Skip to main content
Erschienen in: Clinical and Experimental Medicine 3/2017

09.09.2016 | Review Article

“Classical organic acidurias”: diagnosis and pathogenesis

verfasst von: Guglielmo RD Villani, Giovanna Gallo, Emanuela Scolamiero, Francesco Salvatore, Margherita Ruoppolo

Erschienen in: Clinical and Experimental Medicine | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Organic acidurias are inherited metabolic diseases due to the deficiency of an enzyme or a transport protein involved in one of the several cellular metabolic pathways devoted to the catabolism of amino acids, carbohydrates or lipids. These deficiencies result in abnormal accumulation of organic acids in the body and their abnormal excretion in urine. More than 65 organic acidurias have been described; the incidence varies, individually, from 1 out of 10,000 to >1 out of 1000,000 live births. Collectively, their incidence approximates 1 out of 3000 live births. Among these disorders, methyl malonic aciduria, propionic aciduria, maple syrup urine disease and isovaleric aciduria are sometimes referred to as classical organic acidurias. In this review, we focused on the basic GC–MS-based methodologies employed in the diagnosis of classical organic acidurias and provided updated reference values for the most common involved organic acids. We also attempted to provide the most recent updates on the pathogenetic bases of these diseases.
Literatur
1.
Zurück zum Zitat Scriver R, Beaudet A, Sly ES, Valle D. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001. Scriver R, Beaudet A, Sly ES, Valle D. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw-Hill; 2001.
2.
Zurück zum Zitat Kolker S, Burgard P, Sauer SW, Okun JG. Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36:635–44.PubMedCrossRef Kolker S, Burgard P, Sauer SW, Okun JG. Current concepts in organic acidurias: understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36:635–44.PubMedCrossRef
3.
Zurück zum Zitat Ozand PT, Gascon GG. Organic acidurias: a review. Part 1. J Child Neurol. 1991;6(3):196–219.PubMedCrossRef Ozand PT, Gascon GG. Organic acidurias: a review. Part 1. J Child Neurol. 1991;6(3):196–219.PubMedCrossRef
4.
Zurück zum Zitat Ozand PT, Gascon GG. Organic acidurias: a review. Part 2. J Child Neurol. 1991;6(4):288–303.PubMedCrossRef Ozand PT, Gascon GG. Organic acidurias: a review. Part 2. J Child Neurol. 1991;6(4):288–303.PubMedCrossRef
5.
Zurück zum Zitat Lehotay DC, Clarke JT. Organic acidurias and related abnormalities. Crit Rev Clin Lab Sci. 1995;32:377–429.PubMedCrossRef Lehotay DC, Clarke JT. Organic acidurias and related abnormalities. Crit Rev Clin Lab Sci. 1995;32:377–429.PubMedCrossRef
6.
7.
Zurück zum Zitat Bartlett K, Gompertz D. The specificity of glycine-N-acylase and acylglycine excretion in the organic acidaemias. Biochem Med. 1974;10(1):15–23.PubMedCrossRef Bartlett K, Gompertz D. The specificity of glycine-N-acylase and acylglycine excretion in the organic acidaemias. Biochem Med. 1974;10(1):15–23.PubMedCrossRef
8.
Zurück zum Zitat García A, Barbas C, Aguilar R, Castro M. Capillary electrophoresis for rapid profiling of organic acidurias. Clin Chem. 1998;44(9):1905–11.PubMed García A, Barbas C, Aguilar R, Castro M. Capillary electrophoresis for rapid profiling of organic acidurias. Clin Chem. 1998;44(9):1905–11.PubMed
9.
Zurück zum Zitat Iles RA, Hind AJ, Chalmers RA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin Chem. 1985;31(11):1795–801.PubMed Iles RA, Hind AJ, Chalmers RA. Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias. Clin Chem. 1985;31(11):1795–801.PubMed
10.
Zurück zum Zitat Pitt JJ, Eggington M, Kahler SG. Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem. 2002;48(11):1970–80.PubMed Pitt JJ, Eggington M, Kahler SG. Comprehensive screening of urine samples for inborn errors of metabolism by electrospray tandem mass spectrometry. Clin Chem. 2002;48(11):1970–80.PubMed
11.
Zurück zum Zitat la Marca G, Rizzo C. Analysis of organic acids and acylglycines for the diagnosis of related inborn errors of metabolism by GC- and HPLC-MS. Methods Mol Biol. 2011;708:73–98.PubMedCrossRef la Marca G, Rizzo C. Analysis of organic acids and acylglycines for the diagnosis of related inborn errors of metabolism by GC- and HPLC-MS. Methods Mol Biol. 2011;708:73–98.PubMedCrossRef
12.
Zurück zum Zitat Tanaka K, Hine DG, West-Dull A, Lynn TB. Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem. 1980;26(13):1839–46.PubMed Tanaka K, Hine DG, West-Dull A, Lynn TB. Gas-chromatographic method of analysis for urinary organic acids. I. Retention indices of 155 metabolically important compounds. Clin Chem. 1980;26(13):1839–46.PubMed
13.
Zurück zum Zitat Tanaka K, West-Dull A, Hine DG, Lynn TB, Lowe T. Gas-chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980;26(13):1847–53.PubMed Tanaka K, West-Dull A, Hine DG, Lynn TB, Lowe T. Gas-chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980;26(13):1847–53.PubMed
14.
Zurück zum Zitat Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11(6):1525–35.PubMedCrossRef Scolamiero E, Cozzolino C, Albano L, et al. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11(6):1525–35.PubMedCrossRef
15.
