Skip to main content
Erschienen in: BMC Cancer 1/2019

Open Access 01.12.2019 | Research article

Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue

verfasst von: Rui-Sheng Zhou, En-Xin Zhang, Qin-Feng Sun, Zeng-Jie Ye, Jian-Wei Liu, Dai-Han Zhou, Ying Tang

Erschienen in: BMC Cancer | Ausgabe 1/2019

Abstract

Background

Numerous studies have highlighted that long non-coding RNAs (lncRNAs) can bind to microRNA (miRNA) sites as competing endogenous RNAs (ceRNAs), thereby affecting and regulating the expression of mRNAs and target genes. These lncRNA-associated ceRNAs have been theorized to play a significant role in cancer initiation and progression. However, the roles and functions of the lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of the tongue (SCCT) are still unclear.

Methods

The miRNA, mRNA and lncRNA expression profiles from 138 patients with SCCT were downloaded from The Cancer Genome Atlas database. We identified the differential expression of miRNAs, mRNAs, and lncRNAs using the limma package of R software. We used the clusterProfiler package for GO and KEGG pathway annotations. The survival package was used to estimate survival analysis according to the Kaplan-Meier curve. Finally, the GDCRNATools package was used to construct the lncRNA-miRNA-mRNA ceRNA network.

Results

In total, 1943 SCCT-specific mRNAs, 107 lncRNAs and 100 miRNAs were explored. Ten mRNAs (CSRP2, CKS2, ADGRG6, MB21D1, GMNN, RIPOR3, RAD51, PCLAF, ORC1, NAGS), 9 lncRNAs (LINC02560, HOXC13 − AS, FOXD2 − AS1, AC105277.1, AC099850.3, STARD4 − AS1, SLC16A1 − AS1, MIR503HG, MIR100HG) and 8 miRNAs (miR − 654, miR − 503, miR − 450a, miR − 379, miR − 369, miR − 190a, miR − 101, and let−7c) were found to be significantly associated with overall survival (log-rank p < 0.05). Based on the analysis of the lncRNA-miRNA-mRNA ceRNA network, one differentially expressed (DE) lncRNA, five DEmiRNAs, and three DEmRNAs were demonstrated to be related to the pathogenesis of SCCT.

Conclusions

In this study, we described the gene regulation by the lncRNA-miRNA-mRNA ceRNA network in the progression of SCCT. We propose a new lncRNA-associated ceRNA that could help in the diagnosis and treatment of SCCT.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12885-019-5983-8) contains supplementary material, which is available to authorized users.
Rui-Sheng Zhou and En-Xin Zhang contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BP
Biological processes
CC
Cell component
ceRNA
Competing endogenous RNA
DCM
Dilated cardiomyopathy
DEGs
Differentially expressed genes
EMT
Epithelial–mesenchymal transition
GO
Gene Ontology
HNSCC
Head and neck squamous cell carcinoma
HPV
Human papillomavirus
KEGG
Kyoto Encyclopedia of Genes and Genomes
lncRNA
long non-coding RNA
MF
Molecular function
miRNAs
microRNAs
MREs
MicroRNA response elements
ncRNA
non-coding RNA
SCCT
Squamous cell carcinoma of tongue

