Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 6/2018

12.02.2018 | Original Article

Insulin-resistance in glycogen storage disease type Ia: linking carbohydrates and mitochondria?

verfasst von: Alessandro Rossi, Margherita Ruoppolo, Pietro Formisano, Guglielmo Villani, Lucia Albano, Giovanna Gallo, Daniela Crisci, Augusta Moccia, Giancarlo Parenti, Pietro Strisciuglio, Daniela Melis

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Background

Glycogen storage disease type I (GSDI) is an inborn error of carbohydrate metabolism caused by mutations of either the G6PC gene (GSDIa) or the SLC37A4 gene (GSDIb). GSDIa patients are at higher risk of developing insulin-resistance (IR). Mitochondrial dysfunction has been implicated in the development of IR. Mitochondrial dysfunction can demonstrate abnormalities in plama acylcarnitines (ACs) and urine organic acids (UOA). The aim of the study was to investigate the presence of mitochondrial impairment in GSDI patients and its possible connection with IR.

Methods

Fourteen GSDIa, seven GSDIb patients, 28 and 14 age and sex-matched controls, were enrolled. Plasma ACs, UOA, and surrogate markers of IR (HOMA-IR, QUICKI, ISI, VAI) were measured.

Results

GSDIa patients showed higher short-chain ACs and long-chain ACs levels and increased urinary excretion of lactate, pyruvate, 2-ketoglutarate, 3-methylglutaconate, adipate, suberate, aconitate, ethylmalonate, fumarate, malate, sebacate, 4-octenedioate, 3OH-suberate, and 3-methylglutarate than controls (p < 0.05). GSDIb patients showed higher C0 and C4 levels and increased urinary excretion of lactate, 3-methylglutarate and suberate than controls (p < 0.05). In GSDIa patients C18 levels correlated with insulin serum levels, HOMA-IR, QUICKI, and ISI; long-chain ACs levels correlated with cholesterol, triglycerides, ALT serum levels, and VAI.

