Skip to main content
Erschienen in: BMC Cancer 1/2019

Open Access 01.12.2019 | Research article

Increased MET gene copy number negatively affects the survival of esophageal squamous cell carcinoma patients

verfasst von: Yanqiu Wang, Zhengzeng Jiang, Chen Xu, Hao Wang, Lijie Tan, Jieakesu Su, Xin Wang, Dongxian Jiang, Yingyong Hou, Qi Song

Erschienen in: BMC Cancer | Ausgabe 1/2019

Abstract

Backgrounds

Since Mesenchymal epithelial transition (MET) amplification has been regarded as a potential treatment target, the knowledge of its prevalence and prognostic importance is crucial. However, its clinical pathologic characteristics are not well known in esophageal squamous cell carcinoma (ESCC).

Methods

We investigated MET gene status with fluorescence in situ hybridization (FISH) assay in 495 ESCC cases using tissue microarrays. Prognostic significance as well as correlations with various clinicopathological parameters was evaluated.

Results

Among 495 patients, 28 (5.7%) cases were MET FISH positive, including 5 cases (1%) with true gene amplification. There were no statistically significant associations between MET FISH-positivity and clinicopathologic characteristics. A significantly poorer prognosis was observed in 28 patients with MET FISH-positivity (disease free survival/DFS, P < 0.001 and overall survival/OS, P = 0.001). Multivariate analysis revealed MET FISH-positivity was an independent prognostic factor for DFS (hazard ratio/HR, 1.953; 95% confidence interval/CI, 1.271–2.999; P = 0.002) and OS (HR, 1.926; 95% CI, 1.243–2.983; P = 0.003). MET FISH-positivity was associated with DFS (P = 0.022 and 0.020) and OS (P = 0.046 and 0.024) both in stage I-II ESCC and in stage III-IVa ESCC. No statistical significance (DFS, P = 0.492 and OS, P = 0.344) was detected between stage I-II ESCC with MET FISH-positivity and stage III-IVa ESCC with FISH-negativity.

Conclusions

Increased MET gene copy number is an independent prognostic factor in ESCC, and ESCC might have potentially been up-staged by increased MET gene copy number. The results indicate that increased MET gene copy number is a very promising parameter, in clinical therapy and follow-up plans.
Hinweise
Yanqiu Wang and Zhengzeng Jiang contributed equally to this work.
Abkürzungen
AJCC
American Joint Committee on Cancer
DFS
Disease free survival
EAC
esophageal adenocarcinoma
EC
Esophageal cancer
EGFR
epidermal growth factor receptor
ESCC
esophageal squamous cell carcinoma
FFPE
formalin-fixed paraffin-embedded
FISH
fluorescence in situ hybridization
HGF
hepatocyte growth factor
MET
Mesenchymal epithelial transition
NSCLC
non-small cell lung cancer
OS
overall survival
RTK
tyrosine kinase activity
TKI
tyrosine kinase inhibitor
TMA
Tissue microarrays

Background

Esophageal cancer (EC) is the ninth most common cancer and the sixth leading causes of cancer death globally [1]. In China, there were about 477,900 newly diagnosed EC (the third most commonly cancers), and about 375,000 cases dead of EC (the fourth leading causes of cancer death) in 2015 [2]. Esophageal squamous cell carcinoma (ESCC) is the most common histological subtype of EC. In China, approximately 90% of EC are ESCC [3]. Despite the improvement in the traditionally therapeutic management for ESCC, the prognosis of some patients remains dismal [4]. Therefore, the identification of prognostic factors in these patients may be of great importance. Despite Tumor-node-metastasis (TNM) stage is the most important conventional prognostic factor in tumors, evidence is increasing that patients’ prognosis depends not only on tumor stage, but also on the tumor-specific molecular alteration [1]. Recent advancements in molecular biology have made it possible to detect molecular alteration in human tumors, and molecular prognostic markers are subjects of intense research [57].
Mesenchymal epithelial transition (MET) gene was first identified in 1984 in an osteosarcoma immortalized cell line [8]. As a proto-oncogene located on chromosome 7q31.2, it encodes a heterodimeric transmembrane receptor with tyrosine kinase activity (RTK) for the hepatocyte growth factor (HGF). MET activation triggers a variety of downstream signaling pathways, such as the PI3K/AKT/mTOR and RAS/ERK/MAPK pathways [9]. Normal MET activation is required for embryogenesis, cell growth, cell differentiation and angiogenesis. Aberrant MET activation has been reported in various types of cancer, and promotes tumor cell proliferation, motility, invasion and metastasis. The abnormally activating mechanism typically involves MET gene amplification, Met and/or HGF protein overexpression, or, rarely, domain-specific sequence mutations [10, 11].
Recent studies found different tumors with MET amplification were extraordinarily susceptible to the selective MET tyrosine kinase inhibitor (TKI) [1214], and MET amplification was responsible for approximately 20% of the acquired resistance to epidermal growth factor receptor (EGFR) TKI treatment in lung adenocarcinomas [15, 16]. The inspiring findings trigger investigators to explore the prevalence and clinical relevance of MET gene amplification in different tumors. MET gene amplification is identified in 2–5% of gastric cancers [17, 18], 2–4% of esophageal adenocarcinoma (EAC) [5, 12], 1–8% of non-small cell lung cancer (NSCLC) [10, 13, 19], and 2–10% of colorectal cancers [13, 20]. And MET amplification is thought to be associated with metastasis and poorer outcome in gastric [21], lung [22] and colorectal cancers [23]. Despite the great interest on MET amplification, only few small studies evaluated its gene status in ESCC [24].
Therefore, in this study, we aimed to evaluate MET gene copy status in a large cohort of ESCC. In addition, we sought to analyze its clinicopathological features and prognostic value.