Background

Head and neck squamous cell carcinoma (HNSCC), which is a disease that causes serious harm to humans, is highly correlated with alcohol consumption, tobacco smoking, and betel nut chewing, and human papillomavirus infection. Squamous cell carcinoma of the tongue (SCCT) is a particular subtype and the main cause of patient mortality and morbidity from HNSCC [1, 2]. In general, the clinical features and treatment strategies for SCCT are similar to those of other HNSCCs, with surgical resection being the primary treatment choice. However, due to late diagnosis of locally advanced malignancies, in many cases of SCCT, surgery is either no longer an option, or should be avoided to maintain the patient’s quality of life [3, 4]. Despite the advances in treatment options, the prognosis of patients with advanced SCCT remains poor [5]. In China, although pingyangmycin and/or cisplatin-based chemotherapies have shown good results, chemotherapy resistance always develops later and causes the therapy to fail [6]. In the past three decades, the 5-year survival rate of patients with SCCT was less than 50% [7]. Therefore, the main goal of our research has been to obtain more knowledge about SCCT cells and to identify novel therapeutic targets for treating the disease.
Long non-coding RNAs (lncRNAs), which do not have protein-coding functions, have recently attracted increasing research attention [8, 9]. These RNAs play a significant role in different cellular processes, particularly in numerous kinds of tumors [1012]. For example, lncRNAs can act as biomarkers for the prognosis and diagnosis of lung adenocarcinoma [13]. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs composed of 19–25 nucleotides [14, 15]. They exert the important function of regulating gene expression, and their regulatory networks are involved in many biological processes [1618]. In 2011, Salmena et al. proposed the competitive endogenous RNA (ceRNA) hypothesis [19], which was subsequently supported by several lines of evidence [2024]. This hypothesis describes the competitive activity of some RNAs (as ceRNAs) for common binding sites of target miRNAs, thereby altering the function of the target miRNA [25]. The core concept is that ceRNAs interact with target miRNAs through miRNA response elements to control the transcriptome on a large scale. In the past several years, lncRNAs and SCCT were confirmed to be closely related. For instance, expression of the lncRNA SNHG6 is significantly increased in tongue cancer, and interference with SNHG6 expression can inhibit the proliferation and epithelial–mesenchymal transition (EMT) of tongue cancer cells [26]. Zhang et al. found that the oncogenic lncRNA KCNQ1OT1 plays a vital role in SCCT growth and chemoresistance, and can be used as a new target for SCCT treatment [27]. However, previous studies had focused on the mechanism of a single lncRNA-miRNA-mRNA axis, and there is currently no reported ceRNA network in SCCT. Consequently, it is extremely important to investigate the role of ceRNA networks in the poor prognosis of SCCT. By further learning how lncRNAs function in the pathogenesis of SCCT, we may find solutions to the most pressing challenges faced in treating this disease.
In this study, the mRNA, miRNA, and lncRNA expression profiles of SCCT and normal tissues were downloaded from The Cancer Genome Atlas (TCGA). In addition, through comprehensive analysis, the ceRNA network for SCCT was builted, which will serve to find new targets and pathways for the development of treatments to prolong patient survival times. Finally, we conducted a prognostic analysis with several important lncRNAs and found a biomarker that could predict survival in patients with SCCT.

Methods

Patients and samples

The SCCT cases data of clinical and RNA expression were collected from TCGA database. The exclusion criteria were including: (i) histological diagnosis was not SCCT; (ii) no complete data (including gender, age, survival status, stage, and survival time) for analysis [28]. 118 SCCT patients were enrolled in the study. The number of patients aged < 68 years was 49, 69 patients were ≥ 68 years old. 43 patients were female and 75 patients were male. The number of stage I, II, III, IVa and IVb patients were 13, 20, 27, 56 and 2, respectively. The number of patients, who were white, Asian, black or African American and not available, were 106, 5, 5 and 2, respectively. The number of patients, who were hispanic or latino, were 104. 9 patients were not hispanic or latino, and 5 patients were not reported. 46 patients were dead, and 72 patients were alive. SCCT characteristics and clinical data of the patients are showed in Table 1 and Additional file 3: Table S1.
Table 1
118 tongue squamous cell carcinoma patients characteristics and clinical data
Characteristics
N (%)
Age (year) (mean ± SD)
68.66 ± 14.44
< 68
49 (41.53)
≧68
69 (58.47)
Sex
 Male
75 (63.56)
 Female
43 (36.44)
Race
 White
106 (89.83)
 Asian
5 (4.24)
 Black or african american
5 (4.24)
 Not available
2 (1.69)
Ethnicity
 not hispanic or latino
9 (7.63)
 hispanic or latino
104 (88.13)
 not reported
5 (4.24)
Tumor stage
 I
13 (11.02)
 II
20 (16.95)
 III
27 (22.88)
 IVa
56 (47.46)
 IVb
2 (1.69)
Survival status
 Dead
46 (38.98)
 Alive
72 (61.02)

