zurück zum Zitat Schiepers C, Chen W, Dahlbom M, et al. (18)F-fluorothymidine kinetics of malignant brain tumors. Eur J Nucl Med Mol Imaging. 2007;34:1003–11.PubMedCrossRef Schiepers C, Chen W, Dahlbom M, et al. (18)F-fluorothymidine kinetics of malignant brain tumors. Eur J Nucl Med Mol Imaging. 2007;34:1003–11.PubMedCrossRef
17.
Zurück zum Zitat Blocher A, Kuntzsch M, Wei R, Machulla HJ. Synthesis and labeling of 5-O-(4,4-dimethoxytrityl)-2,3′-anhydrothymidine for [18F]FLT preparation. J Radioanal Nucl Chem. 2002;251:55–8.CrossRef Blocher A, Kuntzsch M, Wei R, Machulla HJ. Synthesis and labeling of 5-O-(4,4-dimethoxytrityl)-2,3′-anhydrothymidine for [18F]FLT preparation. J Radioanal Nucl Chem. 2002;251:55–8.CrossRef
18.
Zurück zum Zitat Shields AF, Briston DA, Chandupatla S, et al. A simplified analysis of [18F]3′-deoxy-3′-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging. 2005;32:1269–75.PubMedCrossRef Shields AF, Briston DA, Chandupatla S, et al. A simplified analysis of [18F]3′-deoxy-3′-fluorothymidine metabolism and retention. Eur J Nucl Med Mol Imaging. 2005;32:1269–75.PubMedCrossRef
19.
Zurück zum Zitat Ladefoged CN, Andersen FL, Kjær A, et al. RESOLUTE PET/MRI attenuation correction for O-(2-18F-fluoroethyl)-L-tyrosine (FET) in brain tumor patients with metal implants. Front Neurosci. 2017;11:453.PubMedPubMedCentralCrossRef Ladefoged CN, Andersen FL, Kjær A, et al. RESOLUTE PET/MRI attenuation correction for O-(2-18F-fluoroethyl)-L-tyrosine (FET) in brain tumor patients with metal implants. Front Neurosci. 2017;11:453.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Khalighi MM, Deller TW, Fan AP, et al. Image-derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. J Cereb Blood Flow Metab. 2018;38:126–35.PubMedCrossRef Khalighi MM, Deller TW, Fan AP, et al. Image-derived input function estimation on a TOF-enabled PET/MR for cerebral blood flow mapping. J Cereb Blood Flow Metab. 2018;38:126–35.PubMedCrossRef
21.
Zurück zum Zitat Domingues P, González-Tablas M, Otero Á, et al. Genetic/molecular alterations of meningiomas and the signalling pathways targeted. Oncotarget. 2015;6:10671–88.PubMedPubMedCentralCrossRef Domingues P, González-Tablas M, Otero Á, et al. Genetic/molecular alterations of meningiomas and the signalling pathways targeted. Oncotarget. 2015;6:10671–88.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Gupta S, Linda W, Dunn IF. Medical management of meningioma in the era of precision medicine. Neurosurg Focus. 2018;44:E3.PubMedCrossRef Gupta S, Linda W, Dunn IF. Medical management of meningioma in the era of precision medicine. Neurosurg Focus. 2018;44:E3.PubMedCrossRef
23.
Zurück zum Zitat Carstens C, Messe E, Zang KD, Blin N. Human KRAS oncogene expression in meningioma. Cancer Lett. 1988;43:37–41.PubMedCrossRef Carstens C, Messe E, Zang KD, Blin N. Human KRAS oncogene expression in meningioma. Cancer Lett. 1988;43:37–41.PubMedCrossRef
24.
Zurück zum Zitat Barski D, Wolter M, Reifenberger G, Riemenschneider MJ. Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12. 3 and malignancy in meningiomas. Brain Pathol. 2010;20:623–31.PubMedCrossRef Barski D, Wolter M, Reifenberger G, Riemenschneider MJ. Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12. 3 and malignancy in meningiomas. Brain Pathol. 2010;20:623–31.PubMedCrossRef
25.
26.