Zurück zum Zitat Scolamiero E, Villani GR, Ingenito L, et al. Maternal vitamin B12 deficiency detected in expanded newborn screening. Clin Biochem. 2014;47(18):312–7.PubMedCrossRef Scolamiero E, Villani GR, Ingenito L, et al. Maternal vitamin B12 deficiency detected in expanded newborn screening. Clin Biochem. 2014;47(18):312–7.PubMedCrossRef
16.
Zurück zum Zitat Catanzano F, Ombrone D, Di Stefano C, et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy: the importance of an integrated diagnostic approach. J Inherit Metab Dis. 2010;33(Suppl 3):S91–4.PubMedCrossRef Catanzano F, Ombrone D, Di Stefano C, et al. The first case of mitochondrial acetoacetyl-CoA thiolase deficiency identified by expanded newborn metabolic screening in Italy: the importance of an integrated diagnostic approach. J Inherit Metab Dis. 2010;33(Suppl 3):S91–4.PubMedCrossRef
17.
Zurück zum Zitat Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):R1–8.PubMedPubMedCentralCrossRef Burrage LC, Nagamani SC, Campeau PM, Lee BH. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum Mol Genet. 2014;23(R1):R1–8.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Manoli I, Venditti CP. Isolated methylmalonic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2005. http://www.ncbi.nlm.nih.gov/books/NBK1231/ The Isolated Methylmalonic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle; Accessed 16 Aug 2005. Manoli I, Venditti CP. Isolated methylmalonic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2005. http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK1231/​ The Isolated Methylmalonic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle; Accessed 16 Aug 2005.
19.
Zurück zum Zitat Watkins D, Rosenblatt DS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet. 2011;157(1):33–44.CrossRef Watkins D, Rosenblatt DS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet C Semin Med Genet. 2011;157(1):33–44.CrossRef
20.
Zurück zum Zitat Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci U S A. 2002;99(24):15554–9.PubMedPubMedCentralCrossRef Dobson CM, Wai T, Leclerc D, et al. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc Natl Acad Sci U S A. 2002;99(24):15554–9.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ. Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr. 1989;148:344–8.PubMedCrossRef Walter JH, Michalski A, Wilson WM, Leonard JV, Barratt TM, Dillon MJ. Chronic renal failure in methylmalonic acidaemia. Eur J Pediatr. 1989;148:344–8.PubMedCrossRef
23.
Zurück zum Zitat Carrozzo R, Verrigni D, Rasmussen M, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39(2):243–52.PubMedCrossRef Carrozzo R, Verrigni D, Rasmussen M, et al. Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients. J Inherit Metab Dis. 2016;39(2):243–52.PubMedCrossRef
24.
Zurück zum Zitat Marcadier JL, Smith AM, Pohl D, et al. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J Rare Dis. 2013;8:98.PubMedPubMedCentralCrossRef Marcadier JL, Smith AM, Pohl D, et al. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J Rare Dis. 2013;8:98.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Quadros EV, Nakayama Y, Sequeira JM. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. Mol Cancer Ther. 2010;9:3033–40.PubMedPubMedCentralCrossRef Quadros EV, Nakayama Y, Sequeira JM. Targeted delivery of saporin toxin by monoclonal antibody to the transcobalamin receptor, TCblR/CD320. Mol Cancer Ther. 2010;9:3033–40.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Coelho D, Kim JC, Miousse IR, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44(10):1152–5.PubMedCrossRef Coelho D, Kim JC, Miousse IR, et al. Mutations in ABCD4 cause a new inborn error of vitamin B12 metabolism. Nat Genet. 2012;44(10):1152–5.PubMedCrossRef
27.
Zurück zum Zitat Sloan JL, Johnston JJ, Manoli I, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nature Genet. 2011;43:883–6.PubMedPubMedCentralCrossRef Sloan JL, Johnston JJ, Manoli I, et al. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria. Nature Genet. 2011;43:883–6.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Cheema-Dhadli S, Leznoff CC, Halperin ML. Effect of 2-Methylcitrate on Citrate Metabolism: implications for the Management of Patients with Propionic acidemia and Methylmalonic aciduria. Pediat Res. 1975;9:905–8.PubMed Cheema-Dhadli S, Leznoff CC, Halperin ML. Effect of 2-Methylcitrate on Citrate Metabolism: implications for the Management of Patients with Propionic acidemia and Methylmalonic aciduria. Pediat Res. 1975;9:905–8.PubMed
29.
Zurück zum Zitat Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis. 2006;29:327–31.PubMedCrossRef Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis. 2006;29:327–31.PubMedCrossRef
30.
Zurück zum Zitat Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis. 2008;31:44–54.PubMedCrossRef Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis. 2008;31:44–54.PubMedCrossRef
31.
Zurück zum Zitat Bicakci Z. Growth retardation, general hypotonia, and loss of acquired neuromotor skills in the infants of mothers with cobalamin deficiency and the possible role of succinyl-CoA and glycine in the pathogenesis. Medicine (Baltimore). 2015;. doi:10.1097/MD.0000000000000584. Bicakci Z. Growth retardation, general hypotonia, and loss of acquired neuromotor skills in the infants of mothers with cobalamin deficiency and the possible role of succinyl-CoA and glycine in the pathogenesis. Medicine (Baltimore). 2015;. doi:10.​1097/​MD.​0000000000000584​.
32.
Zurück zum Zitat De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.PubMedCrossRef De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Pediatr Res. 2009;66(1):91–5.PubMedCrossRef
33.
