Skip to main content
Erschienen in: Clinical Pharmacokinetics 2/2011

01.02.2011 | Leading Article

Influence of Efflux Transporters on Drug Metabolism

Theoretical Approach for Bioavailability and Clearance Prediction

verfasst von: Professor Pietro Fagiolino, Marta Vázquez, Rosa Eiraldi, Cecilia Maldonado, Alejandro Scaramelli

Erschienen in: Clinical Pharmacokinetics | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Cytochrome P450 enzymes and efflux transporters, expressed in the intestine and/or in the liver, play important roles in drug clearance and oral bioavailability. The relative contribution of transporters and enzymes in drug metabolism is still controversial. Some antiepileptic drugs, such as carbamazepine, phe-nytoin and phenobarbital (phenobarbitone), show time-dependent and dose-dependent pharmacokinetics due to their inductive effect on both efflux transporters and enzymes. However, steady-state plasma drug concentrations for each antiepileptic drug do not relate to oral daily dose in the same way, with decreased or increased apparent clearance according to the drug. A multicompartment pharmacokinetic model was developed in order to explain these different behaviours using a single mechanism of inductive action. The key for solving these apparent dissimilarities was to consider in the model the unique physiological connection that intestine, liver and bloodstream have. Efflux transporters not only enhance enzymatic competition in relation to first-order processes, but also change the predominance of some elimination routes. For instance, the carbamazepine-10,11-epoxide formation increases at the expense of other carbamazepine metabolites, enhancing both the systemic and presystemic elimination of parent drug. Conversely, the major hepatic metabolism of phenytoin diminishes in favour of its minor intestinal elimination, decreasing the total drug clearance.
Literatur
1.
Zurück zum Zitat Fagiolino P. Multiplicative dependence of the first order rate constant and its impact on clinical pharmacokinetics and bioequivalence. Eur J Drug Metab Pharmacokinet 2004; 29: 43–9PubMedCrossRef Fagiolino P. Multiplicative dependence of the first order rate constant and its impact on clinical pharmacokinetics and bioequivalence. Eur J Drug Metab Pharmacokinet 2004; 29: 43–9PubMedCrossRef
2.
Zurück zum Zitat Fagiolino P, Eiraldi R, Vázquez M. The influence of cardiovascular physiology on dose/pharmacokinetic and pharmacokinetic/pharmacodynamic relationships. Clin Pharmacokinet 2006; 45: 433–48PubMedCrossRef Fagiolino P, Eiraldi R, Vázquez M. The influence of cardiovascular physiology on dose/pharmacokinetic and pharmacokinetic/pharmacodynamic relationships. Clin Pharmacokinet 2006; 45: 433–48PubMedCrossRef
3.
Zurück zum Zitat Fagiolino P, Wilson F, Samaniego E, et al. In vitro approach to study the influence of the cardiac output distribution on drug concentration. Eur J Drug Metab Pharmacokinet 2003; 28: 147–53PubMedCrossRef Fagiolino P, Wilson F, Samaniego E, et al. In vitro approach to study the influence of the cardiac output distribution on drug concentration. Eur J Drug Metab Pharmacokinet 2003; 28: 147–53PubMedCrossRef
4.
Zurück zum Zitat Levy RH. Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia 1995; 36 Suppl. 5: S8–13PubMedCrossRef Levy RH. Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia 1995; 36 Suppl. 5: S8–13PubMedCrossRef
5.
Zurück zum Zitat Klotz U. The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin Pharmacokinet 2007; 46: 271–9PubMedCrossRef Klotz U. The role of pharmacogenetics in the metabolism of antiepileptic drugs: pharmacokinetic and therapeutic implications. Clin Pharmacokinet 2007; 46: 271–9PubMedCrossRef
