Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2019

Open Access 01.12.2019 | Research article

Indirect comparison of novel Oral anticoagulants among Asians with non-Valvular atrial fibrillation in the real world setting: a network meta-analysis

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2019

Abstract

Background

The development of novel oral anticoagulants (NOACs) has changed the landscape of non-valvular atrial fibrillation (NVAF) management. In this study, the effectiveness and the safety of several NOACs were evaluated in a real-world setting among Asian patients with NVAF.

Methods

The literature search was conducted crossing different databases including Embase, MEDLINE, and the Cochrane Library from inception through March 1, 2019, for studies which included real-world perspectives comparing the individual NOACs with each other or with warfarin among Asians with NVAF. The primary outcomes were defined as stroke or systemic embolism (SSE) and major bleeding; ischemic stroke, all-cause death as well as intracranial bleeding were classified as the secondary outcomes.

Results

From sixteen real-world studies, a total of 312,827 Asian patients were included in this analysis. In comparison with warfarin, the utilization of apixaban, dabigatran, and rivaroxaban significantly lowered the risk of major bleeding (apixaban: HR 0.47, 95%CI 0.35–0.63; dabigatran: HR 0.59, 95%CI 0.47–0.73; rivaroxaban: HR 0.66, 95%CI 0.52–0.83) and lessened the all-cause death rate (apixaban: HR 0.29, 95%CI 0.16–0.52; dabigatran: HR 0.40, 95%CI 0.27–0.60; rivaroxaban: HR 0.42, 95%CI 0.28–0.65). Apixaban (HR 0.59; 95%CI 0.40–0.85) reduced the possibility of ischemic stroke when compared against dabigatran. Rivaroxaban showed a higher chance of causing an ischemic stroke (HR 1.61; 95%CI 1.08–2.41) and major bleeding (HR 1.39; 95%CI 1.02–1.90) than Apixaban.

Conclusions

Apixaban, dabigatran and rivaroxaban were more effective than warfarin on reducing the risks of stroke and haemorrhage; meanwhile, apixaban was likely to lower the risk of major bleeding comparing to rivaroxaban.

Trial registration

PROSPERO registry number: CRD42018086914.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12872-019-1165-5) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AF
Atrial fibrillation
HR
Hazard ratio
INR
International normalized ratio
NMA
Network meta-analysis
NOACs
Novel oral anticoagulants
NOS
Newcastle-Ottawa quality assessment scale
NVAF
Non-valvular atrial fibrillation
PSM
Propensity score matching
RCT
Randomized controlled trial
SSE
Stroke or systemic embolism
SUCRA
Surface under the cumulative ranking curve

Background

Non-valvular atrial fibrillation (NVAF) is the most common arrhythmia associated with severe thromboembolic events. Stroke caused by NVAF often can cause higher immobility and mortality than other stroke risk factors [1]. Furthermore, the prevalence of atrial fibrillation (AF) is on the rise across the world especially in Asia [2], where there is a large and rapidly ageing population. Therefore, stroke prevention is crucially important for Asian patients with NVAF [3]. Although it has been used to prevent stroke for years, warfarin is still underused and under-dosed in Asian patients, and the quality of international normalized ratio (INR) control is substandard in Asia compared with its western counterpart [4, 5]. This may be due to the fact that Asian patients are more sensitive to warfarin with a narrow INR range, accompanied by a higher risk of hemorrhagic complications [6]. As a result, low-intensity warfarin is often prescribed in clinical practice which may contribute to the increasing risk of embolism.
Different from warfarin, novel oral anticoagulants (NOACs) are lower risk and are excellent in preventing stroke and limiting haemorrhage especially intracranial haemorrhage [7, 8]. Moreover, a recent meta-analysis has suggested that NOACs are more effective and safer among Asian patients than non-Asians in terms of complications such as stroke or systemic embolism (SSE) and major bleeding [9], which indicates that Asian patients would largely benefit from the development of NOACs. Furthermore, the usage of NOACs has constantly increased while aspirin prescription has gradually decreased among Asians in recent years [10]. Hence, the rise of NOACs has revolutionized the field of NVAF management for Asian patients [11].
Until now, several NOACs (dabigatran, rivaroxaban, apixaban and edoxaban) have been approved in Asian countries, and it is still unclear that which NOAC is more effective and safer. Although direct or indirect comparisons between NOACs have been published, these trails mainly focus on western countries and results from Asia are considerably limited. Considering the ethnic and regional differences, it is important to assess the most favourable oral anticoagulation for Asian patients. Randomized controlled trial (RCT) represents the gold standard for evaluating the clinical effectiveness of an intervention. However, results from real-world studies could perfectly complement RCTs due to the RCT’s ability to reflect a genuine clinical practice and sample larger populations [12]. Comparison based on high-quality real-world studies is an alternative option in the absence of large RCTs.
Hence, the objective of this study is to conduct a network meta-analysis (NMA) comparing the clinical efficacy and safety of several NOACs in clinical practice among Asian patients with NVAF.

Methods

Search strategy

The literature search was implemented by two investigators in Embase, Medline, and the Cochrane Library from the databases’ inceptions through March 1, 2019. Search terms included atrial fibrillation, apixaban, dabigatran, rivaroxaban, edoxaban, real world, observational studies, and registry studies. The reference lists was also screened for included studies and relevant reviews to increase the sample size of literature reviewed. Only articles published in English were selected in this study for quality control. The detailed search strategies were presented in Additional file 4: Table S1.