Zurück zum Zitat Zsengellér ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29:2139–46.PubMedCrossRef Zsengellér ZK, Aljinovic N, Teot LA, et al. Methylmalonic acidemia: a megamitochondrial disorder affecting the kidney. Pediatr Nephrol. 2014;29:2139–46.PubMedCrossRef
34.
Zurück zum Zitat Melo DR, Kowaltowski AJ, Wajner M, Castilho RF. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr. 2011;43:39–46.PubMedCrossRef Melo DR, Kowaltowski AJ, Wajner M, Castilho RF. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr. 2011;43:39–46.PubMedCrossRef
35.
Zurück zum Zitat Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43:31–8.PubMedCrossRef Wajner M, Goodman SI. Disruption of mitochondrial homeostasis in organic acidurias: insights from human and animal studies. J Bioenerg Biomembr. 2011;43:31–8.PubMedCrossRef
36.
Zurück zum Zitat Manoli I, Sysol JR, Li, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A. 2013;110:13552–7.PubMedPubMedCentralCrossRef Manoli I, Sysol JR, Li, et al. Targeting proximal tubule mitochondrial dysfunction attenuates the renal disease of methylmalonic acidemia. Proc Natl Acad Sci U S A. 2013;110:13552–7.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Fernandes CG, Borges C, Seminotti B, et al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31:775–85.PubMedCrossRef Fernandes CG, Borges C, Seminotti B, et al. Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol. 2011;31:775–85.PubMedCrossRef
38.
Zurück zum Zitat Viegas CM, Zanatta Â, Grings M, et al. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res. 2014;48(6):659–69.PubMedCrossRef Viegas CM, Zanatta Â, Grings M, et al. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res. 2014;48(6):659–69.PubMedCrossRef
39.
Zurück zum Zitat Salmi H, Leonard JV, Lapatto R. Patients with organic acidaemias have an altered thiol status. Acta Paediatr. 2012;101:e505–8.PubMedCrossRef Salmi H, Leonard JV, Lapatto R. Patients with organic acidaemias have an altered thiol status. Acta Paediatr. 2012;101:e505–8.PubMedCrossRef
40.
Zurück zum Zitat Furian AF, Fighera MR, Oliveira MS, et al. Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int. 2007;50:164–71.PubMedCrossRef Furian AF, Fighera MR, Oliveira MS, et al. Methylene blue prevents methylmalonate-induced seizures and oxidative damage in rat striatum. Neurochem Int. 2007;50:164–71.PubMedCrossRef
41.
Zurück zum Zitat Ribeiro LR, Fighera MR, Oliveira MS, et al. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci. 2009;27:157–63.PubMedCrossRef Ribeiro LR, Fighera MR, Oliveira MS, et al. Methylmalonate-induced seizures are attenuated in inducible nitric oxide synthase knockout mice. Int J Dev Neurosci. 2009;27:157–63.PubMedCrossRef
42.
Zurück zum Zitat Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP, et al. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology. 2013;218(9):1175–83.PubMedCrossRef Ribeiro LR, Della-Pace ID, de Oliveira Ferreira AP, et al. Chronic administration of methylmalonate on young rats alters neuroinflammatory markers and spatial memory. Immunobiology. 2013;218(9):1175–83.PubMedCrossRef
43.
Zurück zum Zitat Colin-Gonzalez AL, Paz-loyola AL, Serratos IN, et al. The effect of win 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience. 2015;310:578–88.PubMedCrossRef Colin-Gonzalez AL, Paz-loyola AL, Serratos IN, et al. The effect of win 55,212-2 suggests a cannabinoid-sensitive component in the early toxicity induced by organic acids accumulating in glutaric acidemia type I and in related disorders of propionate metabolism in rat brain synaptosomes. Neuroscience. 2015;310:578–88.PubMedCrossRef
44.
Zurück zum Zitat Han L, Wu S, Han F, Gu X. Insights into the molecular mechanisms of methylmalonic acidemia using microarray technology. Int J Clin Exp Med. 2015;8(6):8866–79.PubMedPubMedCentral Han L, Wu S, Han F, Gu X. Insights into the molecular mechanisms of methylmalonic acidemia using microarray technology. Int J Clin Exp Med. 2015;8(6):8866–79.PubMedPubMedCentral
45.
Zurück zum Zitat Li Y, Peng T, Li L, et al. MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci. 2014;36:19–24.PubMedCrossRef Li Y, Peng T, Li L, et al. MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci. 2014;36:19–24.PubMedCrossRef
46.
Zurück zum Zitat De Mattos-Dutra A, De Freitas MS, Schröder N, Zilles AC, Wajner M, Pessoa-Pureur R. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal proteins in the cerebral cortex of rats. Brain Res. 1997;763:221–31.PubMedCrossRef De Mattos-Dutra A, De Freitas MS, Schröder N, Zilles AC, Wajner M, Pessoa-Pureur R. Methylmalonic acid reduces the in vitro phosphorylation of cytoskeletal proteins in the cerebral cortex of rats. Brain Res. 1997;763:221–31.PubMedCrossRef
47.
Zurück zum Zitat Almeida LM, Funchal C, Pelaez PL, et al. Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis. 2003;18(3):207–19.PubMedCrossRef Almeida LM, Funchal C, Pelaez PL, et al. Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis. 2003;18(3):207–19.PubMedCrossRef
48.
Zurück zum Zitat Okun JG, Hörster F, Farkas LM, et al. Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem. 2002;277(17):14674–80.PubMedCrossRef Okun JG, Hörster F, Farkas LM, et al. Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. J Biol Chem. 2002;277(17):14674–80.PubMedCrossRef
49.