6.
Zurück zum Zitat von Richter O, Burk O, Fromm MF, et al. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepa-tocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 2004; 75: 172–83CrossRef von Richter O, Burk O, Fromm MF, et al. Cytochrome P450 3A4 and P-glycoprotein expression in human small intestinal enterocytes and hepa-tocytes: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther 2004; 75: 172–83CrossRef
7.
Zurück zum Zitat Fagiolino P, Vázquez M, Olano I, et al. Systemic and presystemic conversion of carbamazepine to carbamazepine-10,11-epoxide during long term treatment. J Epilepsy Clin Neurophysiol 2006; 12: 13–6CrossRef Fagiolino P, Vázquez M, Olano I, et al. Systemic and presystemic conversion of carbamazepine to carbamazepine-10,11-epoxide during long term treatment. J Epilepsy Clin Neurophysiol 2006; 12: 13–6CrossRef
8.
Zurück zum Zitat Geissmann T, May K, Modess C, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther 2004; 76: 192–200CrossRef Geissmann T, May K, Modess C, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther 2004; 76: 192–200CrossRef
9.
Zurück zum Zitat Couture L, Nash JA, Turgeon J. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol Rev 2006; 58: 244–58PubMedCrossRef Couture L, Nash JA, Turgeon J. The ATP-binding cassette transporters and their implication in drug disposition: a special look at the heart. Pharmacol Rev 2006; 58: 244–58PubMedCrossRef
10.
Zurück zum Zitat Potschka H, Fedrowitz M, Löscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 2003; 306: 124–31PubMedCrossRef Potschka H, Fedrowitz M, Löscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 2003; 306: 124–31PubMedCrossRef
11.
Zurück zum Zitat Bernus I, Dickinson RG, Hooper WD, et al. Dose-dependent metabolism of carbamazepine in humans. Epilepsy Res 1996; 24: 163–72PubMedCrossRef Bernus I, Dickinson RG, Hooper WD, et al. Dose-dependent metabolism of carbamazepine in humans. Epilepsy Res 1996; 24: 163–72PubMedCrossRef
12.
Zurück zum Zitat Battino D, Croci D, Rossini A, et al. Serum carbamazepine concentrations in elderly patients: a case-matched pharmacokinetic evaluation based on therapeutic drug monitoring data. Epilepsia 2003; 44: 923–9PubMedCrossRef Battino D, Croci D, Rossini A, et al. Serum carbamazepine concentrations in elderly patients: a case-matched pharmacokinetic evaluation based on therapeutic drug monitoring data. Epilepsia 2003; 44: 923–9PubMedCrossRef
13.
Zurück zum Zitat Eadie MJ, Tyrer JH, Bochner F, et al. The elimination of phenytoin in man. Clin Exp Pharmacol Physiol 1976; 3: 217–24PubMedCrossRef Eadie MJ, Tyrer JH, Bochner F, et al. The elimination of phenytoin in man. Clin Exp Pharmacol Physiol 1976; 3: 217–24PubMedCrossRef
14.
Zurück zum Zitat Cusack BJ, Tesnohlidek DA, Loseke VL, et al. Phenytoin pharmacokinetics in the rabbit: evidence of rapid autoinduction. Res Commun Chem Pathol Pharmacol 1987; 58: 269–72PubMed Cusack BJ, Tesnohlidek DA, Loseke VL, et al. Phenytoin pharmacokinetics in the rabbit: evidence of rapid autoinduction. Res Commun Chem Pathol Pharmacol 1987; 58: 269–72PubMed
15.
Zurück zum Zitat Dickinson RG, Hooper WD, Patterson M, et al. Extent of urinary excretion of p-hydroxyphenytoin in healthy subjects given phenytoin. Ther Drug Monit 1985; 7: 283–9PubMedCrossRef Dickinson RG, Hooper WD, Patterson M, et al. Extent of urinary excretion of p-hydroxyphenytoin in healthy subjects given phenytoin. Ther Drug Monit 1985; 7: 283–9PubMedCrossRef
16.