Study selection

The population, interventions, comparisons, outcomes, and study design (PICOS) were used to define the eligibility criteria. The inclusion criteria were as follows: (1) Asian patients with NVAF; (2) treatments with NOACs (apixaban, dabigatran, rivaroxaban or edoxaban) for stroke prevention; (3) real-world studies including prospective or retrospective cohort studies; (4) adjusted hazard ratio (HR) using propensity score matching (PSM) or multivariate analysis. The following studies were excluded: (1) Asian patients with valvular AF or non-Asian patients; (2) treatment with aspirin (±clopidogrel); (3) non-full-text or studies not published in English; (4) case-control studies or cross-section studies.
Two investigators reviewed literature separately and evaluated the included articles by pre-specified selection criteria. Disagreements were resolved through discussions between the two investigators or consulting with a third investigator.

Data extraction

Two investigators independently extracted the effective information regarding the study design, treatments, patient characteristics, the number of enrolled patients, follow-up duration, and outcomes including SSE, ischemic strokes, all-cause deaths, major bleedings, and intracranial haemorrhages.

Quality assessment

Assessment of the risk of bias for included studies was performed using the Newcastle-Ottawa Quality Assessment Scale (NOS) which is recommended by the Cochrane Collaboration for observational studies [13, 14]. The NOS has eight items within three domains: selection (representativeness), comparability (due to design or analysis), and outcomes (assessment and follow-up). A study scores one star for the satisfaction of each criterion, with the exception of the comparability domain (design or analysis), where a maximum of two stars can be awarded. In this study, publications that achieved eight or more stars on the NOS were considered as high quality, and moderate quality was defined as the achievement of six to seven starts, and less than six starts were considered low quality.

Statistical analysis

Network meta-analysis was conducted using the mvmeta software package in STATA14 software. NMA synthesizes data from a network of trials and provides an integration of direct evidence with indirect evidence producing a relative ranking of all treatments [15], which is able to provide a solution to the present challenge of few head to head comparisons between different NOACs in Asians.
Adjusted HR for primary and secondary outcomes were estimated in this NMA. Primary outcomes included stroke or systemic embolism and major bleeding; four secondary outcomes were ischemic strokes, all-cause deaths, major bleedings, and intracranial haemorrhages. The hierarchy of the treatments was performed using the surface under the cumulative ranking (SUCRA) curve, where a larger SUCRA value represented a better rank of the treatment [16].
Statistical heterogeneity will be assessed with P values and I2 statistics (percentage of total variation across studies due to heterogeneity). An I2 value over 50% indicates substantial heterogeneity while an I2 value under 50% indicates low or moderate heterogeneity. Either a random-effect or fixed-effect model was adopted based on the result of heterogeneity analysis. Network inconsistency was evaluated by an inconsistency plot to examine the differences between direct and indirect evidence. Potential publication bias was assessed through visual inspection of funnel plots.

Sensitivity analysis

Although potential confounders in these studies included in this NMA were adjusted using PSM or multivariate analysis, it is plausible that there are more confounding variables in real-word studies, especially in low-quality studies which included relatively smaller populations with inadequate comparability. Hence, a sensitivity analysis was conducted by excluding studies with low quality to improve the reliability of results from this NMA.

Results

Systematic literature review

We identified a total of 4,367 records through database searching and other sources, and 2,528 records remained after the removal of duplicates. Following a screening of the title and abstracts, 2,426 records were eliminated and 102 full-text publications were further assessed for inclusion (Fig. 1). Sixteen studies [1732] which evaluated the efficacy or safety of apixaban, rivaroxaban, and dabigatran with warfarin were included.