Zurück zum Zitat Okada M, Miyake K, Matsumoto Y, et al. Matrix metalloproteinase-2 and matrix metalloproteinase-9 expressions correlate with the recurrence of intracranial meningiomas. J Neuro-Oncol. 2004;66:29–37.CrossRef Okada M, Miyake K, Matsumoto Y, et al. Matrix metalloproteinase-2 and matrix metalloproteinase-9 expressions correlate with the recurrence of intracranial meningiomas. J Neuro-Oncol. 2004;66:29–37.CrossRef
27.
Zurück zum Zitat Okuducu AF, Zils U, Michaelis SA, et al. Increased expression of avian erythroblastosis virus E26 oncogene homolog 1 in World Health Organization grade 1 meningiomas is associated with an elevated risk of recurrence and is correlated with the expression of its target genes matrix metalloproteinase-2 and MMP-9. Cancer. 2006;107:1365–72.PubMedCrossRef Okuducu AF, Zils U, Michaelis SA, et al. Increased expression of avian erythroblastosis virus E26 oncogene homolog 1 in World Health Organization grade 1 meningiomas is associated with an elevated risk of recurrence and is correlated with the expression of its target genes matrix metalloproteinase-2 and MMP-9. Cancer. 2006;107:1365–72.PubMedCrossRef
28.
Zurück zum Zitat Yamamoto Y, Ono Y, Aga F, et al. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med. 2012;53:1911–5.PubMedCrossRef Yamamoto Y, Ono Y, Aga F, et al. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med. 2012;53:1911–5.PubMedCrossRef
29.
Zurück zum Zitat Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.PubMed Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.PubMed
31.
Zurück zum Zitat Nowosielski M, Difranco MD, Putzer D, et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas. PLoS One. 2014;9:e95830.PubMedPubMedCentralCrossRef Nowosielski M, Difranco MD, Putzer D, et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas. PLoS One. 2014;9:e95830.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Tripathi M, Sharma R, D’Souza M, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34:878–83.PubMedCrossRef Tripathi M, Sharma R, D’Souza M, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34:878–83.PubMedCrossRef
33.
Zurück zum Zitat Shinomiya A, Kawai N, Okada M, et al. Evaluation of 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas. Eur J Nucl Med Mol Imaging. 2013;40:175–85.PubMedCrossRef Shinomiya A, Kawai N, Okada M, et al. Evaluation of 3′-deoxy-3′-[18F]-fluorothymidine (18F-FLT) kinetics correlated with thymidine kinase-1 expression and cell proliferation in newly diagnosed gliomas. Eur J Nucl Med Mol Imaging. 2013;40:175–85.PubMedCrossRef
34.
Zurück zum Zitat Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7:987–9.PubMedCrossRef Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7:987–9.PubMedCrossRef
35.
Zurück zum Zitat Nikaki A, Prassopoulos V, Efthimiadou R, et al. FLT PET/CT in a case of demyelinating disease. Clin Nucl Med. 2016;41:e342–5.PubMedCrossRef Nikaki A, Prassopoulos V, Efthimiadou R, et al. FLT PET/CT in a case of demyelinating disease. Clin Nucl Med. 2016;41:e342–5.PubMedCrossRef
36.
Zurück zum Zitat Holter JL, Thorp K, Smith ML, et al. [18F]Fluorothymidine PET imaging in the diagnosis of leptomeningeal involvement with diffuse large B-cell lymphoma. Cancer Imaging. 2011;11:140–3.PubMedPubMedCentralCrossRef Holter JL, Thorp K, Smith ML, et al. [18F]Fluorothymidine PET imaging in the diagnosis of leptomeningeal involvement with diffuse large B-cell lymphoma. Cancer Imaging. 2011;11:140–3.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Anton-Rodriguez JM, Lewis D, Djoukhadar I, et al. [18F]flurothymidine and [18F]flurodeoxyglucose PET imaging demonstrates uptake and differentiates growth in neurofibromatosis 2 related vestibular schwannoma. Otol Neurootol. 2019;40:826–35.CrossRef Anton-Rodriguez JM, Lewis D, Djoukhadar I, et al. [18F]flurothymidine and [18F]flurodeoxyglucose PET imaging demonstrates uptake and differentiates growth in neurofibromatosis 2 related vestibular schwannoma. Otol Neurootol. 2019;40:826–35.CrossRef
38.