RNA sequence analysis

RNA expression data of SCCT patients were available from TCGA database. The raw reads of lncRNA and mRNA data were post-treated and normalized in R software (Additional file 1: Figure S1). The miRNA expression data from TCGA database were normalized in R software (Additional file 2: Figure S2). The tumor tissue and adjacent non-tumor tissue of SCCT patients were facilitated differential expressions of mRNA, lncRNA, and miRNA. Furthermore, intersection of lncRNA, miRNA and mRNA was selected [13].

Differentially expressed analysis

Compared to the normal group with SCCT, “limma” package in R software was used to identify the differentially expressed mRNAs (DEmRNAs) with thresholds of |fold Change (FC)| > 2.0 and P value < 0.01 and differentially expressed miRNAs with |FC| > 2.5 and P value < 0.01.

Functional enrichment analysis

“ClusterProfiler” package in R software was used for functional enrichment analysis, and GO biological processes and KEGG pathways at the significant level (q-value < 0.01) were employed.

Survival analysis

To determine the prognostic characteristics of DERNAs, combining the clinical data the survival curves of these samples with differentially expressed mRNA, lncRNA and miRNA were plotted by using the “survival” package in R based on Kaplan-Meier curve analysis. P values < 0.05 were regarded as significant.

Construction of lncRNA-miRNA-mRNA ceRNA network

The lncRNA-miRNA-mRNA ceRNA network was based on the theory that lncRNAs can directly interact by invoking miRNA sponges to regulate mRNA activity [29]. “GDCRNATools” (http://​bioconductor.​org/​packages/​devel/​bioc/​html/​GDCRNATools.​html) package in R software were used to establish ceRNA network [30]. The ceRNA network was plotted with Cytoscape v3.6.0 [31]. The plug-in BinGO of Cytoscape is an APP for BF network of the hub genes [32].