Study characteristics

A sample size of 312,827 Asian patients receiving NOACs or warfarin therapies were included in ten real-world studies (Table 1). The baseline characteristics of the selected studies were summarized in Table 1. Seven studies were conducted in Taiwan; four studies in Japan and three in Korea; two studies based in both Hong Kong and Malaysia. Of these, eleven studies used propensity score methods to balance covariates across groups. Three studies included patients with a high risk of thromboembolism, or a CHA2DS 2-VASc score ≥ 4, while the other studies scored a range from 2.32 to 3.98.
Table 1
Baseline Characteristics of the Included Studies
Study
Country
Treatment
Sample Size (n)
Age (years)
Males (%)
CHADS2 –VASc score
History of stroke/TIA (%)
Hypertension (%)
Renal dysfunction (%)
Heart failure (%)
Diabetes (%)
Ho 2012 [17]
Hong Kong
Dabigatran
122
70.00
55.7
2.48
43.4
69.7
9
25.4
28.7
Warfarin
122
70.01
52.5
2.32
32.0
63.1
13
31.1
34.4
Yap 2016 [18]
Malaysia
Dabigatran
500
65.3
62
2.69
NR
68.4
NR
6.2
31.4
Warfarin
500
66.8
61.2
3.40
NR
75.6
NR
25.6
43.2
Chan 2016 [19]
Taiwan
Dabigatran
9940
75
58
4.13
33
87
23%
16
41
Warfarin
9913
76
58
4.16
33
87
23%
16
41
Chan 2016 [20]
Taiwan
Rivaroxaban
3916
76
46
4.12
29
87
22%
16
41
Dabigatran
5921
75
58
4.08
32
86
22%
16
41
Warfarin
5251
71
56
3.32
20
75
21%
16
36
Cha 2017 [21]
Korea
Rivaroxaban
5681
70.5
52.7
3.60
NR
75.7
NR
44.3
23.8
Dabigatran
3741
69.3
58.0
3.57
NR
76.8
NR
45.0
26.5
Apixaban
2189
70.3
54.4
3.51
NR
76.9
NR
43.0
23.6
Warfarin
23222
68.82
56.9
3.57
NR
76.9
NR
51.3
26.1
Naganuma 2017 [22]
Japan
Dabigatran
181
69
72
3.0
29
61
NR
18
29
Warfarin
181
69
72
3.1
31
64
NR
15
29
Lai 2017 [23]
Taiwan
Rivaroxaban
4600
75.4
54.8
3.3
19.5
49.7
NR
NR
20.2
Dabigatran
4600
75.4
54.6
3.3
19.1
49.4
NR
NR
20.4
Kohsaka 2017 [24]
Japan
Rivaroxaban
6726
75.8
62.0
3.3
22.3
53.8
4.4
35.3
28.9
Dabigatran
5090
73.1
65.9
3.0
19.9
50.9
2.5
28.9
27.6
Apixaban
5977
77.4
59.4
3.5
22.4
54.0
7.3
38.7
27.9
Warfarin
14037
77.6
60.1
3.6
22.3
55.9
13.3
43.1
29.6
Hsu 2017 [25]
Taiwan
Rivaroxaban
300
75.2
44.7
NR
35.7
92.3
43.3
41.3
100
Dabigatran
305
75.1
56.4
NR
33.8
91.8
38.4
40.3
100
Warfarin
1899
70.0
50.9
NR
35.5
87.2
38.5
46.5
100
Deitelzweig 2017 [26]
Japan
Rivaroxaban
11082
77.2
52.5
4.4
11.5
NR
NR
NR
NR
Dabigatran
2474
76.8
55.1
4.3
10.9
NR
NR
NR
NR
Apixaban
8250
78.0
51.5
4.6
11.8
NR
NR
NR
NR
Warfarin
14051
78.2
55.2
4.7
15.8
NR
NR
NR
NR
Lee 2018 [27]
Taiwan
Rivaroxaban
732
74.68
61.34
3.9
19.95
85.93
36.07
20.22
46.86
Dabigatran
535
73.57
65.98
3.82
21.5
86.54
29.91
21.50
46.36
Apixaban
171
75.36
55.56
3.98
20.47
87.72
41.52
18.71
43.86
Warfarin
946
72.41
63.70
3.66
18.24
83.52
83.52
22.29
44.89
Huang 2018 [28]
Taiwan
Rivaroxaban
9637
75.20
54.56
4.02
26.25
73.74
11.72
35.35
31.00
Warfarin
9637
74.98
54.70
4.11
26.97
74.02
11.97
36.77
31.79
Chan 2018 [29]
Taiwan
Rivaroxaban
27777
75
55
3.83
20
86
24%
13
39
Dabigatran
20079
75
60
3.74
24
84
20%
11
38
Apixaban
5843
76
55
3.89
20
87
29%
13
41
Warfarin
19375
71
58
3.26
15
78
24%
14
36
Jeong 2019 [30]
Korea
Rivaroxaban
804
71.4
63.3
3.3
29.2
53.5
NR
5.7
24.1
Warfarin
804
70.4
60.4
3.4
29.2
54.7
NR
5.1
22.3
Koretsune 2019 [31]
Japan
Dabigatran
4606
74
66
3.3
13
NR
NR
35
29
Warfarin
4606
73
66
3.3
13
NR
NR
35
29
Cho 2019 [32]
Korea
Rivaroxaban
21000
73.8
50.9
3.6
21.1
87.8
NR
20.5
45.5
Dabigatran
12593
72.9
53.6
3.5
24.3
87.0
NR
18.0
45.5
Apixaban
12502
74.3
47.7
3.7
24
86.7
NR
20.6
45.3
Warfarin
10409
70.8
54.0
3.5
27.3
85.9
NR
22.8
48.4
Age and follow-up duration reported in mean or median. MI = myocardial infarction; TIA = transient ischemic attack; NR = no results

Quality assessment and sensitivity analysis

Quality evaluation was conducted using NOS (Additional file 5: Table S2) and most of the included studies were assessed as high-quality evidence (N = 12). Nevertheless, two studies were considered as low quality and a sensitivity analysis was consequently performed by discarding the two studies.The results of bias risk assessment and inconsistency test were presented in Additional file 1: Figure S1, Additional file 2: Figure S2 and Additional file 3: Figure S3.
Sensitivity analysis was conducted to test the stability of this NMA by excluding two low-quality studies. The results of sensitivity analysis were roughly consistent with the finding of the overall results.

SSE and ischemic stroke

Apixaban, dabigatran, and rivaroxaban had a tendency to reduce the risk of SSE compared to warfarin, although no statistical significance was observed (Fig. 2). Apixaban, dabigatran, and rivaroxaban significantly reduced the risk of ischemic stroke in comparison to warfarin (apixaban: HR 0.39, 95% CI 0.27–0.56; dabigatran: HR 0.67, 95% CI 0.50–0.89; rivaroxaban: HR 0.63, 95% CI 0.47–0.85) (Fig. 3). In comparison to warfarin, Apixaban reduced the risk of ischemic stroke by 61%. Moreover, apixaban (HR 0.59; 95% CI 0.40–0.85) was superior to dabigatran in lowering stroke risk, meanwhile rivaroxaban (HR 1.61; 95% CI 1.08–2.41) was associated with a higher risk of ischemic stroke than apixaban. However, there was no significant difference between apixaban and dabigatran.

Major bleeding

According to the analysis, apixaban, dabigatran and rivaroxaban were excellent in lowering the major bleeding complications when compared to warfarin (apixaban: HR 0.47, 95% CI 0.35–0.63; dabigatran: HR 0.59, 95% CI 0.47–0.73; rivaroxaban: HR 0.66, 95% CI 0.52–0.83) (Fig. 4). Furthermore, rivaroxaban had a higher risk and caused major bleeding (HR 1.39, 95% CI 1.02 1.90) than apixaban. In addition, there was no significant difference between apixaban and dabigatran.