Zurück zum Zitat Kolker S, Schwab M, Hörster F, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278(48):47388–93.PubMedCrossRef Kolker S, Schwab M, Hörster F, et al. Methylmalonic acid, a biochemical hallmark of methylmalonic acidurias but no inhibitor of mitochondrial respiratory chain. J Biol Chem. 2003;278(48):47388–93.PubMedCrossRef
50.
Zurück zum Zitat Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D. Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis. 2013;8:4.PubMedPubMedCentralCrossRef Jafari P, Braissant O, Zavadakova P, Henry H, Bonafé L, Ballhausen D. Brain damage in methylmalonic aciduria: 2-methylcitrate induces cerebral ammonium accumulation and apoptosis in 3D organotypic brain cell cultures. Orphanet J Rare Dis. 2013;8:4.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med. 2013;51(3):477–88.PubMedCrossRef Hannibal L, DiBello PM, Jacobsen DW. Proteomics of vitamin B12 processing. Clin Chem Lab Med. 2013;51(3):477–88.PubMedCrossRef
52.
Zurück zum Zitat Caterino M, Pastore A, Strozziero MG, et al. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. Inherit Metab Dis. 2015;38:969–79.CrossRef Caterino M, Pastore A, Strozziero MG, et al. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. Inherit Metab Dis. 2015;38:969–79.CrossRef
53.
Zurück zum Zitat Caterino M, Chandler RJ, Sloan JL, et al. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. Mol BioSyst. 2016;26(2):566–74.CrossRef Caterino M, Chandler RJ, Sloan JL, et al. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. Mol BioSyst. 2016;26(2):566–74.CrossRef
54.
Zurück zum Zitat Carrillo-Carrasco N, Venditti C. Propionic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2012. http://www.ncbi.nlm.nih.gov/books/NBK92946/ Propionic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle. Accessed 17 May 2012. Carrillo-Carrasco N, Venditti C. Propionic Acidemia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2012. http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK92946/​ Propionic Acidemia. GeneReviews® [Internet]. University of Washington, Seattle. Accessed 17 May 2012.
55.
Zurück zum Zitat Lam C, Desviat LR, Perez-Cerdá C, Ugarte M, Barshop BA, Cederbaum S. 45-Year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab. 2011;103(4):338–40.PubMedCrossRef Lam C, Desviat LR, Perez-Cerdá C, Ugarte M, Barshop BA, Cederbaum S. 45-Year-old female with propionic acidemia, renal failure, and premature ovarian failure; late complications of propionic acidemia? Mol Genet Metab. 2011;103(4):338–40.PubMedCrossRef
56.
Zurück zum Zitat Lee TM, Addonizio LJ, Barshop BA, Chung WK. Unusual presentation of propionic acidemia as isolated cardiomyopathy. J Inherit Metab Dis. 2009;32(0.1):S97–101.PubMedPubMedCentralCrossRef Lee TM, Addonizio LJ, Barshop BA, Chung WK. Unusual presentation of propionic acidemia as isolated cardiomyopathy. J Inherit Metab Dis. 2009;32(0.1):S97–101.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48(5):708–17.PubMed Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48(5):708–17.PubMed
58.
Zurück zum Zitat Scholl-Bürgi S, Sass JO, Zschocke J, Karall D. Amino acid metabolism in patients with propionic acidaemia. J Inherit Metab Dis. 2012;35:65–70.PubMedCrossRef Scholl-Bürgi S, Sass JO, Zschocke J, Karall D. Amino acid metabolism in patients with propionic acidaemia. J Inherit Metab Dis. 2012;35:65–70.PubMedCrossRef
59.
Zurück zum Zitat Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem. 2004;271(15):3227–41.PubMedCrossRef Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur J Biochem. 2004;271(15):3227–41.PubMedCrossRef
60.
Zurück zum Zitat Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006;398:107–12.PubMedPubMedCentralCrossRef Schwab MA, Sauer SW, Okun JG, et al. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins. Biochem J. 2006;398:107–12.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.PubMedPubMedCentralCrossRef Coude FX, Sweetman L, Nyhan WL. Inhibition by propionyl-coenzyme A of N-acetylglutamate synthetase in rat liver mitochondria. A possible explanation for hyperammonemia in propionic and methylmalonic acidemia. J Clin Invest. 1979;64(6):1544–51.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Dercksen M, Ijlst L, Duran M, Mienie LJ, van Cruchten A, van der Westhuizen FH, Wanders RJA. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842:2510–6.PubMedCrossRef Dercksen M, Ijlst L, Duran M, Mienie LJ, van Cruchten A, van der Westhuizen FH, Wanders RJA. Inhibition of N-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme A esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842:2510–6.PubMedCrossRef
63.
Zurück zum Zitat Hayasaka K, Metoki K, Satoh T, et al. Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med. 1982;137:329–34.PubMedCrossRef Hayasaka K, Metoki K, Satoh T, et al. Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med. 1982;137:329–34.PubMedCrossRef
64.
Zurück zum Zitat De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Ped Res. 2009;66(1):91–5.CrossRef De Keyzer Y, Valayannopoulos V, Benoist JF, et al. Multiple OXPHOS deficiency in the liver, kidney, heart, and skeletal muscle of patients with methylmalonic aciduria and propionic aciduria. Ped Res. 2009;66(1):91–5.CrossRef
65.