Methods

Patients

This retrospective study was conducted in a cohort of 495 treatment-naive ESCC patients who underwent esophagectomy at Zhongshan Hospital between January 2007 and December 2010. Patients were included in the study if the following criterias were met: (1) underwent primary resection, (2) with no prior treatment, and (3) with available complete medical records. Patients were excluded from the study if they had disease progression within three months after surgery. Clinical and histopathological data, including sex, age, smoking status, tumor size, tumor location, differentiation, vessel or nerve invasion, pT stage, and pN stage, was obtained from the patients’ medical and pathological records. The pathologic tumor-node-metastasis (pTNM) stage was performed according to the 8th edition of the American Joint Committee on Cancer (AJCC) staging system. All patients were followed up every 3–6 months after tumor resection, and patients underwent follow-up examinations to identify possible tumor recurrence. Exam methods included endoscopy, computed tomography, magnetic resonance imaging, abdominal ultrasonography, and measurement of serum tumor marker levels.
Written informed consent was obtained from all patients, and the study was approved by the ethical committee of the Zhongshan Hospital, in accordance with the ethical standards of the World Medical Association Declaration of Helsinki.

Tissue microarrays (TMAs)

TMA construction was performed as previously described [25]. Briefly, histological sections were examined by a pathologist, and representative tumor areas free from necrosis or hemorrhage were pre-marked in formalin-fixed paraffin-embedded (FFPE) donor blocks. Two or three core tissues (2 mm in width and 6 mm in length) from different representative areas per case were taken from the donor blocks and arranged in recipient blocks (tissue array blocks). Our TMAs contained the tumor samples, several normal esophagus and other control tissues.

Fluorescence in situ hybridization (FISH)

MET gene status was evaluated using a commercially available FISH assay [26], with Vysis MET Spectrum Red FISH Probe (Abbott Molecular, Chicago, IL, USA) and control Vysis CEP7 Centromere Spectrum Green Probe (Abbott Molecular) on 4 μm-thick TMA sections. The signals of each sample were counted in at least 50 well-defined nuclei using a fluorescence microscope (BX43, Olympus, Tokyo, Japan) equipped with a Microscope Digital Camera (DP73, Olympus, Tokyo, Japan). An average MET gene copy number ≥ 5 and a MET/CEP7 ratio ≥ 2 (true MET amplification) were regarded as MET FISH positive [22].

Statistical analysis

The Chi square and Fisher’s exact tests were used to evaluate the association between MET status and clinicopathological characteristics. The primary and secondary endpoints were cancer-related death and recurrence/metastasis. Disease free survival (DFS) and overall survival (OS) were defined as periods from the date of surgical treatment until the date of disease progression (event: recurrence, metastasis, deaths) and the date of cancer-specific survival (event: cancer-related death), respectively. The Kaplan–Meier analysis with the log-rank test was performed to determine the prognostic significance for DFS and OS. The univariate and multivariate Cox proportional hazard regression analysis was used to identify the independent prognostic factors. The hazard ratio (HR) and its 95% confidence interval (CI) were assessed for each factor.
Statistical analysis was carried out using SPSS 21.0 statistical software (SPSS, Chicago, IL, USA). All tests were two sided, and P-values < 0.05 were considered to be statistically significant.

Results

Clinical data

The patients’ clinicopathological characteristics are summarized in Table 1. The patient group consisted of 408 men (82.4%) and 87 women (17.6%) with a median age of 61 years (range, 34–83 years). One hundred ninety-nine subjects (40.2%) were ever-smokers or smokers, whereas 296 (59.8%) were nonsmokers. The mean tumor size was 3.4 cm. By anatomic site, 47.9% of tumors were located in the lower esophagus, 47.0% in the middle esophagus, and 5.1% in the upper esophagus. The tumors were poorly differentiated in 40.2%, moderately differentiated in 56.0%, and well differentiated in 3.8%. Vessel and nerve invasion were identified in 110 (22.2%) and 178 (36.0%) tumors, respectively. There were 9.3% patients at pathologic stage T1, with 22.2, 68.3, and 0.2% at stages T2, T3, and T4, respectively. About pathologic N stages, there were 53.3, 25.9, 15.8, 5.1% patients at N0, N1, N2, and N3 stages respectively. According to the 8th edition of TNM staging, 38 patients (7.7%) were classified as having stage I disease, 234 patients (47.3%) as stage II, 193 patients (39.0%) as stage III, and 30 patients (6.1%) as stage IVa.
Table 1
Correlation between MET FISH-positivity and ESCC clinicopathological parameters
 