Results

Identification of differentially expressed lncRNA, miRNA and mRNA

We explored 1943 SCCT-specific mRNAs (1007 downregulated and 936 upregulated; Table 2 and Fig. 1) and 107 lncRNAs (34 downregulated and 73 upregulated; Fig. 1, Table 2, and Table 3). The differentially expressed genes (DEGs) are shown in Fig. 2a. Additionally, 100 miRNAs (44 upregulated and 56 downregulated; Fig. 2b, and Table 4) were found.
Table 2
Top 20 up-regulated mRNAs and lncRNAs
Top 20 up-regulated mRNAs
mRNA
LogFC
P-Value
FDR
TGFBI
4.315537595
1.17E-25
4.22E-22
PLAU
3.462663797
4.15E-25
9.92E-22
LAMC2
4.237080843
1.28E-23
1.54E-20
HOXC6
4.65525797
1.36E-21
1.15E-18
HOXA1
4.433954775
1.64E-21
1.31E-18
SERPINH1
2.639882646
3.24E-21
2.45E-18
COL4A2
2.81823357
3.44E-20
1.83E-17
HOXC11
5.695015733
4.79E-20
2.46E-17
COL4A1
3.133084242
1.36E-19
6.51E-17
COLGALT1
1.58936638
3.17E-19
1.42E-16
FSCN1
2.073990216
4.00E-19
1.74E-16
COL1A1
4.185143619
5.70E-19
2.27E-16
COL5A1
4.027658252
7.17E-19
2.78E-16
PTK7
2.001886655
8.17E-19
3.01E-16
COL12A1
3.740382035
2.85E-18
9.30E-16
MYO1B
2.125906022
1.10E-17
3.36E-15
HOXC4
4.197008216
1.40E-17
4.18E-15
CD276
2.126335416
2.60E-17
7.18E-15
BMP1
2.44274785
2.87E-17
7.64E-15
PPP1R18
1.435370823
3.51E-17
8.55E-15
Top 20 up-regulated lncRNAs
 lncRNA
LogFC
P-Value
FDR
 AL358334.2
5.609527114
3.12E-24
6.30E-21
 LINC02081
5.861313467
3.51E-24
6.30E-21
 AC114956.2
4.026119266
1.38E-20
8.64E-18
 LINC00941
4.887474201
8.07E-16
1.47E-13
 AC002384.1
5.807235765
1.80E-15
2.90E-13
 ZFPM2-AS1
5.506777453
5.05E-12
3.84E-10
 LINC01615
4.417820628
9.78E-12
6.69E-10
 GSEC
2.402552017
3.38E-11
2.02E-09
 LINC01322
5.896783476
1.57E-10
7.73E-09
 AL024507.2
1.883167255
2.54E-10
1.17E-08
 AL365356.5
3.477166051
6.36E-10
2.58E-08
 FOXD2-AS1
2.111692628
7.75E-10
3.05E-08
 MYOSLID
3.218244344
1.68E-09
5.85E-08
 TM4SF19-AS1
2.540840853
1.80E-08
4.44E-07
 MIR503HG
2.967470865
2.81E-08
6.42E-07
 AC009948.1
1.233483122
2.81E-08
6.42E-07
 AC099850.3
2.086563885
6.07E-08
1.25E-06
 AC012073.1
1.49221094
6.69E-08
1.36E-06
 U62317.2
3.239685972
7.99E-08
1.58E-06
 LINC01116
2.92964907
1.23E-07
2.31E-06
Table 3
Top 20 down-regulated mRNAs and lncRNAs
Top 20 down-regulated mRNAs
mRNA
LogFC
P-Value
FDR
CAB39L
−2.230860951
8.79E-30
1.26E-25
SH3BGRL2
−4.129195634
4.15E-28
2.98E-24
FAM3D
−6.109712255
1.31E-27
6.29E-24
FUT6
−5.441041935
2.63E-25
7.54E-22
GPD1L
−2.833273831
4.33E-24
6.91E-21
CYP4B1
−5.201620597
5.94E-24
8.53E-21
SELENBP1
−3.356944126
6.87E-24
8.97E-21
TLE2
−3.218328165
1.65E-23
1.75E-20
CGNL1
−3.633348282
1.70E-23
1.75E-20
HLF
−3.950815219
2.57E-22
2.47E-19
PAIP2B
−2.325857173
1.31E-21
1.15E-18
FMO2
−4.962551951
4.23E-21
3.04E-18
TF
−5.192763131
9.20E-21
6.23E-18
RORC
−3.561163029
9.54E-21
6.23E-18
DEPTOR
−3.156822796
1.61E-20
9.61E-18
PLIN4
−4.374193766
2.01E-20
1.16E-17
AGFG2
−2.096127174
2.62E-20
1.45E-17
RRAGD
−3.179962858
6.47E-20
3.21E-17
FAM107A
−3.539763631
1.69E-19
7.81E-17
ALDH1A1