Intracranial bleeding

Apixaban, dabigatran, and rivaroxaban showed lower risks of intracranial bleeding when compared to warfarin ranged from 50 to 58% (apixaban: HR 0.42, 95% CI 0.26–0.67; dabigatran: HR 0.50, 95% CI 0.36–0.69; rivaroxaban: HR 0.47, 95% CI 0.33–0.68) (Fig. 5). There was no significant difference between apixaban, dabigatran, and rivaroxaban.

All-cause death

Apixaban (HR 0.29; 95% CI 0.16–0.52), dabigatran (HR 0.40; 95%CI 0.27–0.60) and rivaroxaban (HR 0.42; 95% CI 0.28–0.65) offered a significant advantage over warfarin at lessening all-cause death rate with a reduction ranging from 58 to 71% (Fig. 6). No significant difference between the three NOACs was observed.

Clustered ranking of treatments

Clustered ranking plots combined efficacy and safety endpoints (SSE, all-cause death, and major bleeding) based on SUCRA values and evaluated the optimal oral anticoagulants for Asian patients. Clustered ranking for SSE and major bleeding indicated that apixaban and dabigatran performed better compared to rivaroxaban (Fig. 7a). In the clustered ranking plots of all-cause death and major bleeding, apixaban demonstrated a good balance in both safety and efficacy endpoints (Fig. 7b).

Discussion

Despite the numerous meta-analysis or NMA conducted in the field, the direct or indirect comparisons between NOACs focusing on Asian patients remain elusive. Through the NMA, we overcame the barrier of lacking head to head evidence in Asian patients and conducted an indirect comparison of several NOACs among patients with non-valvular atrial fibrillation. The present analysis suggested that apixaban, dabigatran, and rivaroxaban were superior to warfarin in reducing the risks of stroke and haemorrhage. Comparing with dabigatran, apixaban was associated with a lower risk of ischemic stroke, but no statistically significant difference was observed in terms of clinical safety. Moreover, we found that rivaroxaban was associated with a higher risk of major bleeding and ischemic stroke when compared with apixaban. However, there was no statistically significant difference in both safety and efficacy outcomes between rivaroxaban and dabigatran.
A recent study [9] suggested that NOACs as a whole were superior to warfarin in lowering stroke and bleeding risks. The present analysis comparing three NOACs (apixaban, rivaroxaban and dabigatran) with warfarin, further suggested that apixaban, rivaroxaban, and dabigatran were safer and more effective in stroke prevention among Asians. In comparison with warfarin, apixaban can lower the risk of ischemic stroke by 61% (Fig. 3) and all-cause death rate by 71% (Fig. 6). Apixaban, rivaroxaban, and dabigatran also cause less bleeding compared to warfarin, which may be related to the high risk of warfarin-induced intracranial bleeding and the low quality of INR control in Asia [33, 34].
Previous studies [4, 3537], which mainly included the studies from western countries, suggest no significance in efficacy between apixaban and dabigatran, but less major bleeding risk arises from the apixaban usage. However, the present analysis suggests that apixaban provides an additional 41% reduction on ischemic stroke risk (Fig. 3) without showing an improved safe outcome, which may be partly due to the commonly low-dose usage of dabigatran in clinical practice among Asian patients [18, 22]. In agreement with previous studies [4, 3638], apixaban had less major bleeding complications compared with rivaroxaban (Fig. 4). Furthermore, the present analysis demonstrates that rivaroxaban can increase the chance of ischemic stroke when compared to apixaban among Asians patients. However, due to an insufficient study sample size selected for this analysis, further research is required in order to draw a more conclusive result.
Evidence from RCTs is usually considered more reliable than real-world studies such as in the following studies. Nevertheless, performing an RCT requires strict eligibility criteria within a relatively small patient population, which limits the generality of results to be used as a clinical guide [39]. Real-world studies can estimate a much broader population not limited to age and other diseases, while being closer to a clinical practice [40]. Thus, real-word studies are considered a potential alternative to complement the evidence from RCTs [41]. Furthermore, propensity score matching (PSM) is widely performed in recent real-world studies to balance the distribution of biases and confounders between groups in order to achieve the purpose of simulating random assignment [12]. The majority of studies in this NMA performed PSM or multivariate analysis to maximally eliminate the influence of confounding factors. Although the results of this analysis are somewhat different from previous investigations, the findings still reflect the practical clinical benefits of oral anticoagulants among Asians patients. Moreover, the results from clinical practice could provide a new perspective on the use of NOACs for Asians.
In this analysis, we found that low-dose NOACs, especially dabigatran, were more widely used in clinical practice among Asian patients [18, 22], although a recent study [42] suggests that standard dose NOACs are more effective in stroke prevention without increasing risks of bleeding for Asians. However, considering the increasing complexity and variety of clinical practices, such as serious comorbidities and advanced age, it is understandable that low-dose oral anticoagulants are more likely to be prescribed by clinicians in order to avoid severe bleeding complications [5, 6, 43]. A recent observational study from Korea suggested that both dose dabigatran displayed similar efficacy outcomes; moreover, dabigatran 110 mg performed better than dabigatran 150 mg with regards to lowering bleeding risk [44]. At present analysis, we also found that although most of the Asian patients in this NMA received low-dose dabigatran (110 mg), dabigatran can effectively minimize the danger of ischemic stroke and major bleeding compared with warfarin.
Several limitations are present in this analysis. Firstly, the initial aim of this analysis was to compare the differences between four NOACs with each other, including apixaban, dabigatran, rivaroxaban, and edoxaban, but the studies that compared edoxaban with other anticoagulants for NVAF in the East Asia-Pacific region is limited. Thus, this analysis mainly studied the differences among apixaban, dabigatran, and rivaroxaban. Secondly, this NMA merely evaluated the mixed dose oral anticoagulants and the difference between regular and reduced dose was not tested mainly due to the lack of studies which analyzed the different doses of NOACs separately in Asia [25, 12]. Therefore, further studies are expected to be conducted to comprehensively understand the impact of dosage of oral anticoagulants on Asians. Thirdly, the studies included in this analysis were mainly from East Asian and Southeast Asian countries and regions, namely Taiwan, Japan, and Korea. Studies from the other parts of Asia, especially larger populated countries such as India and Pakistan, were missing due to the language barrier since only English literature were selected for this study. Nevertheless, considering the great quality control of publications in English journals due to the peer-review process, the bias is likely to be minimal.