MET FISH-positivity
Number
No
Yes
P value
Sex
   
0.638
Female
87
83
4
 
Male
408
384
24
 
Age
   
0.932
< 60
216
204
12
 
≥60
279
263
16
 
Smoking
   
0.919
No
296
279
17
 
Yes
199
188
11
 
Tumor Size
   
0.434
< 3.4
283
265
18
 
≥3.4
212
202
10
 
Tumor Location
   
0.941
Upper
24
23
1
 
Middle
220
207
13
 
Lower
224
211
13
 
Differentiation
   
0.957
Well
19
18
1
 
Middle
277
262
15
 
Poor
199
187
12
 
Vessel invasion
   
0.194
No
385
366
19
 
Yes
110
101
9
 
Nerve invasion
   
0.706
No
317
300
17
 
Yes
178
167
11
 
pT
   
0.883
T1
46
44
2
 
T2
110
105
5
 
T3
338
317
21
 
T4
1
1
0
 
pN
   
0.088
N0
264
252
12
 
N1
128
119
9
 
N2
78
75
3
 
N3
25
21
4
 
Clinical stage
   
0.351
I-II
272
259
13
 
III-IVa
223
208
15
 
Disease progression
   
0.002
No
226
221
5
 
Yes
269
246
23
 
Cancer-related death
   
0.005
No
234
228
6
 
Yes
261
239
22
 

Increased MET gene copy number

Among 495 patients, 28 (5.7%) cases were MET FISH positive (an average number of MET signals per nucleus ≥5.0), including 5 cases (1%) with true gene amplification (5 cases with MET: CEP7 ratio of ≥2.0) (Fig. 1c and d). Other specimens showed disomy or low polysomy (94.3%) (Fig. 1a and b).
The correlations between MET FISH-positivity and clinical pathologic characteristics are listed in Table 1. MET FISH-positivity was significantly associated with DFS (2.2% in patients without disease progression vs. 8.6% in patients with disease progression, P = 0.002) and OS (2.6% vs. 8.4%, P = 0.005). However, there were no statistically significant difference in sex (P = 0.638), age (P = 0.932), smoking (P = 0.919), tumor size (P = 0.434), tumor location (P = 0.941), differentiation (P = 0.957), vessel invasion (P = 0.194) and nerve invasion (P = 0.706), pT stage (P = 0.883), pN stage (P = 0.088), and clinical stage (P = 0.351).

Survival analysis

The median follow-up time was 35.0 months (range 3–102 months). Two hundred sixty-nine patients (54.3%) had disease progression and two hundred sixty-one patients (52.7%) had died from esophageal cancer during the follow-up. The 5-year DFS and disease-specific OS rates for all patients were 44.1 and 44.4%, respectively.
Figure 2a and b reveals that a significantly poorer prognosis was observed in 28 patients with MET FISH-positivity, showing a median DFS or OS of 17.0 or 26.0 months, respectively, compared with 36.0 or 42.0 months in the group with MET FISH-negativity (P < 0.001 or P = 0.001). The 5-year DFS (17.9%) and OS (17.8%) rates for patients with MET FISH-positivity were significantly lower than the corresponding rates (45.7 and 46.0%) for patients with MET FISH-negativity. Univariate analysis indicated that MET FISH-positivity, differentiation, vessel invasion, nerve invasion and clinical stage had significant impacts on DFS, and MET FISH positive, vessel invasion, nerve invasion and clinical stage had significant impacts on OS (both P < 0.05). Multivariate analysis revealed MET FISH-positivity was an independent prognostic factor for DFS (HR, 1.953; 95% CI, 1.271–2.999; P = 0.002) and OS (HR, 1.926; 95% CI, 1.243–2.983; P = 0.003). Clinical stage was also found to be an independent prognostic factor for DFS and OS (Table 2).
Table 2
Univariate and Multivariate Analysis for DFS and OS in ESCC Patients
 
DFS
OS
P value
HR (95% CI)
P value
HR(95% CI)
Univariate analysis
 Sex
0.251
1.204 (0.877–1.655)
0.125
1.295 (0.931–1.802)
 Age
0.994
1.001 (0.787–1.273)
0.982
0.997 (0.781–1.273)
 Smoking
0.538
1.079 (0.846–1.377)
0.345
1.126 (0.880–1.440)
 Tumor Size
0.166
1.185 (0.932–1.509)
0.113
1.218 (0.954–1.555)
 Tumor Location
0.879
0.984 (0.799–1.212)
0.793
1.029 (0.831–1.274)
 Differentiation
0.047
1.246 (1.003–1.549)
0.080
1.217 (0.977–1.518)
 Vessel invasion
< 0.001
1.597 (1.228–2.076)
0.001
1.576 (1.205 2.061)
 Nerve invasion
0.02
1.335 (1.046–1.703)
0.008
1.401 (1.094–1.793)
 Clinical stage
< 0.001
2.856 (2.230–3.659)
< 0.001
2.899 (2.255–3.727)
MET FISH-positivity
0.001
2.114 (1.378–3.245)
0.002
2.002 (1.293–3.099)
Mutivariate analysis
 Differentiation
0.376
1.106 (0.885–1.381)
 Vessel invasion
0.425
1.119 (0.849–1.474)
0.455
1.113 (0.841–1.472)
 Nerve invasion
0.506
1.089 (0.848–1.398)
0.269
1.153 (0.896–1.485)
 Clinical stage
< 0.001
2.672 (2.061–3.465)
< 0.001
2.745 (2.111–3.569)
MET FISH-positivity
0.002
1.953 (1.271–2.999)
0.003
1.926 (1.243–2.983)