−4.321886949
5.20E-19
2.20E-16
Top 20 down-regulated lncRNAs
 lncRNA
LogFC
P-Value
FDR
 ZNF710-AS1
−2.097998239
1.42E-13
1.64E-11
 AC104825.2
−1.895549481
2.81E-12
2.27E-10
 C5orf66
−1.666569905
9.75E-11
5.11E-09
 AL035661.1
−2.362499591
1.75E-10
8.45E-09
 WFDC21P
−2.838242509
4.55E-10
1.94E-08
 AL691432.2
−1.328157969
5.37E-09
1.57E-07
 CBR3-AS1
−1.384547792
1.41E-08
3.61E-07
 DANCR
−1.479846155
1.49E-08
3.78E-07
 LINC00957
− 1.501952779
1.84E-08
4.50E-07
 AC144831.1
−1.8197168
1.92E-08
4.67E-07
 EPB41L4A-AS1
−1.119545231
1.97E-08
4.81E-07
 AC009506.1
−1.117948729
9.68E-08
1.86E-06
 AC068888.1
−1.291110108
3.26E-07
5.29E-06
 ZNF667-AS1
−1.77757381
4.94E-07
7.43E-06
 AL357033.4
−1.625781202
6.24E-07
9.13E-06
 AC023283.1
−1.450946619
8.16E-07
1.14E-05
 AL109976.1
−1.516544927
3.93E-06
4.27E-05
 SPINT1-AS1
−1.334348352
4.73E-06
4.98E-05
 CEBPA-AS1
−1.077762786
1.62E-05
0.000139196
 LINC01133
−2.012971887
2.62E-05
0.000209882
Table 4
Differentially expressed miRNAs (Top 40)
Top 20 up-regulated miRNAs
miRNA
LogFC
P-Value
FDR
hsa-miR-21-5p
1.679798023
7.95E-17
1.87E-14
hsa-miR-615-3p
3.843177883
9.14E-15
8.61E-13
hsa-miR-455-3p
2.783479203
4.93E-14
2.61E-12
hsa-miR-1301-3p
1.837395098
1.08E-13
4.23E-12
hsa-miR-196b-5p
3.706120237
5.20E-12
1.29E-10
hsa-miR-424-3p
2.425887565
8.59E-12
2.02E-10
hsa-miR-877-5p
2.426291524
4.51E-11
8.84E-10
hsa-miR-21-3p
1.51590429
9.61E-11
1.68E-09
hsa-miR-503-5p
3.129677768
1.40E-10
2.27E-09
hsa-miR-2355-5p
1.702296959
1.70E-10
2.51E-09
hsa-miR-2355-3p
1.998917306
6.52E-10
8.53E-09
hsa-miR-450a-5p
1.904455832
1.38E-09
1.71E-08
hsa-miR-424-5p
1.738999807
2.45E-09
2.88E-08
hsa-miR-224-5p
2.165626373
4.47E-09
4.90E-08
hsa-miR-503-3p
2.595299327
5.43E-09
5.82E-08
hsa-miR-671-5p
1.663707163
5.65E-09
5.92E-08
hsa-miR-1307-3p
1.345431238
3.09E-08
2.80E-07
hsa-miR-130b-5p
1.368955234
3.42E-08
3.04E-07
hsa-miR-365a-5p
2.405326455
7.33E-08
5.85E-07
hsa-miR-193b-3p
1.581297442
1.22E-07
9.30E-07
Top 20 down-regulated miRNAs
 miRNA
LogFC
P-Value
FDR
 hsa-miR-101-3p
−2.332600896
1.63E-18
7.69E-16
 hsa-miR-30a-5p
−2.147092552
1.97E-16
3.10E-14
 hsa-miR-375
−5.251608936
2.17E-15
2.55E-13
 hsa-miR-30a-3p
−2.529446797
1.27E-14
9.94E-13
 hsa-miR-99a-5p
−2.931395278
3.94E-14
2.61E-12
 hsa-miR-204-5p
−3.385048334
4.99E-14
2.61E-12
 hsa-miR-136-3p
−2.378717319
7.48E-14
3.52E-12
 hsa-miR-378c
−2.529296096
9.57E-14
4.10E-12
 hsa-miR-100-5p
−1.957154262
2.56E-13
9.26E-12
 hsa-miR-30e-5p
−1.438413193
8.61E-13
2.90E-11
 hsa-miR-29c-3p
−2.528703007
2.32E-12
7.28E-11
 hsa-miR-99a-3p
−2.428873139
2.79E-12
8.20E-11
 hsa-let-7c-5p
−2.56136633
3.70E-12
1.02E-10
 hsa-miR-378a-5p
−1.993443856
9.76E-12
2.19E-10
 hsa-miR-381-3p
−2.957588852
2.68E-11
5.75E-10
 hsa-miR-101-5p
−1.711233075
4.18E-11
8.56E-10
 hsa-miR-139-3p
−2.07771688
5.79E-11
1.09E-09
 hsa-miR-299-5p
−2.309271223
9.31E-11
1.68E-09
 hsa-miR-125b-5p
−1.382091675
1.30E-10
2.18E-09
 hsa-miR-125b-2-3p
−2.491649904
1.50E-10
2.36E-09