Zurück zum Zitat Fragaki K, Cano A, Benoist JF, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic academia. Mitochondrion. 2011;11:533–6.PubMedCrossRef Fragaki K, Cano A, Benoist JF, et al. Fatal heart failure associated with CoQ10 and multiple OXPHOS deficiency in a child with propionic academia. Mitochondrion. 2011;11:533–6.PubMedCrossRef
66.
Zurück zum Zitat Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion. 2014;17:150–6.PubMedCrossRef Baruteau J, Hargreaves I, Krywawych S, et al. Successful reversal of propionic acidaemia associated cardiomyopathy: evidence for low myocardial coenzyme Q10 status and secondary mitochondrial dysfunction as an underlying pathophysiological mechanism. Mitochondrion. 2014;17:150–6.PubMedCrossRef
67.
Zurück zum Zitat Gallego-Villar L, Perez B, Ugarte M, Desviat LR, Richard E. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun. 2014;452(3):457–61.PubMedCrossRef Gallego-Villar L, Perez B, Ugarte M, Desviat LR, Richard E. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun. 2014;452(3):457–61.PubMedCrossRef
68.
Zurück zum Zitat Pettenuzzo LF, Schuck PF, Fontella F, et al. Ascorbic acid prevents cognitive defects caused by chronic administration of propionic acids to rats in the water maze. Pharmacol Biochem Behav. 2002;73(3):623–9.PubMedCrossRef Pettenuzzo LF, Schuck PF, Fontella F, et al. Ascorbic acid prevents cognitive defects caused by chronic administration of propionic acids to rats in the water maze. Pharmacol Biochem Behav. 2002;73(3):623–9.PubMedCrossRef
69.
Zurück zum Zitat Rigo FK, Pasquetti L, Maneck Malfatti CR, et al. Propionic acid induces convulsions and protein carbonylation in rats. Neurosc Lett. 2006;408:151–4.CrossRef Rigo FK, Pasquetti L, Maneck Malfatti CR, et al. Propionic acid induces convulsions and protein carbonylation in rats. Neurosc Lett. 2006;408:151–4.CrossRef
70.
Zurück zum Zitat El-Ansary A, Abu-Shmais G, Al-Dbass A. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afr J Biotechnol. 2013;12(31):4925–35.CrossRef El-Ansary A, Abu-Shmais G, Al-Dbass A. Neuroprotective effect of creatine against propionic acid toxicity in neuroblastoma SH-SY5Y cells in culture. Afr J Biotechnol. 2013;12(31):4925–35.CrossRef
71.
Zurück zum Zitat de Almeida LMV, Funchal C, Gottfried C, Wajner M, Pessoa-Pureur R. Propionic acid induces cytoskeletal alterations in cultured astrocytes from rat cerebral cortex. Metab Brain Dis. 2006;21:51–62.PubMedCrossRef de Almeida LMV, Funchal C, Gottfried C, Wajner M, Pessoa-Pureur R. Propionic acid induces cytoskeletal alterations in cultured astrocytes from rat cerebral cortex. Metab Brain Dis. 2006;21:51–62.PubMedCrossRef
72.
Zurück zum Zitat Nguyen NHT, Morland C, Gonzalez SV, et al. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic academia. J Neurochem. 2007;101:806–14.PubMedCrossRef Nguyen NHT, Morland C, Gonzalez SV, et al. Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic academia. J Neurochem. 2007;101:806–14.PubMedCrossRef
73.
Zurück zum Zitat Trindade VM, Brusque AM, Raasch JR, et al. Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids. Metab Brain Dis. 2002;17(2):93–102.PubMedCrossRef Trindade VM, Brusque AM, Raasch JR, et al. Ganglioside alterations in the central nervous system of rats chronically injected with methylmalonic and propionic acids. Metab Brain Dis. 2002;17(2):93–102.PubMedCrossRef
74.
Zurück zum Zitat Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypicheterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.PubMedPubMedCentralCrossRef Vockley J, Ensenauer R. Isovaleric acidemia: new aspects of genetic and phenotypicheterogeneity. Am J Med Genet C Semin Med Genet. 2006;142C(2):95–103.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–42.PubMedPubMedCentralCrossRef Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–42.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Tanaka K, Orr JC, Isselbacher KJ. Identification of beta-hydroxyisovaleric acid in the urine of a patient with isovaleric acidemia. Biochim Biophys Acta. 1968;152(3):638–41.PubMedCrossRef Tanaka K, Orr JC, Isselbacher KJ. Identification of beta-hydroxyisovaleric acid in the urine of a patient with isovaleric acidemia. Biochim Biophys Acta. 1968;152(3):638–41.PubMedCrossRef
77.
Zurück zum Zitat Lehnert W, Niederhoff H. 4-hydroxyisovaleric acid: a new metabolite in isovaleric acidemia. Eur J Pediatr. 1981;136(3):281–3.PubMedCrossRef Lehnert W, Niederhoff H. 4-hydroxyisovaleric acid: a new metabolite in isovaleric acidemia. Eur J Pediatr. 1981;136(3):281–3.PubMedCrossRef
78.
Zurück zum Zitat Loots DT, Erasmus E, Mienie LJ. Identification of 19 new metabolites induced by abnormal amino acid conjugation in isovaleric acidemia. Clin Chem. 2005;51(8):1510–2.PubMedCrossRef Loots DT, Erasmus E, Mienie LJ. Identification of 19 new metabolites induced by abnormal amino acid conjugation in isovaleric acidemia. Clin Chem. 2005;51(8):1510–2.PubMedCrossRef
79.