Conclusion

In conclusion, the NMA for Asians with NVAF suggested apixaban, dabigatran, and rivaroxaban were more effective than warfarin on reducing the risks of stroke and haemorrhage; apixaban appeared to demonstrate lower risks of stroke and haemorrhage comparing to rivaroxaban. However, considering of the limitation of observational study, these results need to be further comfirmed in rigorous head-to-head RCTs.

Acknowledgements

We are sincerely grateful to Dr. Mitch Durham from University of Otago for his contributions on improving the Engish language of our manuscript.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur J Cardiothorac Surg. 2016;50(5):e1–e88.CrossRef Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur J Cardiothorac Surg. 2016;50(5):e1–e88.CrossRef
2.
Zurück zum Zitat Bai Y, Wang YL, Shantsila A, GYH L. The global burden of atrial fibrillation and stroke: a systematic review of the clinical epidemiology of atrial fibrillation in Asia. Chest. 2017;152(4):810–20.CrossRef Bai Y, Wang YL, Shantsila A, GYH L. The global burden of atrial fibrillation and stroke: a systematic review of the clinical epidemiology of atrial fibrillation in Asia. Chest. 2017;152(4):810–20.CrossRef
3.
Zurück zum Zitat Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146(12):857–67.CrossRef Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146(12):857–67.CrossRef
4.
Zurück zum Zitat Deitelzweig S, Farmer C, Luo X, et al. Comparison of major bleeding risk in patients with non-valvular atrial fibrillation receiving direct oral anticoagulants in the real-world setting: a network meta-analysis. Curr Med Res Opin. 2018;34(3):487–98.CrossRef Deitelzweig S, Farmer C, Luo X, et al. Comparison of major bleeding risk in patients with non-valvular atrial fibrillation receiving direct oral anticoagulants in the real-world setting: a network meta-analysis. Curr Med Res Opin. 2018;34(3):487–98.CrossRef
5.
Zurück zum Zitat Mazurek M, Huisman MV, Rothman KJ, et al. Regional differences in antithrombotic treatment for atrial fibrillation: insights from the GLORIA-AF phase II registry. Thromb Haemost. 2017;117(12):2376–88.CrossRef Mazurek M, Huisman MV, Rothman KJ, et al. Regional differences in antithrombotic treatment for atrial fibrillation: insights from the GLORIA-AF phase II registry. Thromb Haemost. 2017;117(12):2376–88.CrossRef
6.
Zurück zum Zitat Liu T, Hui J, Hou YY, et al. Meta-analysis of efficacy and safety of low-intensity warfarin therapy for east Asian patients with Nonvalvular atrial fibrillation. Am J Cardiol. 2017;120(9):1562–7.CrossRef Liu T, Hui J, Hou YY, et al. Meta-analysis of efficacy and safety of low-intensity warfarin therapy for east Asian patients with Nonvalvular atrial fibrillation. Am J Cardiol. 2017;120(9):1562–7.CrossRef
7.
Zurück zum Zitat Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62.CrossRef Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62.CrossRef
8.
Zurück zum Zitat Woo HG, Chung I, Gwak DS, et al. Intracerebral hemorrhage associated with warfarin versus non-vitamin K antagonist oral anticoagulants in Asian patients. J Clin Neurosci. 2019;61:160–5.CrossRef Woo HG, Chung I, Gwak DS, et al. Intracerebral hemorrhage associated with warfarin versus non-vitamin K antagonist oral anticoagulants in Asian patients. J Clin Neurosci. 2019;61:160–5.CrossRef
9.
Zurück zum Zitat Wang KL, Lip GY, Lin SJ, Chiang CE. Non-vitamin K antagonist Oral anticoagulants for stroke prevention in Asian patients with Nonvalvular atrial fibrillation: meta-analysis. Stroke. 2015;46(9):2555–61.CrossRef Wang KL, Lip GY, Lin SJ, Chiang CE. Non-vitamin K antagonist Oral anticoagulants for stroke prevention in Asian patients with Nonvalvular atrial fibrillation: meta-analysis. Stroke. 2015;46(9):2555–61.CrossRef
10.
Zurück zum Zitat Shen AY, Yao JF, Brar SS, Jorgensen MB, Chen W. Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J Am Coll Cardiol. 2007;50(4):309–15.CrossRef Shen AY, Yao JF, Brar SS, Jorgensen MB, Chen W. Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J Am Coll Cardiol. 2007;50(4):309–15.CrossRef
11.
Zurück zum Zitat Lee SR, Choi EK, Han KD, Cha MJ, Oh S, GYH L. Temporal trends of antithrombotic therapy for stroke prevention in Korean patients with non-valvular atrial fibrillation in the era of non-vitamin K antagonist oral anticoagulants: a nationwide population-based study. PLoS One. 2017;12(12):e0189495.CrossRef Lee SR, Choi EK, Han KD, Cha MJ, Oh S, GYH L. Temporal trends of antithrombotic therapy for stroke prevention in Korean patients with non-valvular atrial fibrillation in the era of non-vitamin K antagonist oral anticoagulants: a nationwide population-based study. PLoS One. 2017;12(12):e0189495.CrossRef