GO and pathway analysis of DEGs

GO analysis results showed that changes in biological processes (BP) of DEGs were significantly enriched in extracellular structure organization, extracellular matrix organization, urogenital system development, muscle contraction, collagen metabolic process, mitotic nuclear division, renal system development, collagen catabolic process, sister chromatid segregation, and collagen metabolic process (Fig. 3a). Changes in cell component (CC) of DEGs were mainly enriched in proteinaceous extracellular matrix, endoplasmic reticulum lumen, apical part of cell, contractile fiber, myofibril, contractile fiber part, sarcomere, extracellular matrix component, basement membrane, basal lamina (Fig. 3b). Changes in molecular function (MF) were mainly enriched in actin binding, growth factor binding, coenzyme binding, microtubule binding, iron ion binding, glycosaminoglycan binding, collagen binding, structural constituent of muscle, extracellular matrix structural constituent, platelet−derived growth factor binding (Fig. 3c). KEGG pathway analysis revealed that the DEGs were mainly enriched in focal adhesion, human papillomavirus infection, ECM − receptor interaction, protein digestion and absorption, small cell lung cancer, arginine and proline metabolism, PI3K-Akt signaling pathway, dilated cardiomyopathy (DCM), valine, leucine and isoleucine degradation, cell cycle (Fig. 4).

Survival analysis with the DEGs and DEmRNAs

We studied the association of the DEGs and DEmRNAs with patient’ survival to identify the key genes and mRNAs that were related to the prognosis of patients with SCCT. We identified 10 mRNAs (CSRP2, CKS2, ADGRG6, MB21D1, GMNN, RIPOR3, RAD51, PCLAF, ORC1, NAGS), 9 lncRNAs (LINC02560, HOXC13 − AS, FOXD2 − AS1, AC105277.1, AC099850.3, STARD4 − AS1, SLC16A1 − AS1, MIR503HG, MIR100HG) and 8 miRNAs (miR − 654, miR − 503, miR − 450a, miR − 379, miR − 369, miR − 190a, miR − 101, let−7c) that were significantly differentially expressed in the survival analyses (Fig. 5a-c).

Construction and analysis of the lncRNA-miRNA-mRNA ceRNA network

We built the ceRNA network on the basis of the miRNA, lncRNA, and mRNA the expression profiles in patients with SCCT. In total, 27 miRNA nodes, 53 mRNA nodes, 6 lncRNA nodes, and 152 edges were identified as differentially expressed profiles. The network is showed in Fig. 6. It is well known that lncRNAs and mRNAs have co-expression patterns in ceRNA networks. Thus, we chose a hub lncRNA (degree> 5, Additional file 4: Table S2) and its linked mRNAs and miRNAs in the triple global network and then reconstructed the sub-network. As shown in Fig. 7, the lncRNA KCNQ1OT1-miRNA-mRNA sub-network was composed of 1 lncRNA node, 7 miRNA nodes, 11 mRNA nodes, and 41 edges.