Zurück zum Zitat Rhead WJ, Tanaka K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc Natl Acad Sci USA. 1980;77(1):580–3.PubMedPubMedCentralCrossRef Rhead WJ, Tanaka K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc Natl Acad Sci USA. 1980;77(1):580–3.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Tajima G, Yofune H, BahagiaFebriani AD, Nishimura Y, Ono H, Sakura N. A simple and rapid enzymatic assay for the branched-chain alpha-ketoacid dehydrogenase complex using high-performance liquid chromatography. J Inherit Metab Dis. 2004;27(5):633–9.PubMedCrossRef Tajima G, Yofune H, BahagiaFebriani AD, Nishimura Y, Ono H, Sakura N. A simple and rapid enzymatic assay for the branched-chain alpha-ketoacid dehydrogenase complex using high-performance liquid chromatography. J Inherit Metab Dis. 2004;27(5):633–9.PubMedCrossRef
81.
Zurück zum Zitat Bergen BJ, Stumpf DA, Haas R, Parks JK, Eguren LA. A mechanism of toxicity of isovaleric acid in rat liver mitochondria. Biochem Med. 1982;27(2):154–60.PubMedCrossRef Bergen BJ, Stumpf DA, Haas R, Parks JK, Eguren LA. A mechanism of toxicity of isovaleric acid in rat liver mitochondria. Biochem Med. 1982;27(2):154–60.PubMedCrossRef
82.
Zurück zum Zitat Ribeiro CA, Leipnitz G, Amaral AU, de Bortoli G, Seminotti B, Wajner M. Creatine administration prevents Na+, K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats. Brain Res. 2009;1262:81–8.PubMedCrossRef Ribeiro CA, Leipnitz G, Amaral AU, de Bortoli G, Seminotti B, Wajner M. Creatine administration prevents Na+, K+-ATPase inhibition induced by intracerebroventricular administration of isovaleric acid in cerebral cortex of young rats. Brain Res. 2009;1262:81–8.PubMedCrossRef
83.
Zurück zum Zitat Loots DT. Abnormal tricarboxylic acid cycle metabolites in isovaleric acidaemia. J Inherit Metab Dis. 2009;32:403–11.PubMedCrossRef Loots DT. Abnormal tricarboxylic acid cycle metabolites in isovaleric acidaemia. J Inherit Metab Dis. 2009;32:403–11.PubMedCrossRef
84.
Zurück zum Zitat Solano AF, Leipnitz G, De Bortoli GM, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–15.PubMedCrossRef Solano AF, Leipnitz G, De Bortoli GM, et al. Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res. 2008;42(8):707–15.PubMedCrossRef
85.
Zurück zum Zitat Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2013. http://www.ncbi.nlm.nih.gov/books/NBK1319/ Maple Syrup disease. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle. Accessed 30 Jan 2006. Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K, editors. 2013. http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK1319/​ Maple Syrup disease. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle. Accessed 30 Jan 2006.
86.
Zurück zum Zitat Chuang JL, Wynn RM, Moss CC, et al. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem. 2004;279(17):17792–800.PubMedCrossRef Chuang JL, Wynn RM, Moss CC, et al. Structural and biochemical basis for novel mutations in homozygous Israeli maple syrup urine disease patients: a proposed mechanism for the thiamin-responsive phenotype. J Biol Chem. 2004;279(17):17792–800.PubMedCrossRef
87.
Zurück zum Zitat Szabó A, Kenesei E, Körner A, Miltényi M, Szücs L, Nagy I. Changes in plasma and urinary amino acid levels during diabetic ketoacidosis in children. Diabetes Res Clin Pract. 1991;12(2):91–7.PubMedCrossRef Szabó A, Kenesei E, Körner A, Miltényi M, Szücs L, Nagy I. Changes in plasma and urinary amino acid levels during diabetic ketoacidosis in children. Diabetes Res Clin Pract. 1991;12(2):91–7.PubMedCrossRef
88.
Zurück zum Zitat De Simone R, Vissicchio F, Mingarelli C, et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta. 2013;1832:650–9.PubMedCrossRef De Simone R, Vissicchio F, Mingarelli C, et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim Biophys Acta. 2013;1832:650–9.PubMedCrossRef
89.
Zurück zum Zitat Scaini G, Morais MO, Galant LS, et al. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown. Mol Neurobiol. 2014;50(2):358–67.PubMedCrossRef Scaini G, Morais MO, Galant LS, et al. Coadministration of branched-chain amino acids and lipopolysaccharide causes matrix metalloproteinase activation and blood-brain barrier breakdown. Mol Neurobiol. 2014;50(2):358–67.PubMedCrossRef
90.
Zurück zum Zitat Rosa L, Galant LS, Dall’Igna DM et al. Cerebral oedema, blood-brain barrier breakdown and the decrease in Na+ ,K+-ATPase activity in the cerebral cortex and hippocampus are prevented by dexamethasone in an animal model of maple syrup urine disease. Mol Neurobiol 2015 [Epub ahead of print]. Rosa L, Galant LS, Dall’Igna DM et al. Cerebral oedema, blood-brain barrier breakdown and the decrease in Na+ ,K+-ATPase activity in the cerebral cortex and hippocampus are prevented by dexamethasone in an animal model of maple syrup urine disease. Mol Neurobiol 2015 [Epub ahead of print].
91.
Zurück zum Zitat Mesck CP, Guerreiro G, Donida B, et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. 2015;30:1167–74.CrossRef Mesck CP, Guerreiro G, Donida B, et al. Investigation of inflammatory profile in MSUD patients: benefit of L-carnitine supplementation. Metab Brain Dis. 2015;30:1167–74.CrossRef
92.