Survival analyses based on clinical stage

In stage I-II patients, one hundred four patients (38.2%) had disease progression and one hundred one patients (37.1%) had died from esophageal cancer during the follow-up. In stage III-IVa patients, one hundred sixty-five patients (74.0%) had disease progression and one hundred sixty patients (71.7%) had died from esophageal cancer during the follow-up.
Figure 2c and d reveals that a significantly poorer prognosis was observed in 223 stage III-IVa patients, showing a median DFS of 20.0 months or OS of 25.0 months, respectively, compared with not-reached median survival in 272 stage I-II patients (P < 0.001). The 5-year DFS (23.7%) and OS (24.7%) rates for stage III-IVa patients, were significantly lower than the corresponding rates (60.8 and 60.4%) for stage I-II patients.
MET FISH-positivity was associated with DFS (P = 0.022) and OS (P = 0.046) in patients with stage I-II ESCC (Fig. 3a and b). In detail, a poorer prognosis was observed in 13 patients with MET FISH-positivity, with a median DFS or OS of 21.0 or 38.0 months, respectively, while those with MET FISH-negativity (n = 259) did not reach the median survival. MET FISH-positivity was also associated with DFS (P = 0.020) and OS (P = 0.024) in patients with stage III-IVa ESCC (n = 223) (Fig. 3a and b). In detail, a poorer prognosis was observed in 15 patients with MET FISH-positivity, with a median DFS or OS of 12.0 or 18.0 months, respectively, while those with MET FISH-negativity (n = 208), with a median DFS or OS of 20.0 or 25.0 months, respectively. What’s more, no statistical significance (DFS, P = 0.492 and OS, P = 0.344) was detected between stage I-II ESCC with MET FISH-positivity and stage III-IVa ESCC with FISH-negativity.

Discussion

In our study, MET gene status was detected in 495 ESCC patients by FISH method. FISH analysis is a semiquantitative method that can be performed with two probes for determination of the number of signals for a target gene and for the centromere of the corresponding chromosome [27]. Comparing with southern blot and PCR-based methods, FISH has several advantages over other methods. It can be applied to FFPE tumor tissues for routine pathologic diagnosis, and is now widely used in clinical practice for the detection of gene amplification [2830].
Our findings showed MET FISH positive rate was 5.7% and gene amplification rate was 1% using Cappuzzo criteria, which was consistent with the somatic copy number alteration data generated by The Cancer Genome Atlas Research Network [5]. As has been published previously in other tumors [3133], the rate of MET amplification is relatively low. MET genetic alterations were detected using increasing gene copy number. The increasing gene copy number can result from mainly two genetic mechanisms [34]: 1) polysomy, a copy number gain, due to extra copies of the entire chromosome; and 2) gene amplification, the amplification of specific gene or a group of genes in a given chromosome. In 2009, Cappuzzo et al. found the survival outcome of patients with a mean MET gene copy number per cell higher than 5 and higher than 6 was similar, and worse than the other four groups with a mean copy number lower than 5 in NSCLC [22]. Gradually, the Cappuzzo criteria (MET /CEP7 ratio ≥ 2.0 and/or MET ≥ 5.0 copies) has been widely accepted and used in other tumors, such as NSCLC [10, 35], gastric cancer [21, 36], gastroesophageal adenocarcinoma [17], tonsillar squamous cell carcinoma [37], and mesothelioma [38].
Since Lennerz etal has demonstrated that 2% of patients (10/489) with esophagogastric adenocarcinoma, who harbored MET amplification and were treated with a MET inhibitor, experienced tumor shrinkage in 2011 [12], MET gene status has gained considerable interest in solid tumors [13, 14]. Increased MET gene copy number has an established prognostic role in NSCLC, gastric cancer and gastroesophageal adenocarcinoma patients [17, 21, 39, 40]. However, its clinical pathologic characteristics are not well known in ESCC [24, 41], and to our knowledge, no previous study with a large number of ESCC has been reported. Our data demonstrated that 28 patients with MET FISH-positivity had a significantly worse DFS and OS than 467 individuals with FISH-negativity. Moreover, MET FISH-positivity was an independent prognostic factor for both DFS and OS, further indicating increased MET gene copy number is a negative prognostic factor in ESCC.
Subgroup analyses according to the disease stage were also conducted in our study. Lee et al. reported in gastric cancer, MET amplification did not have an impact on prognosis in early TNM stage (stage I or II), unlike in advanced TNM stage (stage III or IV) [21]. Our results demonstrated MET FISH-positivity has an impact on prognosis both in early TNM stage (stage I-II) and in advanced TNM stage (stage III-IVa). And there was no prognostic difference between stage I-II ESCC with MET FISH-positivity and stage III-IVa ESCC with MET-negativity. The findings indicate that MET gene alteration could be acquired during the early phase of ESCC development, and exaggerated the cancer progression [41].

Conclusions

We investigated MET gene copy status using FISH, in a large series of ESCC. Our data show that increased MET gene copy number is an independent prognostic factor in surgically ESCC, and we firstly find that ESCC might have potentially been up-staged by increased MET gene copy number, which indicates increased MET gene copy number is a very promising parameter, in clinical therapy and follow-up plans.