Discussion

SCCT, a major type of HNSCC, is a refractory cancer under current therapeutics [33]. Studies have demonstrated that lncRNAs regulate gene expression through a variety of pathways, contributing to tumorigenesis and tumor metastasis [34, 35]. The ceRNA hypothesis proposes a new regulatory mechanism mediated by lncRNAs that are used as endogenous miRNA sponges [19, 3638]. In this study, we found the genes and mRNAs that were differentially expressed between normal and tumor tissue. Through GO and KEGG analyses, we further analyzed the pathways and functions in which the DEGs are involved. The GO biological processes results suggested that specific genes may be concentrated in several process areas, such as extracellular structures, muscle contraction, and mitotic nuclear division. Some of the annotated pathways have been shown to be associated with cancer in previous studies. PI3K-Akt signaling is involved in cell proliferation and growth as well as down-regulating cell apoptosis [39]. Recent preclinical and clinical studies of highly selective agents that target various regulators of the mammalian cell cycle have demonstrated cell-cycle arrest in models of human cancer [40]. Through survival analysis, we identified 10 mRNAs (CSRP2, CKS2, ADGRG6, MB21D1, GMNN, RIPOR3, RAD51, PCLAF, ORC1, NAGS), 9 lncRNAs (LINC02560, HOXC13 − AS, FOXD2 − AS1, AC105277.1, AC099850.3, STARD4 − AS1, SLC16A1 − AS1, MIR503HG, MIR100HG) and 8 miRNAs (miR − 654, miR − 503, miR − 450a, miR − 379, miR − 369, miR − 190a, miR − 101, let−7c) that were significantly related to the overall survival of patients with SCCT. Next, by using bioinformatics tools, we builted a ceRNA network with SCCT-specific miRNA and lncRNA expression and selected the hub lncRNA KCNQ1OT1 to construct a sub-network.
KCNQ1OT1, also known as KCNQ1 overlapping transcript 1, is an imprinted antisense lncRNA in the KCNQ1 locus [41, 42]. Early studies have shown that KCNQ1OT1 is up-regulated and involved in the tumorigenesis of breast cancer and hepatocellular carcinoma [43, 44]. Zhang et al. found that KCNQ1OT1 could induce SCCT cell growth and inhibit the sensitivity of the tumor to cisplatin [27]. Previous studies have shown that KCNQ1OT1 acts as an oncogene and plays a key role in promoting SCCT cell growth and chemotherapy resistance.

Conclusion

We constructed a SCCT-specific ceRNA network and chose a hub lncRNA for SCCT by bioinformatics analysis. To the best of our knowledge, only a limited number of studies have analyzed lncRNA obtained from large-scale samples. We provide a method for identifying potential lncRNA biomarkers. Furthermore, we found the ceRNA network in SCCT, which should help further our understanding of the mechanism underlying the pathogenesis of this disease.

Acknowledgements

Not applicable.
No ethics approval was required for this work. All utilized public data sets were generated by others who obtained ethical approval.
Not Applicable.