Zurück zum Zitat Killian DM, Chinkale PJ. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett. 2001;306(1, 2):1–4.PubMedCrossRef Killian DM, Chinkale PJ. Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett. 2001;306(1, 2):1–4.PubMedCrossRef
93.
Zurück zum Zitat Zinnanti WJ, Lazovic J, Griffin K, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009;132:903–18.PubMedPubMedCentralCrossRef Zinnanti WJ, Lazovic J, Griffin K, et al. Dual mechanism of brain injury and novel treatment strategy in maple syrup urine disease. Brain. 2009;132:903–18.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Yudkoff M, Diakin Y, Nissim I, et al. Brain amino acids requirements and toxicity: the example of leucine. J Nutr. 2005;135(6 Suppl):1531S–8S.PubMed Yudkoff M, Diakin Y, Nissim I, et al. Brain amino acids requirements and toxicity: the example of leucine. J Nutr. 2005;135(6 Suppl):1531S–8S.PubMed
95.
Zurück zum Zitat Tavares RG, Santos CES, Tasca CI, Wajner M, Souza DO, Dutra-Filhoa CS. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci. 2000;181:44–9.PubMedCrossRef Tavares RG, Santos CES, Tasca CI, Wajner M, Souza DO, Dutra-Filhoa CS. Inhibition of glutamate uptake into synaptic vesicles of rat brain by the metabolites accumulating in maple syrup urine disease. J Neurol Sci. 2000;181:44–9.PubMedCrossRef
96.
Zurück zum Zitat Funchal C, Rosa AM, Wajner M, Wofchuk S, Pureur RP. Reduction of glutamate uptake into cerebral cortex of developing rats by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Res. 2004;29(4):747–53.PubMedCrossRef Funchal C, Rosa AM, Wajner M, Wofchuk S, Pureur RP. Reduction of glutamate uptake into cerebral cortex of developing rats by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem Res. 2004;29(4):747–53.PubMedCrossRef
97.
Zurück zum Zitat Coitinho AS, de Mello CF, Lima TTF, de Bastiani J, Fighera MR, Wajner M. Pharmacological evidence that a-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Res. 2001;894:68–73.PubMedCrossRef Coitinho AS, de Mello CF, Lima TTF, de Bastiani J, Fighera MR, Wajner M. Pharmacological evidence that a-ketoisovaleric acid induces convulsions through GABAergic and glutamatergic mechanisms in rats. Brain Res. 2001;894:68–73.PubMedCrossRef
98.
Zurück zum Zitat Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajnera M. α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 2010;1324:75–84.PubMedCrossRef Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Schuck PF, Wajnera M. α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain. Brain Res. 2010;1324:75–84.PubMedCrossRef
99.
Zurück zum Zitat Sgaravatti AM, Rosa RB, Schuck PF, et al. Inhibition of brain energy metabolism by the a-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta. 2003;1639:232–8.PubMedCrossRef Sgaravatti AM, Rosa RB, Schuck PF, et al. Inhibition of brain energy metabolism by the a-keto acids accumulating in maple syrup urine disease. Biochim Biophys Acta. 2003;1639:232–8.PubMedCrossRef
100.
Zurück zum Zitat Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM. Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res. 2003;28(5):675–9.PubMedCrossRef Pilla C, Cardozo RF, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM. Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem Res. 2003;28(5):675–9.PubMedCrossRef
101.
Zurück zum Zitat Stranda JM, Skinnes R, Scheffler K, et al. Genome instability in maple syrup urine disease correlates with impaired mitochondrial biogenesis. Metab Clin Exp. 2014;63:1063–70.CrossRef Stranda JM, Skinnes R, Scheffler K, et al. Genome instability in maple syrup urine disease correlates with impaired mitochondrial biogenesis. Metab Clin Exp. 2014;63:1063–70.CrossRef
102.
Zurück zum Zitat Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR. Cell mol neurological damage in MSUD: the role of oxidative stress. Neurobiology. 2014;34:157–65. Sitta A, Ribas GS, Mescka CP, Barschak AG, Wajner M, Vargas CR. Cell mol neurological damage in MSUD: the role of oxidative stress. Neurobiology. 2014;34:157–65.
103.
Zurück zum Zitat Bridi R, Araldi J, Sgarbi MB, et al. Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci. 2003;21:327–32.PubMedCrossRef Bridi R, Araldi J, Sgarbi MB, et al. Induction of oxidative stress in rat brain by the metabolites accumulating in maple syrup urine disease. Int J Dev Neurosci. 2003;21:327–32.PubMedCrossRef
104.
Zurück zum Zitat Scaini G, Teodorak BP, Jeremias IC, et al. Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res. 2012;231:92–6.PubMedCrossRef Scaini G, Teodorak BP, Jeremias IC, et al. Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease. Behav Brain Res. 2012;231:92–6.PubMedCrossRef
105.
Zurück zum Zitat Scaini G, Comim CM, Oliveira GMT, et al. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis. 2013;36:721–30.PubMedCrossRef Scaini G, Comim CM, Oliveira GMT, et al. Chronic administration of branched-chain amino acids impairs spatial memory and increases brain-derived neurotrophic factor in a rat model. J Inherit Metab Dis. 2013;36:721–30.PubMedCrossRef
106.
Zurück zum Zitat Wisniewski MSW, Carvalho-Silva M, Gomes LM, et al. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis. 2016;31:377–83.PubMedCrossRef Wisniewski MSW, Carvalho-Silva M, Gomes LM, et al. Intracerebroventricular administration of α-ketoisocaproic acid decreases brain-derived neurotrophic factor and nerve growth factor levels in brain of young rats. Metab Brain Dis. 2016;31:377–83.PubMedCrossRef
107.