Acknowledgements

Not applicable.

Funding

This work was financially supported by Shanghai Natural Science Foundation of China (No. 18ZR1406800), National Natural Science Foundation of China (No. 81702372), and Shanghai Municipal Commission of Health and Family Planning, Key-developing disciplines (No. 2015ZB0201). The funding agencies were not involved in in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.
Written informed consent was obtained from all patients, and the study was approved by the ethical committee of the Zhongshan Hospital, in accordance with the ethical standards of the World Medical Association Declaration of Helsinki.
The authors declare no competing financial interests.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet. 2017;390:2383–96. Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet. 2017;390:2383–96.
2.
Zurück zum Zitat Zheng R, Zeng H, Zhang S, Chen W. Estimates of cancer incidence and mortality in China, 2013. Chin J Cancer. 2017;36:66.CrossRef Zheng R, Zeng H, Zhang S, Chen W. Estimates of cancer incidence and mortality in China, 2013. Chin J Cancer. 2017;36:66.CrossRef
3.
Zurück zum Zitat Abnet CC, Arnold M, Wei WQ. Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology. 2018;154:360–73. Abnet CC, Arnold M, Wei WQ. Epidemiology of Esophageal Squamous Cell Carcinoma. Gastroenterology. 2018;154:360–73.
4.
Zurück zum Zitat Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.CrossRef Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.CrossRef
5.
Zurück zum Zitat Cancer Genome Atlas Research Network, Analysis Working Group: Asan University, BC Cancer Agency, Brigham and Women’s Hospital, Broad Institute, Brown University, Case Western Reserve University, Dana-Farber Cancer Institute, Duke University, Greater Poland Cancer Centre, et al: Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–75. Cancer Genome Atlas Research Network, Analysis Working Group: Asan University, BC Cancer Agency, Brigham and Women’s Hospital, Broad Institute, Brown University, Case Western Reserve University, Dana-Farber Cancer Institute, Duke University, Greater Poland Cancer Centre, et al: Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541:169–75.
6.
Zurück zum Zitat Deng J, Chen H, Zhou D, Zhang J, Chen Y, Liu Q, Ai D, Zhu H, Chu L, Ren W, et al. Comparative genomic analysis of esophageal squamous cell carcinoma between Asian and Caucasian patient populations. Nat Commun. 2017;8:1533.CrossRef Deng J, Chen H, Zhou D, Zhang J, Chen Y, Liu Q, Ai D, Zhu H, Chu L, Ren W, et al. Comparative genomic analysis of esophageal squamous cell carcinoma between Asian and Caucasian patient populations. Nat Commun. 2017;8:1533.CrossRef
7.
Zurück zum Zitat Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–73.CrossRef Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–73.CrossRef
8.
Zurück zum Zitat Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311:29–33.CrossRef Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311:29–33.CrossRef
9.
Zurück zum Zitat Perez-Ramirez C, Canadas-Garre M, Jimenez-Varo E, Faus-Dader MJ, Calleja-Hernandez MA. MET: a new promising biomarker in non-small-cell lung carcinoma. Pharmacogenomics. 2015;16:631–47.CrossRef Perez-Ramirez C, Canadas-Garre M, Jimenez-Varo E, Faus-Dader MJ, Calleja-Hernandez MA. MET: a new promising biomarker in non-small-cell lung carcinoma. Pharmacogenomics. 2015;16:631–47.CrossRef
10.
Zurück zum Zitat Park S, Koh J, Kim DW, Kim M, Keam B, Kim TM, Jeon YK, Chung DH, Heo DS. MET amplification, protein expression, and mutations in pulmonary adenocarcinoma. Lung Cancer. 2015;90:381–7.CrossRef Park S, Koh J, Kim DW, Kim M, Keam B, Kim TM, Jeon YK, Chung DH, Heo DS. MET amplification, protein expression, and mutations in pulmonary adenocarcinoma. Lung Cancer. 2015;90:381–7.CrossRef
11.
Zurück zum Zitat Yan B, Lim M, Zhou L, Kuick CH, Leong MY, Yong KJ, Aung L, Salto-Tellez M, Chang KT. Identification of MET genomic amplification, protein expression and alternative splice isoforms in neuroblastomas. J Clin Pathol. 2013;66:985–91.CrossRef Yan B, Lim M, Zhou L, Kuick CH, Leong MY, Yong KJ, Aung L, Salto-Tellez M, Chang KT. Identification of MET genomic amplification, protein expression and alternative splice isoforms in neuroblastomas. J Clin Pathol. 2013;66:985–91.CrossRef
12.
Zurück zum Zitat Lennerz JK, Kwak EL, Ackerman A, Michael M, Fox SB, Bergethon K, Lauwers GY, Christensen JG, Wilner KD, Haber DA, et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J Clin Oncol. 2011;29:4803–10.CrossRef Lennerz JK, Kwak EL, Ackerman A, Michael M, Fox SB, Bergethon K, Lauwers GY, Christensen JG, Wilner KD, Haber DA, et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J Clin Oncol. 2011;29:4803–10.CrossRef