12.
Zurück zum Zitat Baek S, Park SH, Won E, Park YR, Kim HJ. Propensity score matching: a conceptual review for radiology researchers. Korean J Radiol. 2015;16(2):286–96.CrossRef Baek S, Park SH, Won E, Park YR, Kim HJ. Propensity score matching: a conceptual review for radiology researchers. Korean J Radiol. 2015;16(2):286–96.CrossRef
15.
Zurück zum Zitat Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8(10):e76654.CrossRef Chaimani A, Higgins JP, Mavridis D, Spyridonos P, Salanti G. Graphical tools for network meta-analysis in STATA. PLoS One. 2013;8(10):e76654.CrossRef
16.
Zurück zum Zitat Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64(2):163–71.CrossRef Salanti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011;64(2):163–71.CrossRef
17.
Zurück zum Zitat Ho JC, Chang AM, Yan BP, Yu CM, Lam YY, Lee VW. Dabigatran compared with warfarin for stroke prevention with atrial fibrillation: experience in Hong Kong. Clin Cardiol. 2012;35(12):E40–5.CrossRef Ho JC, Chang AM, Yan BP, Yu CM, Lam YY, Lee VW. Dabigatran compared with warfarin for stroke prevention with atrial fibrillation: experience in Hong Kong. Clin Cardiol. 2012;35(12):E40–5.CrossRef
18.
Zurück zum Zitat Yap LB, Eng DT, Sivalingam L, et al. A comparison of dabigatran with warfarin for stroke prevention in atrial fibrillation in an Asian population. Clin Appl Thromb Hemost. 2016;22(8):792–7.CrossRef Yap LB, Eng DT, Sivalingam L, et al. A comparison of dabigatran with warfarin for stroke prevention in atrial fibrillation in an Asian population. Clin Appl Thromb Hemost. 2016;22(8):792–7.CrossRef
19.
Zurück zum Zitat Chan YH, Yen KC, See LC, et al. Cardiovascular, bleeding, and mortality risks of dabigatran in Asians with Nonvalvular atrial fibrillation. Stroke. 2016;47(2):441–9.CrossRef Chan YH, Yen KC, See LC, et al. Cardiovascular, bleeding, and mortality risks of dabigatran in Asians with Nonvalvular atrial fibrillation. Stroke. 2016;47(2):441–9.CrossRef
20.
Zurück zum Zitat Chan YH, Kuo CT, Yeh YH, et al. Thromboembolic, bleeding, and mortality risks of rivaroxaban and dabigatran in Asians with Nonvalvular atrial fibrillation. J Am Coll Cardiol. 2016;68(13):1389–401.CrossRef Chan YH, Kuo CT, Yeh YH, et al. Thromboembolic, bleeding, and mortality risks of rivaroxaban and dabigatran in Asians with Nonvalvular atrial fibrillation. J Am Coll Cardiol. 2016;68(13):1389–401.CrossRef
21.
Zurück zum Zitat Cha MJ, Choi EK, Han KD, et al. Effectiveness and safety of non-vitamin K antagonist Oral anticoagulants in Asian patients with atrial fibrillation. Stroke. 2017;48(11):3040–8.CrossRef Cha MJ, Choi EK, Han KD, et al. Effectiveness and safety of non-vitamin K antagonist Oral anticoagulants in Asian patients with atrial fibrillation. Stroke. 2017;48(11):3040–8.CrossRef
22.
Zurück zum Zitat Naganuma M, Shiga T, Nagao T, Suzuki A, Murasaki K, Hagiwara N. Effectiveness and safety of dabigatran versus warfarin in "real-world" Japanese patients with atrial fibrillation: a single-center observational study. J Arrhythm. 2017;33(2):107–10.CrossRef Naganuma M, Shiga T, Nagao T, Suzuki A, Murasaki K, Hagiwara N. Effectiveness and safety of dabigatran versus warfarin in "real-world" Japanese patients with atrial fibrillation: a single-center observational study. J Arrhythm. 2017;33(2):107–10.CrossRef
23.
Zurück zum Zitat Lai CL, Chen HM, Liao MT, Lin TT, Chan KA. Comparative Effectiveness and Safety of Dabigatran and Rivaroxaban in Atrial Fibrillation Patients. J Am Heart Assoc. 2017. 6(4). Lai CL, Chen HM, Liao MT, Lin TT, Chan KA. Comparative Effectiveness and Safety of Dabigatran and Rivaroxaban in Atrial Fibrillation Patients. J Am Heart Assoc. 2017. 6(4).
24.
Zurück zum Zitat Kohsaka S, Murata T, Izumi N, Katada J, Wang F, Terayama Y. Bleeding risk of apixaban, dabigatran, and low-dose rivaroxaban compared with warfarin in Japanese patients with non-valvular atrial fibrillation: a propensity matched analysis of administrative claims data. Curr Med Res Opin. 2017;33(11):1955–63.CrossRef Kohsaka S, Murata T, Izumi N, Katada J, Wang F, Terayama Y. Bleeding risk of apixaban, dabigatran, and low-dose rivaroxaban compared with warfarin in Japanese patients with non-valvular atrial fibrillation: a propensity matched analysis of administrative claims data. Curr Med Res Opin. 2017;33(11):1955–63.CrossRef
25.