Zurück zum Zitat Huang RY, Bi WL, Weller M, et al. Proposed response assessment and endpoints for meningioma clinical trials: report from the response assessment in neuro-oncology working group. Neuro-Oncol. 2019;21:26–36.PubMedCrossRef Huang RY, Bi WL, Weller M, et al. Proposed response assessment and endpoints for meningioma clinical trials: report from the response assessment in neuro-oncology working group. Neuro-Oncol. 2019;21:26–36.PubMedCrossRef
39.
Zurück zum Zitat Nguyen NC, Yee MK, Tuchayi AM, et al. Targeted therapy and immunotherapy response assessment with F-18-Flourothymidine positron-emission-tomography/magnetic resonance imaging in melanoma brain metastasis: a pilot study. Front Oncol. 2018;8:18.PubMedPubMedCentralCrossRef Nguyen NC, Yee MK, Tuchayi AM, et al. Targeted therapy and immunotherapy response assessment with F-18-Flourothymidine positron-emission-tomography/magnetic resonance imaging in melanoma brain metastasis: a pilot study. Front Oncol. 2018;8:18.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Lee JW, Kang KW, Park SH, et al. 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. Eur J Nucl Med Mol Imaging. 2009;36:1574–82.PubMedCrossRef Lee JW, Kang KW, Park SH, et al. 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. Eur J Nucl Med Mol Imaging. 2009;36:1574–82.PubMedCrossRef
41.
Zurück zum Zitat Mitamura K, Yamamoto Y, Norikane T, et al. Correlation of 18F-FDG and 11C-methionine uptake in PET/CT with Ki-67 immunohistochemistry in newly diagnosed intracranial meningiomas. Ann Nucl Med. 2018;32:627–33.PubMedCrossRef Mitamura K, Yamamoto Y, Norikane T, et al. Correlation of 18F-FDG and 11C-methionine uptake in PET/CT with Ki-67 immunohistochemistry in newly diagnosed intracranial meningiomas. Ann Nucl Med. 2018;32:627–33.PubMedCrossRef
42.
Zurück zum Zitat Arita H, Kinoshita M, Okita Y, et al. Clinical characteristics of meningiomas assessed by 11C-methionine and 18F-fluorodeoxyglucose positron-emission tomography. J Neuro-Oncol. 2012;107:379–86.CrossRef Arita H, Kinoshita M, Okita Y, et al. Clinical characteristics of meningiomas assessed by 11C-methionine and 18F-fluorodeoxyglucose positron-emission tomography. J Neuro-Oncol. 2012;107:379–86.CrossRef
43.
Zurück zum Zitat Ogawa T, Inugami A, Hatazawa J, et al. Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol. 1996;17:345–53.PubMedPubMedCentral Ogawa T, Inugami A, Hatazawa J, et al. Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F18 and L-methyl-11C-methionine. AJNR Am J Neuroradiol. 1996;17:345–53.PubMedPubMedCentral
44.
Zurück zum Zitat Cornelius JF, Stoffels G, Filß C, et al. Uptake and tracer kinetics of O-(2-(18)F-fluoroethyl)-L-tyrosine in meningiomas: preliminary results. Eur J Nucl Med Mol Imaging. 2015;42:459–67.PubMedCrossRef Cornelius JF, Stoffels G, Filß C, et al. Uptake and tracer kinetics of O-(2-(18)F-fluoroethyl)-L-tyrosine in meningiomas: preliminary results. Eur J Nucl Med Mol Imaging. 2015;42:459–67.PubMedCrossRef
45.
Zurück zum Zitat Muzi M, Mankoff DA, Grierson JR, et al. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46:371–80.PubMed Muzi M, Mankoff DA, Grierson JR, et al. Kinetic modeling of 3′-deoxy-3′-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med. 2005;46:371–80.PubMed
Metadaten
Titel
In vivo imaging of cell proliferation in meningioma using 3′-deoxy-3′-[18F]fluorothymidine PET/MRI
verfasst von
Asma Bashir
Tina Binderup
Mark Bitsch Vestergaard
Helle Broholm
Lisbeth Marner
Morten Ziebell
Kåre Fugleholm
Andreas Kjær
Ian Law
Publikationsdatum
11.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 6/2020
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-020-04704-2

Weitere Artikel der Ausgabe 6/2020

European Journal of Nuclear Medicine and Molecular Imaging 6/2020 Zur Ausgabe