13.
Zurück zum Zitat Jardim DL, Tang C, Gagliato Dde M, Falchook GS, Hess K, Janku F, Fu S, Wheler JJ, Zinner RG, Naing A, et al. Analysis of 1,115 patients tested for MET amplification and therapy response in the MD Anderson phase I clinic. Clin Cancer Res. 2014;20:6336–45.CrossRef Jardim DL, Tang C, Gagliato Dde M, Falchook GS, Hess K, Janku F, Fu S, Wheler JJ, Zinner RG, Naing A, et al. Analysis of 1,115 patients tested for MET amplification and therapy response in the MD Anderson phase I clinic. Clin Cancer Res. 2014;20:6336–45.CrossRef
14.
Zurück zum Zitat Angevin E, Spitaleri G, Rodon J, Dotti K, Isambert N, Salvagni S, Moreno V, Assadourian S, Gomez C, Harnois M, et al. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumours with MET amplification. Eur J Cancer. 2017;87:131–9.CrossRef Angevin E, Spitaleri G, Rodon J, Dotti K, Isambert N, Salvagni S, Moreno V, Assadourian S, Gomez C, Harnois M, et al. A first-in-human phase I study of SAR125844, a selective MET tyrosine kinase inhibitor, in patients with advanced solid tumours with MET amplification. Eur J Cancer. 2017;87:131–9.CrossRef
15.
Zurück zum Zitat Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008;99:2280–5.CrossRef Okuda K, Sasaki H, Yukiue H, Yano M, Fujii Y. Met gene copy number predicts the prognosis for completely resected non-small cell lung cancer. Cancer Sci. 2008;99:2280–5.CrossRef
16.
Zurück zum Zitat Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.CrossRef Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.CrossRef
17.
Zurück zum Zitat Catenacci DV, Ang A, Liao WL, Shen J, O'Day E, Loberg RD, Cecchi F, Hembrough T, Ruzzo A, Graziano F. MET tyrosine kinase receptor expression and amplification as prognostic biomarkers of survival in gastroesophageal adenocarcinoma. Cancer. 2017;123:1061–70.CrossRef Catenacci DV, Ang A, Liao WL, Shen J, O'Day E, Loberg RD, Cecchi F, Hembrough T, Ruzzo A, Graziano F. MET tyrosine kinase receptor expression and amplification as prognostic biomarkers of survival in gastroesophageal adenocarcinoma. Cancer. 2017;123:1061–70.CrossRef
18.
Zurück zum Zitat Yang Y, Wu N, Shen J, Teixido C, Sun X, Lin Z, Qian X, Zou Z, Guan W, Yu L, et al. MET overexpression and amplification define a distinct molecular subgroup for targeted therapies in gastric cancer. Gastric Cancer. 2016;19:778–88.CrossRef Yang Y, Wu N, Shen J, Teixido C, Sun X, Lin Z, Qian X, Zou Z, Guan W, Yu L, et al. MET overexpression and amplification define a distinct molecular subgroup for targeted therapies in gastric cancer. Gastric Cancer. 2016;19:778–88.CrossRef
19.
Zurück zum Zitat Schildhaus HU, Schultheis AM, Ruschoff J, Binot E, Merkelbach-Bruse S, Fassunke J, Schulte W, Ko YD, Schlesinger A, Bos M, et al. MET amplification status in therapy-naive adeno- and squamous cell carcinomas of the lung. Clin Cancer Res. 2015;21:907–15.CrossRef Schildhaus HU, Schultheis AM, Ruschoff J, Binot E, Merkelbach-Bruse S, Fassunke J, Schulte W, Ko YD, Schlesinger A, Bos M, et al. MET amplification status in therapy-naive adeno- and squamous cell carcinomas of the lung. Clin Cancer Res. 2015;21:907–15.CrossRef
20.
Zurück zum Zitat Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, Nordlinger B, Bretti S, Bottardi S, Giordano S, et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res. 1995;1:147–54.PubMed Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, Nordlinger B, Bretti S, Bottardi S, Giordano S, et al. Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res. 1995;1:147–54.PubMed
21.
Zurück zum Zitat Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, Bang YJ, Kim WH. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107:325–33.CrossRef Lee HE, Kim MA, Lee HS, Jung EJ, Yang HK, Lee BL, Bang YJ, Kim WH. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107:325–33.CrossRef
22.
Zurück zum Zitat Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, Del Grammastro M, Sciarrotta MG, Buttitta F, Incarbone M, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27:1667–74.CrossRef Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, Del Grammastro M, Sciarrotta MG, Buttitta F, Incarbone M, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27:1667–74.CrossRef
23.
Zurück zum Zitat Zeng ZS, Weiser MR, Kuntz E, Chen CT, Khan SA, Forslund A, Nash GM, Gimbel M, Yamaguchi Y, ATt C, et al. c-met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett. 2008;265:258–69.CrossRef Zeng ZS, Weiser MR, Kuntz E, Chen CT, Khan SA, Forslund A, Nash GM, Gimbel M, Yamaguchi Y, ATt C, et al. c-met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett. 2008;265:258–69.CrossRef