Zurück zum Zitat Hsu CC, Hsu PF, Sung SH, et al. Is there a preferred stroke prevention strategy for diabetic patients with non-Valvular atrial fibrillation? Comparing warfarin. Dabigatran and Rivaroxaban Thromb Haemost. 2018;118(1):72–81.CrossRef Hsu CC, Hsu PF, Sung SH, et al. Is there a preferred stroke prevention strategy for diabetic patients with non-Valvular atrial fibrillation? Comparing warfarin. Dabigatran and Rivaroxaban Thromb Haemost. 2018;118(1):72–81.CrossRef
26.
Zurück zum Zitat Deitelzweig S, Luo X, Gupta K, et al. Comparison of effectiveness and safety of treatment with apixaban vs. other oral anticoagulants among elderly nonvalvular atrial fibrillation patients. Curr Med Res Opin. 2017;33(10):1745–54.CrossRef Deitelzweig S, Luo X, Gupta K, et al. Comparison of effectiveness and safety of treatment with apixaban vs. other oral anticoagulants among elderly nonvalvular atrial fibrillation patients. Curr Med Res Opin. 2017;33(10):1745–54.CrossRef
27.
Zurück zum Zitat Lee HF, Chan YH, Chang SH, et al. Effectiveness and safety of non-vitamin K antagonist Oral anticoagulant and warfarin in cirrhotic patients with Nonvalvular atrial fibrillation. J Am Heart Assoc. 2019;8(5):e011112.CrossRef Lee HF, Chan YH, Chang SH, et al. Effectiveness and safety of non-vitamin K antagonist Oral anticoagulant and warfarin in cirrhotic patients with Nonvalvular atrial fibrillation. J Am Heart Assoc. 2019;8(5):e011112.CrossRef
28.
Zurück zum Zitat Huang HY, Lin SY, Cheng SH, Wang CC. Effectiveness and safety of different rivaroxaban dosage regimens in patients with non-Valvular atrial fibrillation: a Nationwide. Population-Based Cohort Study Sci Rep. 2018;8(1):3451.PubMed Huang HY, Lin SY, Cheng SH, Wang CC. Effectiveness and safety of different rivaroxaban dosage regimens in patients with non-Valvular atrial fibrillation: a Nationwide. Population-Based Cohort Study Sci Rep. 2018;8(1):3451.PubMed
29.
Zurück zum Zitat Chan YH, See LC, Tu HT, et al. Efficacy and Safety of Apixaban, Dabigatran, Rivaroxaban, and Warfarin in Asians With Nonvalvular Atrial Fibrillation. J Am Heart Assoc. 2018. 7(8). Chan YH, See LC, Tu HT, et al. Efficacy and Safety of Apixaban, Dabigatran, Rivaroxaban, and Warfarin in Asians With Nonvalvular Atrial Fibrillation. J Am Heart Assoc. 2018. 7(8).
30.
Zurück zum Zitat Jeong HK, Lee KH, Park HW, et al. Real world comparison of rivaroxaban and warfarin in Korean patients with atrial fibrillation: propensity matching cohort analysis. Chonnam Med J. 2019;55(1):54–61.CrossRef Jeong HK, Lee KH, Park HW, et al. Real world comparison of rivaroxaban and warfarin in Korean patients with atrial fibrillation: propensity matching cohort analysis. Chonnam Med J. 2019;55(1):54–61.CrossRef
31.
Zurück zum Zitat Koretsune Y, Yamashita T, Yasaka M, et al. Comparative effectiveness and safety of warfarin and dabigatran in patients with non-valvular atrial fibrillation in Japan: a claims database analysis. J Cardiol. 2019;73(3):204–9.CrossRef Koretsune Y, Yamashita T, Yasaka M, et al. Comparative effectiveness and safety of warfarin and dabigatran in patients with non-valvular atrial fibrillation in Japan: a claims database analysis. J Cardiol. 2019;73(3):204–9.CrossRef
32.
Zurück zum Zitat Cho MS, Yun JE, Park JJ, et al. Outcomes After Use of Standard- and Low-Dose Non-Vitamin K Oral Anticoagulants in Asian Patients with Atrial Fibrillation. Stroke. 2018: STROKEAHA118023093. Cho MS, Yun JE, Park JJ, et al. Outcomes After Use of Standard- and Low-Dose Non-Vitamin K Oral Anticoagulants in Asian Patients with Atrial Fibrillation. Stroke. 2018: STROKEAHA118023093.
33.
Zurück zum Zitat Akao M, Chun YH, Esato M, et al. Inappropriate use of oral anticoagulants for patients with atrial fibrillation. Circ J. 2014;78(9):2166–72.CrossRef Akao M, Chun YH, Esato M, et al. Inappropriate use of oral anticoagulants for patients with atrial fibrillation. Circ J. 2014;78(9):2166–72.CrossRef
34.
Zurück zum Zitat Teo KC, Mahboobani NR, Lee R, et al. Warfarin associated intracerebral hemorrhage in Hong Kong Chinese. Neurol Res. 2014;36(2):143–9.CrossRef Teo KC, Mahboobani NR, Lee R, et al. Warfarin associated intracerebral hemorrhage in Hong Kong Chinese. Neurol Res. 2014;36(2):143–9.CrossRef
35.
Zurück zum Zitat Rasmussen LH, Larsen TB, Graungaard T, Skjøth F, Lip GY. Primary and secondary prevention with new oral anticoagulant drugs for stroke prevention in atrial fibrillation: indirect comparison analysis. BMJ. 2012;345:e7097.CrossRef Rasmussen LH, Larsen TB, Graungaard T, Skjøth F, Lip GY. Primary and secondary prevention with new oral anticoagulant drugs for stroke prevention in atrial fibrillation: indirect comparison analysis. BMJ. 2012;345:e7097.CrossRef
36.