Zurück zum Zitat Läpple F, von Richter O, Fromm MF, et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics 2003; 13: 565–75PubMedCrossRef Läpple F, von Richter O, Fromm MF, et al. Differential expression and function of CYP2C isoforms in human intestine and liver. Pharmacogenetics 2003; 13: 565–75PubMedCrossRef
17.
Zurück zum Zitat Lombardo L, Pellitteri R, Balazy M, et al. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res 2008; 5: 82–92PubMedCrossRef Lombardo L, Pellitteri R, Balazy M, et al. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res 2008; 5: 82–92PubMedCrossRef
18.
Zurück zum Zitat Alvin J, McHorse T, Hoyumpa A, et al. The effect of liver disease in man on the disposition of phenobarbital. J Pharmacol Exp Ther 1975; 192: 224–35PubMed Alvin J, McHorse T, Hoyumpa A, et al. The effect of liver disease in man on the disposition of phenobarbital. J Pharmacol Exp Ther 1975; 192: 224–35PubMed
19.
Zurück zum Zitat Abramson FP. Autoinduction of phenobarbital elimination in dog. J Pharm Sci 1988; 77: 768–70PubMedCrossRef Abramson FP. Autoinduction of phenobarbital elimination in dog. J Pharm Sci 1988; 77: 768–70PubMedCrossRef
20.
Zurück zum Zitat Browne TR, Evans JE, Szabo GK, et al. Studies with stable isotopes II: phenobarbital pharmacokinetics during monotherapy. J Clin Pharmacol 1985; 25: 51–8PubMed Browne TR, Evans JE, Szabo GK, et al. Studies with stable isotopes II: phenobarbital pharmacokinetics during monotherapy. J Clin Pharmacol 1985; 25: 51–8PubMed
21.
Zurück zum Zitat Wiswanathan CT, Booker HE, Welling PG. Pharmacokinetics of phenobarbital following single and repeated doses. J Clin Pharmacol 1979; 19: 282–9 Wiswanathan CT, Booker HE, Welling PG. Pharmacokinetics of phenobarbital following single and repeated doses. J Clin Pharmacol 1979; 19: 282–9
22.
Zurück zum Zitat Lockard JS, Levy RH, Uhlir V, et al. Interactions of phenytoin and phenobarbital in terms of order and temporal spacing of administration in monkeys. Epilepsia 1976; 17: 481–5PubMedCrossRef Lockard JS, Levy RH, Uhlir V, et al. Interactions of phenytoin and phenobarbital in terms of order and temporal spacing of administration in monkeys. Epilepsia 1976; 17: 481–5PubMedCrossRef
23.
Zurück zum Zitat Launay-Vacher V, Izzedine H, Karie S, et al. Renal tubular drug transporters. Nephron Physiol 2006; 103: 97–106CrossRef Launay-Vacher V, Izzedine H, Karie S, et al. Renal tubular drug transporters. Nephron Physiol 2006; 103: 97–106CrossRef
24.
Zurück zum Zitat Lazarowski A, Czomyj L, Lubieniecki F, et al. Multidrug-resistance (MDR) protein develops refractory epilepsy phenotype: clinical and experimental evidences. Current Drug Ther 2006; 1: 291–309CrossRef Lazarowski A, Czomyj L, Lubieniecki F, et al. Multidrug-resistance (MDR) protein develops refractory epilepsy phenotype: clinical and experimental evidences. Current Drug Ther 2006; 1: 291–309CrossRef
25.
Zurück zum Zitat Maldonado C, Fagiolino P, Vázquez M, et al. Therapeutic carbamazepine (CBZ) and valproic acid (VPA) monitoring in children using saliva as a biologic fluid. J Epilepsy Clin Neurophysiol 2008; 14: 55–8CrossRef Maldonado C, Fagiolino P, Vázquez M, et al. Therapeutic carbamazepine (CBZ) and valproic acid (VPA) monitoring in children using saliva as a biologic fluid. J Epilepsy Clin Neurophysiol 2008; 14: 55–8CrossRef
Metadaten
Titel
Influence of Efflux Transporters on Drug Metabolism
Theoretical Approach for Bioavailability and Clearance Prediction
verfasst von
Professor Pietro Fagiolino
Marta Vázquez
Rosa Eiraldi
Cecilia Maldonado
Alejandro Scaramelli
Publikationsdatum
01.02.2011
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 2/2011
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/11539230-000000000-00000

Weitere Artikel der Ausgabe 2/2011

Clinical Pharmacokinetics 2/2011 Zur Ausgabe