Discussion

Increased plasma ACs and abnormal UOA profile suggest mitochondrial impairment in GSDIa. Correlation data suggest a possible connection between mitochondrial impairment and IR. We hypothesized that mitochondrial overload might generate by-products potentially affecting the insulin signaling pathway, leading to IR. On the basis of the available data, the possible pathomechanism for IR in GSDIa is proposed.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aguer C, McCoin CS, Knotts TA, Thrush AB, Ono-Moore K, McPherson R et al (2015) Acylcarnitines: potential implications for skeletal muscle insulin resistance. FASEB J 29(1):336–345CrossRefPubMed Aguer C, McCoin CS, Knotts TA, Thrush AB, Ono-Moore K, McPherson R et al (2015) Acylcarnitines: potential implications for skeletal muscle insulin resistance. FASEB J 29(1):336–345CrossRefPubMed
Zurück zum Zitat Bandsma RH, Smit GP, Kuipers F (2002) Disturbed lipid metabolism in glycogen storage disease type 1. Eur J Pediatr 161(Suppl 1):S65–S69CrossRefPubMed Bandsma RH, Smit GP, Kuipers F (2002) Disturbed lipid metabolism in glycogen storage disease type 1. Eur J Pediatr 161(Suppl 1):S65–S69CrossRefPubMed
Zurück zum Zitat Bhattacharya K (2011) Dietary dilemmas in the management of glycogen storage disease type I. J Inherit Metab Dis 34(3):621–629CrossRefPubMed Bhattacharya K (2011) Dietary dilemmas in the management of glycogen storage disease type I. J Inherit Metab Dis 34(3):621–629CrossRefPubMed
Zurück zum Zitat Bhattacharya K, Mundy H, Lilburn MF, Champion MP, Morley DW, Maillot F (2015) A pilot longitudinal study of the use of waxy maize heat modified starch in the treatment of adults with glycogen storage disease type I: a randomized double-blind cross-over study. Orphanet J Rare Dis 10:18CrossRefPubMedPubMedCentral Bhattacharya K, Mundy H, Lilburn MF, Champion MP, Morley DW, Maillot F (2015) A pilot longitudinal study of the use of waxy maize heat modified starch in the treatment of adults with glycogen storage disease type I: a randomized double-blind cross-over study. Orphanet J Rare Dis 10:18CrossRefPubMedPubMedCentral
Zurück zum Zitat Das AM, Lücke T, Meyer U, Hartmann H, Illsinger S (2010) Glycogen storage disease type 1: impact of medium-chain triglycerides on metabolic control and growth. Ann Nutr Metab 56(3):225–232CrossRefPubMed Das AM, Lücke T, Meyer U, Hartmann H, Illsinger S (2010) Glycogen storage disease type 1: impact of medium-chain triglycerides on metabolic control and growth. Ann Nutr Metab 56(3):225–232CrossRefPubMed
Zurück zum Zitat Derks TG, van Rijn M (2015) Lipids in hepatic glycogen storage diseases: pathophysiology, monitoring of dietary management and future directions. J Inherit Metab Dis 38(3):537–543CrossRefPubMedPubMedCentral Derks TG, van Rijn M (2015) Lipids in hepatic glycogen storage diseases: pathophysiology, monitoring of dietary management and future directions. J Inherit Metab Dis 38(3):537–543CrossRefPubMedPubMedCentral
Zurück zum Zitat Derks TG, Martens DH, Sentner CP, Van Rijn M, de Boer F, Smit GP et al (2013) Dietary treatment of glycogen storage disease type Ia: uncooked cornstarch and/or continuous nocturnal gastric drip-feeding? Mol Genet Metab 109(1):1–2CrossRefPubMed Derks TG, Martens DH, Sentner CP, Van Rijn M, de Boer F, Smit GP et al (2013) Dietary treatment of glycogen storage disease type Ia: uncooked cornstarch and/or continuous nocturnal gastric drip-feeding? Mol Genet Metab 109(1):1–2CrossRefPubMed
Zurück zum Zitat Farah BL, Sinha RA, Wu Y, Shing BK, Lim A, Hirayama M et al (2017) Hepatic mitochondrial dysfunction is a feature of glycogen storage disease type Ia (GSDIa). Sci Rep 7:44408CrossRefPubMedPubMedCentral Farah BL, Sinha RA, Wu Y, Shing BK, Lim A, Hirayama M et al (2017) Hepatic mitochondrial dysfunction is a feature of glycogen storage disease type Ia (GSDIa). Sci Rep 7:44408CrossRefPubMedPubMedCentral
Zurück zum Zitat Jones JG, Garcia P, Barosa C, Delgado TC, Diogo L (2009) Hepatic anaplerotic outflow fluxes are redirected from gluconeogenesis to lactate synthesis in patients with type 1a glycogen storage disease. Metab Eng 11(3):155–162CrossRefPubMed Jones JG, Garcia P, Barosa C, Delgado TC, Diogo L (2009) Hepatic anaplerotic outflow fluxes are redirected from gluconeogenesis to lactate synthesis in patients with type 1a glycogen storage disease. Metab Eng 11(3):155–162CrossRefPubMed
Zurück zum Zitat Jun HS, Weinstein DA, Lee YM, Mansfield BC, Chou JY (2014) Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib. Blood 123(18):2843–2853CrossRefPubMedPubMedCentral Jun HS, Weinstein DA, Lee YM, Mansfield BC, Chou JY (2014) Molecular mechanisms of neutrophil dysfunction in glycogen storage disease type Ib. Blood 123(18):2843–2853CrossRefPubMedPubMedCentral