24.
Zurück zum Zitat Kato H, Arao T, Matsumoto K, Fujita Y, Kimura H, Hayashi H, Nishiki K, Iwama M, Shiraishi O, Yasuda A, et al. Gene amplification of EGFR, HER2, FGFR2 and MET in esophageal squamous cell carcinoma. Int J Oncol. 2013;42:1151–8.CrossRef Kato H, Arao T, Matsumoto K, Fujita Y, Kimura H, Hayashi H, Nishiki K, Iwama M, Shiraishi O, Yasuda A, et al. Gene amplification of EGFR, HER2, FGFR2 and MET in esophageal squamous cell carcinoma. Int J Oncol. 2013;42:1151–8.CrossRef
25.
Zurück zum Zitat Shi Y, He D, Hou Y, Hu Q, Xu C, Liu Y, Jiang D, Su J, Zeng H, Tan Y. An alternative high output tissue microarray technique. Diagn Pathol. 2013;8:9.CrossRef Shi Y, He D, Hou Y, Hu Q, Xu C, Liu Y, Jiang D, Su J, Zeng H, Tan Y. An alternative high output tissue microarray technique. Diagn Pathol. 2013;8:9.CrossRef
26.
Zurück zum Zitat Jiang D, Li X, Wang H, Shi Y, Xu C, Lu S, Huang J, Xu Y, Zeng H, Su J, et al. The prognostic value of EGFR overexpression and amplification in esophageal squamous cell carcinoma. BMC Cancer. 2015;15:377.CrossRef Jiang D, Li X, Wang H, Shi Y, Xu C, Lu S, Huang J, Xu Y, Zeng H, Su J, et al. The prognostic value of EGFR overexpression and amplification in esophageal squamous cell carcinoma. BMC Cancer. 2015;15:377.CrossRef
27.
Zurück zum Zitat Seres-Santamaria A, Catala V, Cuatrecasas E, Villanueva R. Fluorescent in-situ hybridisation and Down's syndrome. Lancet. 1993;341:1544.CrossRef Seres-Santamaria A, Catala V, Cuatrecasas E, Villanueva R. Fluorescent in-situ hybridisation and Down's syndrome. Lancet. 1993;341:1544.CrossRef
28.
Zurück zum Zitat Bhargava R, Dabbs DJ. Interpretation of human epidermal growth factor receptor 2 (HER2) in situ hybridization assays using 2013 update of American Society of Clinical Oncology/College of American Pathologists HER2 guidelines. J Clin Oncol. 2014;32:1855.CrossRef Bhargava R, Dabbs DJ. Interpretation of human epidermal growth factor receptor 2 (HER2) in situ hybridization assays using 2013 update of American Society of Clinical Oncology/College of American Pathologists HER2 guidelines. J Clin Oncol. 2014;32:1855.CrossRef
29.
Zurück zum Zitat Donaldson AR, Shetty S, Wang Z, Rivera CL, Portier BP, Budd GT, Downs-Kelly E, Lanigan CP, Calhoun BC. Impact of an alternative chromosome 17 probe and the 2013 American Society of Clinical Oncology and College of American Pathologists guidelines on fluorescence in situ hybridization for the determination of HER2 gene amplification in breast cancer. Cancer. 2017;123:2230–9.CrossRef Donaldson AR, Shetty S, Wang Z, Rivera CL, Portier BP, Budd GT, Downs-Kelly E, Lanigan CP, Calhoun BC. Impact of an alternative chromosome 17 probe and the 2013 American Society of Clinical Oncology and College of American Pathologists guidelines on fluorescence in situ hybridization for the determination of HER2 gene amplification in breast cancer. Cancer. 2017;123:2230–9.CrossRef
30.
Zurück zum Zitat Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.CrossRef Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.CrossRef
31.
Zurück zum Zitat Kim WY, Shim SH, Jung HY, Dong M, Kim SN, Lee SJ. The gene copy number of c-MET has a significant impact on progression-free survival in Korean patients with ovarian carcinoma. Hum Pathol. 2017;64:98–105.CrossRef Kim WY, Shim SH, Jung HY, Dong M, Kim SN, Lee SJ. The gene copy number of c-MET has a significant impact on progression-free survival in Korean patients with ovarian carcinoma. Hum Pathol. 2017;64:98–105.CrossRef
32.
Zurück zum Zitat Kwak Y, Yun S, Nam SK, Seo AN, Lee KS, Shin E, Oh HK, Kim DW, Kang SB, Kim WH, Lee HS. Comparative analysis of the EGFR, HER2, c-MYC, and MET variations in colorectal cancer determined by three different measures: gene copy number gain, amplification status and the 2013 ASCO/CAP guideline criterion for HER2 testing of breast cancer. J Transl Med. 2017;15:167.CrossRef Kwak Y, Yun S, Nam SK, Seo AN, Lee KS, Shin E, Oh HK, Kim DW, Kang SB, Kim WH, Lee HS. Comparative analysis of the EGFR, HER2, c-MYC, and MET variations in colorectal cancer determined by three different measures: gene copy number gain, amplification status and the 2013 ASCO/CAP guideline criterion for HER2 testing of breast cancer. J Transl Med. 2017;15:167.CrossRef
33.