Zurück zum Zitat Rosa AP, Schirmbeck G, da Rosa TH et al. L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically induced chronic model of MSUD. Mol Neurobiol 2015 [Epub ahead of print]. Rosa AP, Schirmbeck G, da Rosa TH et al. L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically induced chronic model of MSUD. Mol Neurobiol 2015 [Epub ahead of print].
108.
Zurück zum Zitat Barschak AG, Sitta A, Deon M, et al. Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis. 2008;23:71–80.PubMedCrossRef Barschak AG, Sitta A, Deon M, et al. Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis. 2008;23:71–80.PubMedCrossRef
109.
Zurück zum Zitat Mesck CP, Wayhs CAY, Vanzin CS, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013;31:21–4.CrossRef Mesck CP, Wayhs CAY, Vanzin CS, et al. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect. Int J Dev Neurosci. 2013;31:21–4.CrossRef
110.
Zurück zum Zitat Mesck CP, Guerreiro G, Hammerschmidt T, et al. L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res. 2015;775:43–7.CrossRef Mesck CP, Guerreiro G, Hammerschmidt T, et al. L-Carnitine supplementation decreases DNA damage in treated MSUD patients. Mutat Res. 2015;775:43–7.CrossRef
111.
Zurück zum Zitat Guerreiro G, Mescka CP, Sitta A, et al. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the l-carnitine role. Int J Dev Neurosci. 2015;42:10–4.PubMedCrossRef Guerreiro G, Mescka CP, Sitta A, et al. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the l-carnitine role. Int J Dev Neurosci. 2015;42:10–4.PubMedCrossRef
112.
Zurück zum Zitat Jouvet P, Kozma M, Mehmet H. Primary human fibroblasts from a Maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci. 2000;926:116–21.PubMedCrossRef Jouvet P, Kozma M, Mehmet H. Primary human fibroblasts from a Maple syrup urine disease patient undergo apoptosis following exposure to physiological concentrations of branched chain amino acids. Ann N Y Acad Sci. 2000;926:116–21.PubMedCrossRef
113.
Zurück zum Zitat Jouvet P, Roustin P, Taylor DL, et al. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome C release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell. 2000;11(5):1919–32.PubMedPubMedCentralCrossRef Jouvet P, Roustin P, Taylor DL, et al. Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome C release: implications for neurological impairment associated with maple syrup urine disease. Mol Biol Cell. 2000;11(5):1919–32.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Funchal C, Bello Pessutto FD, et al. α-Keto-h-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. J Neurol Sci. 2004;217:17–24.PubMedCrossRef Funchal C, Bello Pessutto FD, et al. α-Keto-h-methylvaleric acid increases the in vitro phosphorylation of intermediate filaments in cerebral cortex of young rats through the gabaergic system. J Neurol Sci. 2004;217:17–24.PubMedCrossRef
115.
Zurück zum Zitat Funchal C, Gottfried C, de Almeida LMV, Dos Santos AQ, Wajner M, Pessoa-Pureur R. Morphological alterations and cell death provoked by the branched-chain α-amino acids accumulating in Maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol. 2005;25(5):851–67.PubMedCrossRef Funchal C, Gottfried C, de Almeida LMV, Dos Santos AQ, Wajner M, Pessoa-Pureur R. Morphological alterations and cell death provoked by the branched-chain α-amino acids accumulating in Maple syrup urine disease in astrocytes from rat cerebral cortex. Cell Mol Neurobiol. 2005;25(5):851–67.PubMedCrossRef
116.
Zurück zum Zitat Pessoa-Pureur R, Wajner M. Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: insight from animal studies. J Inherit Metab Dis. 2007;30:664–72.PubMedCrossRef Pessoa-Pureur R, Wajner M. Cytoskeleton as a potential target in the neuropathology of maple syrup urine disease: insight from animal studies. J Inherit Metab Dis. 2007;30:664–72.PubMedCrossRef
117.
Zurück zum Zitat Pessoa-Pureur R, Funchal C, de Lima Pelaez P, et al. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Metab Brain Dis. 2002;17(2):65–75.PubMedCrossRef Pessoa-Pureur R, Funchal C, de Lima Pelaez P, et al. Effect of the branched-chain alpha-ketoacids accumulating in maple syrup urine disease on the high molecular weight neurofilament subunit (NF-H) in rat cerebral cortex. Metab Brain Dis. 2002;17(2):65–75.PubMedCrossRef
118.
Zurück zum Zitat Funchal C, de Lima Pelaez P, Oliveira Loureiro S, et al. α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Develop Brain Res. 2002;139:267–76.CrossRef Funchal C, de Lima Pelaez P, Oliveira Loureiro S, et al. α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Develop Brain Res. 2002;139:267–76.CrossRef
Metadaten
Titel
“Classical organic acidurias”: diagnosis and pathogenesis
verfasst von
Guglielmo RD Villani
Giovanna Gallo
Emanuela Scolamiero
Francesco Salvatore
Margherita Ruoppolo
Publikationsdatum
09.09.2016
Verlag
Springer International Publishing
Erschienen in
Clinical and Experimental Medicine / Ausgabe 3/2017
Print ISSN: 1591-8890
Elektronische ISSN: 1591-9528
DOI
https://doi.org/10.1007/s10238-016-0435-0

Weitere Artikel der Ausgabe 3/2017

Clinical and Experimental Medicine 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.