Zurück zum Zitat Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10):2944–2950CrossRefPubMed Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10):2944–2950CrossRefPubMed
Zurück zum Zitat Kishnani PS, Austin SL, Abdenur JE, Arn P, Bali DS, Boney A et al (2014) Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 16(11):e1CrossRefPubMed Kishnani PS, Austin SL, Abdenur JE, Arn P, Bali DS, Boney A et al (2014) Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 16(11):e1CrossRefPubMed
Zurück zum Zitat Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7(1):45–56CrossRefPubMed Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O et al (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7(1):45–56CrossRefPubMed
Zurück zum Zitat Kumps A, Duez P, Mardens Y (2002) Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem 48(5):708–717PubMed Kumps A, Duez P, Mardens Y (2002) Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem 48(5):708–717PubMed
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419CrossRefPubMed
Zurück zum Zitat McCoin CS, Knotts TA, Adams SH (2015) Acylcarnitines--old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol 11(10):617–625CrossRefPubMedPubMedCentral McCoin CS, Knotts TA, Adams SH (2015) Acylcarnitines--old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol 11(10):617–625CrossRefPubMedPubMedCentral
Zurück zum Zitat Melis D, Rossi A, Pivonello R, Salerno M, Balivo F, Spadarella S et al (2015) Glycogen storage disease type Ia (GSDIa) but not glycogen storage disease type Ib (GSDIb) is associated to an increased risk of metabolic syndrome: possible role of microsomal glucose 6-phosphate accumulation. Orphanet J Rare Dis 10:91CrossRefPubMedPubMedCentral Melis D, Rossi A, Pivonello R, Salerno M, Balivo F, Spadarella S et al (2015) Glycogen storage disease type Ia (GSDIa) but not glycogen storage disease type Ib (GSDIb) is associated to an increased risk of metabolic syndrome: possible role of microsomal glucose 6-phosphate accumulation. Orphanet J Rare Dis 10:91CrossRefPubMedPubMedCentral
Zurück zum Zitat Melis D, Rossi A, Pivonello R, Del Puente A, Pivonello C, Cangemi G et al (2016) Reduced bone mineral density in glycogen storage disease type III: evidence for a possible connection between metabolic imbalance and bone homeostasis. Bone 86:79–85CrossRefPubMed Melis D, Rossi A, Pivonello R, Del Puente A, Pivonello C, Cangemi G et al (2016) Reduced bone mineral density in glycogen storage disease type III: evidence for a possible connection between metabolic imbalance and bone homeostasis. Bone 86:79–85CrossRefPubMed
Zurück zum Zitat Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4(1):R1–R15CrossRefPubMed Montgomery MK, Turner N (2015) Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4(1):R1–R15CrossRefPubMed
Zurück zum Zitat Muniyappa R, Lee S, Chen H, Quon MJ (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 294(1):E15–E26CrossRefPubMed Muniyappa R, Lee S, Chen H, Quon MJ (2008) Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 294(1):E15–E26CrossRefPubMed
Zurück zum Zitat Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9(3):193–205CrossRefPubMed Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9(3):193–205CrossRefPubMed
Zurück zum Zitat Nagasaka H, Hirano K, Ohtake A, Miida T, Takatani T, Murayama K et al (2007) Improvements of hypertriglyceridemia and hyperlacticemia in Japanese children with glycogen storage disease type Ia by medium-chain triglyceride milk. Eur J Pediatr 166(10):1009–1016CrossRefPubMed Nagasaka H, Hirano K, Ohtake A, Miida T, Takatani T, Murayama K et al (2007) Improvements of hypertriglyceridemia and hyperlacticemia in Japanese children with glycogen storage disease type Ia by medium-chain triglyceride milk. Eur J Pediatr 166(10):1009–1016CrossRefPubMed
Zurück zum Zitat Oosterveer MH, Schoonjans K (2014) Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 71(8):1453–1467CrossRefPubMed Oosterveer MH, Schoonjans K (2014) Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci 71(8):1453–1467CrossRefPubMed
Zurück zum Zitat Rajas F, Labrune P, Mithieux G (2013) Glycogen storage disease type 1 and diabetes: learning by comparing and contrasting the two disorders. Diabetes Metab 39(5):377–387CrossRefPubMed Rajas F, Labrune P, Mithieux G (2013) Glycogen storage disease type 1 and diabetes: learning by comparing and contrasting the two disorders. Diabetes Metab 39(5):377–387CrossRefPubMed