Zurück zum Zitat Li Y, Li W, He Q, Xu Y, Ren X, Tang X, Wen X, Yang X, Sun Y, Zeng J, et al. Prognostic value of MET protein overexpression and gene amplification in locoregionally advanced nasopharyngeal carcinoma. Oncotarget. 2015;6:13309–19.PubMedPubMedCentral Li Y, Li W, He Q, Xu Y, Ren X, Tang X, Wen X, Yang X, Sun Y, Zeng J, et al. Prognostic value of MET protein overexpression and gene amplification in locoregionally advanced nasopharyngeal carcinoma. Oncotarget. 2015;6:13309–19.PubMedPubMedCentral
34.
Zurück zum Zitat Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22:447–55.CrossRef Albertson DG. Gene amplification in cancer. Trends Genet. 2006;22:447–55.CrossRef
35.
Zurück zum Zitat Casadevall D, Gimeno J, Clave S, Taus A, Pijuan L, Arumi M, Lorenzo M, Menendez S, Canadas I, Albanell J, et al. MET expression and copy number heterogeneity in nonsquamous non-small cell lung cancer (nsNSCLC). Oncotarget. 2015;6:16215–26.CrossRef Casadevall D, Gimeno J, Clave S, Taus A, Pijuan L, Arumi M, Lorenzo M, Menendez S, Canadas I, Albanell J, et al. MET expression and copy number heterogeneity in nonsquamous non-small cell lung cancer (nsNSCLC). Oncotarget. 2015;6:16215–26.CrossRef
36.
Zurück zum Zitat Kawakami H, Okamoto I, Arao T, Okamoto W, Matsumoto K, Taniguchi H, Kuwata K, Yamaguchi H, Nishio K, Nakagawa K, Yamada Y. MET amplification as a potential therapeutic target in gastric cancer. Oncotarget. 2013;4:9–17.CrossRef Kawakami H, Okamoto I, Arao T, Okamoto W, Matsumoto K, Taniguchi H, Kuwata K, Yamaguchi H, Nishio K, Nakagawa K, Yamada Y. MET amplification as a potential therapeutic target in gastric cancer. Oncotarget. 2013;4:9–17.CrossRef
37.
Zurück zum Zitat Kwon MJ, Kim DH, Park HR, Shin HS, Kwon JH, Lee DJ, Kim JH, Cho SJ, Nam ES. Frequent hepatocyte growth factor overexpression and low frequency of c-met gene amplification in human papillomavirus-negative tonsillar squamous cell carcinoma and their prognostic significances. Hum Pathol. 2014;45:1327–38.CrossRef Kwon MJ, Kim DH, Park HR, Shin HS, Kwon JH, Lee DJ, Kim JH, Cho SJ, Nam ES. Frequent hepatocyte growth factor overexpression and low frequency of c-met gene amplification in human papillomavirus-negative tonsillar squamous cell carcinoma and their prognostic significances. Hum Pathol. 2014;45:1327–38.CrossRef
38.
Zurück zum Zitat Bois MC, Mansfield AS, Sukov WR, Jenkins SM, Moser JC, Sattler CA, Smith CY, Molina JR, Peikert T. Roden AC: c-met expression and MET amplification in malignant pleural mesothelioma. Ann Diagn Pathol. 2016;23:1–7.CrossRef Bois MC, Mansfield AS, Sukov WR, Jenkins SM, Moser JC, Sattler CA, Smith CY, Molina JR, Peikert T. Roden AC: c-met expression and MET amplification in malignant pleural mesothelioma. Ann Diagn Pathol. 2016;23:1–7.CrossRef
39.
Zurück zum Zitat Sterlacci W, Fiegl M, Gugger M, Bubendorf L, Savic S, Tzankov A. MET overexpression and gene amplification: prevalence, clinico-pathological characteristics and prognostic significance in a large cohort of patients with surgically resected NSCLC. Virchows Arch. 2017;471:49–55.CrossRef Sterlacci W, Fiegl M, Gugger M, Bubendorf L, Savic S, Tzankov A. MET overexpression and gene amplification: prevalence, clinico-pathological characteristics and prognostic significance in a large cohort of patients with surgically resected NSCLC. Virchows Arch. 2017;471:49–55.CrossRef
40.
Zurück zum Zitat Landi L, Minuti G, D'Incecco A, Salvini J, Cappuzzo F. MET overexpression and gene amplification in NSCLC: a clinical perspective. Lung Cancer (Auckl). 2013;4:15–25. Landi L, Minuti G, D'Incecco A, Salvini J, Cappuzzo F. MET overexpression and gene amplification in NSCLC: a clinical perspective. Lung Cancer (Auckl). 2013;4:15–25.
41.
Zurück zum Zitat Wang H, Jiang D, Song Q, Xu C, Shi Y, Li X, Huang J, Xu Y, Sujie A, Zeng H, et al. Prognostic impact and potential interaction of EGFR and c-met in the progression of esophageal squamous cell carcinoma. Tumour Biol. 2016;37:9771–9.CrossRef Wang H, Jiang D, Song Q, Xu C, Shi Y, Li X, Huang J, Xu Y, Sujie A, Zeng H, et al. Prognostic impact and potential interaction of EGFR and c-met in the progression of esophageal squamous cell carcinoma. Tumour Biol. 2016;37:9771–9.CrossRef
Metadaten
Titel
Increased MET gene copy number negatively affects the survival of esophageal squamous cell carcinoma patients
verfasst von
Yanqiu Wang
Zhengzeng Jiang
Chen Xu
Hao Wang
Lijie Tan
Jieakesu Su
Xin Wang
Dongxian Jiang
Yingyong Hou
Qi Song
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2019
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5450-6

Weitere Artikel der Ausgabe 1/2019

BMC Cancer 1/2019 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.