Zurück zum Zitat Lip GY, Mitchell SA, Liu X, et al. Relative efficacy and safety of non-vitamin K oral anticoagulants for non-valvular atrial fibrillation: network meta-analysis comparing apixaban, dabigatran, rivaroxaban and edoxaban in three patient subgroups. Int J Cardiol. 2016;204:88–94.CrossRef Lip GY, Mitchell SA, Liu X, et al. Relative efficacy and safety of non-vitamin K oral anticoagulants for non-valvular atrial fibrillation: network meta-analysis comparing apixaban, dabigatran, rivaroxaban and edoxaban in three patient subgroups. Int J Cardiol. 2016;204:88–94.CrossRef
37.
Zurück zum Zitat Proietti M, Romanazzi I, Romiti GF, Farcomeni A, GYH L. Real-world use of Apixaban for stroke prevention in atrial fibrillation: a systematic review and meta-analysis. Stroke. 2018;49(1):98–106.CrossRef Proietti M, Romanazzi I, Romiti GF, Farcomeni A, GYH L. Real-world use of Apixaban for stroke prevention in atrial fibrillation: a systematic review and meta-analysis. Stroke. 2018;49(1):98–106.CrossRef
38.
Zurück zum Zitat Tawfik A, Bielecki JM, Krahn M, et al. Systematic review and network meta-analysis of stroke prevention treatments in patients with atrial fibrillation. Clin Pharmacol. 2016;8:93–107.PubMedPubMedCentral Tawfik A, Bielecki JM, Krahn M, et al. Systematic review and network meta-analysis of stroke prevention treatments in patients with atrial fibrillation. Clin Pharmacol. 2016;8:93–107.PubMedPubMedCentral
39.
Zurück zum Zitat Roche N, Reddel H, Martin R, et al. Quality standards for real-world research. Focus on observational database studies of comparative effectiveness. Ann Am Thorac Soc. 2014. 11 Suppl 2: S99–104.CrossRef Roche N, Reddel H, Martin R, et al. Quality standards for real-world research. Focus on observational database studies of comparative effectiveness. Ann Am Thorac Soc. 2014. 11 Suppl 2: S99–104.CrossRef
40.
Zurück zum Zitat de Lusignan S, Crawford L, Munro N. Creating and using real-world evidence to answer questions about clinical effectiveness. J Innov Health Inform. 2015;22(3):368–73.CrossRef de Lusignan S, Crawford L, Munro N. Creating and using real-world evidence to answer questions about clinical effectiveness. J Innov Health Inform. 2015;22(3):368–73.CrossRef
41.
Zurück zum Zitat Kardos P, Worsley S, Singh D, Román-Rodríguez M, Newby DE, Müllerová H. Randomized controlled trials and real-world observational studies in evaluating cardiovascular safety of inhaled bronchodilator therapy in COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2885–95.CrossRef Kardos P, Worsley S, Singh D, Román-Rodríguez M, Newby DE, Müllerová H. Randomized controlled trials and real-world observational studies in evaluating cardiovascular safety of inhaled bronchodilator therapy in COPD. Int J Chron Obstruct Pulmon Dis. 2016;11:2885–95.CrossRef
42.
Zurück zum Zitat Wang KL, Giugliano RP, Goto S, et al. Standard dose versus low dose non-vitamin K antagonist oral anticoagulants in Asian patients with atrial fibrillation: a meta-analysis of contemporary randomized controlled trials. Heart Rhythm. 2016;13(12):2340–7.CrossRef Wang KL, Giugliano RP, Goto S, et al. Standard dose versus low dose non-vitamin K antagonist oral anticoagulants in Asian patients with atrial fibrillation: a meta-analysis of contemporary randomized controlled trials. Heart Rhythm. 2016;13(12):2340–7.CrossRef
43.
Zurück zum Zitat Gamra H, Murin J, Chiang CE, Naditch-Brûlé L, Brette S, Steg PG. Use of antithrombotics in atrial fibrillation in Africa, Europe, Asia and South America: insights from the international RealiseAF survey. Arch Cardiovasc Dis. 2014;107(2):77–87.CrossRef Gamra H, Murin J, Chiang CE, Naditch-Brûlé L, Brette S, Steg PG. Use of antithrombotics in atrial fibrillation in Africa, Europe, Asia and South America: insights from the international RealiseAF survey. Arch Cardiovasc Dis. 2014;107(2):77–87.CrossRef
44.
Zurück zum Zitat Lee KH, Park HW, Lee N, et al. Optimal dose of dabigatran for the prevention of thromboembolism with minimal bleeding risk in Korean patients with atrial fibrillation. Europace. 2017. 19(suppl_4): iv1-iv9.CrossRef Lee KH, Park HW, Lee N, et al. Optimal dose of dabigatran for the prevention of thromboembolism with minimal bleeding risk in Korean patients with atrial fibrillation. Europace. 2017. 19(suppl_4): iv1-iv9.CrossRef
Metadaten
Titel
Indirect comparison of novel Oral anticoagulants among Asians with non-Valvular atrial fibrillation in the real world setting: a network meta-analysis
Publikationsdatum
01.12.2019
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2019
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-019-1165-5

Weitere Artikel der Ausgabe 1/2019

BMC Cardiovascular Disorders 1/2019 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.