Zurück zum Zitat Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP (2002) Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European study on glycogen storage disease type I (ESGSD I). Eur J Pediatr 161(Suppl 1):S20–S34CrossRefPubMed Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP (2002) Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European study on glycogen storage disease type I (ESGSD I). Eur J Pediatr 161(Suppl 1):S20–S34CrossRefPubMed
Zurück zum Zitat Ruoppolo M, Campesi I, Scolamiero E, Pecce R, Caterino M, Cherchi S et al (2014) Serum metabolomic profiles suggest influence of sex and oral contraceptive use. Am J Transl Res 6(5):614–624PubMedPubMedCentral Ruoppolo M, Campesi I, Scolamiero E, Pecce R, Caterino M, Cherchi S et al (2014) Serum metabolomic profiles suggest influence of sex and oral contraceptive use. Am J Transl Res 6(5):614–624PubMedPubMedCentral
Zurück zum Zitat Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Mendez-Lucas A et al (2012) Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 53(6):1080–1092CrossRefPubMedPubMedCentral Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Mendez-Lucas A et al (2012) Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 53(6):1080–1092CrossRefPubMedPubMedCentral
Zurück zum Zitat Schooneman MG, Ten Have GA, van Vlies N, Houten SM, Deutz NE, Soeters MR (2015) Transorgan fluxes in a porcine model reveal a central role for liver in acylcarnitine metabolism. Am J Physiol Endocrinol Metab 309(3):E256–E264CrossRefPubMed Schooneman MG, Ten Have GA, van Vlies N, Houten SM, Deutz NE, Soeters MR (2015) Transorgan fluxes in a porcine model reveal a central role for liver in acylcarnitine metabolism. Am J Physiol Endocrinol Metab 309(3):E256–E264CrossRefPubMed
Zurück zum Zitat Scolamiero E, Cozzolino C, Albano L, Ansalone A, Caterino M, Corbo G et al (2015) Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst 11(6):1525–1535CrossRefPubMed Scolamiero E, Cozzolino C, Albano L, Ansalone A, Caterino M, Corbo G et al (2015) Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst 11(6):1525–1535CrossRefPubMed
Zurück zum Zitat Spaziani S, Imperlini E, Mancini A, Caterino M, Buono P, Orrù S (2014) Insulin-like growth factor 1 receptor signaling induced by supraphysiological doses of IGF-1 in human peripheral blood lymphocytes. Proteomics 14(13–14):1623–1629CrossRefPubMed Spaziani S, Imperlini E, Mancini A, Caterino M, Buono P, Orrù S (2014) Insulin-like growth factor 1 receptor signaling induced by supraphysiological doses of IGF-1 in human peripheral blood lymphocytes. Proteomics 14(13–14):1623–1629CrossRefPubMed
Zurück zum Zitat Villani GR, Gallo G, Scolamiero E, Salvatore F, Ruoppolo M (2017) "Classical organic acidurias": diagnosis and pathogenesis. Clin Exp Med 17(3):305–323CrossRefPubMed Villani GR, Gallo G, Scolamiero E, Salvatore F, Ruoppolo M (2017) "Classical organic acidurias": diagnosis and pathogenesis. Clin Exp Med 17(3):305–323CrossRefPubMed
Zurück zum Zitat Wolfsdorf JI, Plotkin RA, Laffel LM, Crigler JF Jr (1990) Continuous glucose for treatment of patients with type 1 glycogen-storage disease: comparison of the effects of dextrose and uncooked cornstarch on biochemical variables. Am J Clin Nutr 52(6):1043–1050CrossRefPubMed Wolfsdorf JI, Plotkin RA, Laffel LM, Crigler JF Jr (1990) Continuous glucose for treatment of patients with type 1 glycogen-storage disease: comparison of the effects of dextrose and uncooked cornstarch on biochemical variables. Am J Clin Nutr 52(6):1043–1050CrossRefPubMed
Zurück zum Zitat Xu G, Hansen JS, Zhao XJ, Chen S, Hoene M, Wang XL et al (2016) Liver and muscle contribute differently to the plasma Acylcarnitine pool during fasting and exercise in humans. J Clin Endocrinol Metab 101(12):5044–5052CrossRefPubMed Xu G, Hansen JS, Zhao XJ, Chen S, Hoene M, Wang XL et al (2016) Liver and muscle contribute differently to the plasma Acylcarnitine pool during fasting and exercise in humans. J Clin Endocrinol Metab 101(12):5044–5052CrossRefPubMed
Metadaten
Titel
Insulin-resistance in glycogen storage disease type Ia: linking carbohydrates and mitochondria?
verfasst von
Alessandro Rossi
Margherita Ruoppolo
Pietro Formisano
Guglielmo Villani
Lucia Albano
Giovanna Gallo
Daniela Crisci
Augusta Moccia
Giancarlo Parenti
Pietro Strisciuglio
Daniela Melis
Publikationsdatum
12.02.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 6/2018
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-018-0149-4

Weitere Artikel der Ausgabe 6/2018

Journal of Inherited Metabolic Disease 6/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.