Competing interests

The authors have declared that they have no competing of interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef
2.
Zurück zum Zitat Murphy CT, Galloway TJ, Handorf EA, Egleston BL, Wang LS, Mehra R, Flieder DB, Ridge JA. Survival impact of increasing time to treatment initiation for patients with head and neck Cancer in the United States. J Clin Oncol. 2016;34(2):169–78.PubMedCrossRef Murphy CT, Galloway TJ, Handorf EA, Egleston BL, Wang LS, Mehra R, Flieder DB, Ridge JA. Survival impact of increasing time to treatment initiation for patients with head and neck Cancer in the United States. J Clin Oncol. 2016;34(2):169–78.PubMedCrossRef
3.
Zurück zum Zitat Adelstein DJ, Li Y, Adams GL, Wagner H Jr, Kish JA, Ensley JF, Schuller DE, Forastiere AA. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003;21(1):92–8.PubMedCrossRef Adelstein DJ, Li Y, Adams GL, Wagner H Jr, Kish JA, Ensley JF, Schuller DE, Forastiere AA. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003;21(1):92–8.PubMedCrossRef
4.
Zurück zum Zitat Al-Sarraf M, Pajak TF, Marcial VA, Mowry P, Cooper JS, Stetz J, Ensley JF, Velez-Garcia E. Concurrent radiotherapy and chemotherapy with cisplatin in inoperable squamous cell carcinoma of the head and neck. An RTOG Study. Cancer. 1987;59(2):259–65.PubMedCrossRef Al-Sarraf M, Pajak TF, Marcial VA, Mowry P, Cooper JS, Stetz J, Ensley JF, Velez-Garcia E. Concurrent radiotherapy and chemotherapy with cisplatin in inoperable squamous cell carcinoma of the head and neck. An RTOG Study. Cancer. 1987;59(2):259–65.PubMedCrossRef
5.
6.
Zurück zum Zitat Mascitti M, Orsini G, Tosco V, Monterubbianesi R, Balercia A, Putignano A, Procaccini M, Santarelli A. An overview on current non-invasive diagnostic devices in Oral oncology. Front Physiol. 2018;9:1510.PubMedPubMedCentralCrossRef Mascitti M, Orsini G, Tosco V, Monterubbianesi R, Balercia A, Putignano A, Procaccini M, Santarelli A. An overview on current non-invasive diagnostic devices in Oral oncology. Front Physiol. 2018;9:1510.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Gao L, Wang FQ, Li HM, Yang JG, Ren JG, He KF, Liu B, Zhang W, Zhao YF. CCL2/EGF positive feedback loop between cancer cells and macrophages promotes cell migration and invasion in head and neck squamous cell carcinoma. Oncotarget. 2016;7(52):87037–51.PubMedPubMedCentral Gao L, Wang FQ, Li HM, Yang JG, Ren JG, He KF, Liu B, Zhang W, Zhao YF. CCL2/EGF positive feedback loop between cancer cells and macrophages promotes cell migration and invasion in head and neck squamous cell carcinoma. Oncotarget. 2016;7(52):87037–51.PubMedPubMedCentral
8.
Zurück zum Zitat Mendell JT. Targeting a long noncoding RNA in breast Cancer. N Engl J Med. 2016;374(23):2287–9.PubMedCrossRef Mendell JT. Targeting a long noncoding RNA in breast Cancer. N Engl J Med. 2016;374(23):2287–9.PubMedCrossRef
9.
Zurück zum Zitat Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62.PubMedCrossRef Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62.PubMedCrossRef
12.
Zurück zum Zitat Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 2017;474(24):4219–51.PubMedCrossRef Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 2017;474(24):4219–51.PubMedCrossRef
13.
Zurück zum Zitat Sui J, Li YH, Zhang YQ, Li CY, Shen X, Yao WZ, Peng H, Hong WW, Yin LH, Pu YP, et al. Integrated analysis of long non-coding RNAassociated ceRNA network reveals potential lncRNA biomarkers in human lung adenocarcinoma. Int J Oncol. 2016;49(5):2023–36.PubMedCrossRef Sui J, Li YH, Zhang YQ, Li CY, Shen X, Yao WZ, Peng H, Hong WW, Yin LH, Pu YP, et al. Integrated analysis of long non-coding RNAassociated ceRNA network reveals potential lncRNA biomarkers in human lung adenocarcinoma. Int J Oncol. 2016;49(5):2023–36.PubMedCrossRef
14.
Zurück zum Zitat Wang X, Chen X, Meng Q, Jing H, Lu H, Yang Y, Cai L, Zhao Y. MiR-181b regulates cisplatin chemosensitivity and metastasis by targeting TGFbetaR1/Smad signaling pathway in NSCLC. Sci Rep. 2015;5:17618.PubMedPubMedCentralCrossRef Wang X, Chen X, Meng Q, Jing H, Lu H, Yang Y, Cai L, Zhao Y. MiR-181b regulates cisplatin chemosensitivity and metastasis by targeting TGFbetaR1/Smad signaling pathway in NSCLC. Sci Rep. 2015;5:17618.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Wang X, Yin H, Zhang H, Hu J, Lu H, Li C, Cao M, Yan S, Cai L. NF-kappaB-driven improvement of EHD1 contributes to erlotinib resistance in EGFR-mutant lung cancers. Cell Death Dis. 2018;9(4):418.PubMedPubMedCentralCrossRef Wang X, Yin H, Zhang H, Hu J, Lu H, Li C, Cao M, Yan S, Cai L. NF-kappaB-driven improvement of EHD1 contributes to erlotinib resistance in EGFR-mutant lung cancers. Cell Death Dis. 2018;9(4):418.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene. 2010;29(7):937–48.PubMedCrossRef Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene. 2010;29(7):937–48.PubMedCrossRef
17.
Zurück zum Zitat Gennarino VA, D'Angelo G, Dharmalingam G, Fernandez S, Russolillo G, Sanges R, Mutarelli M, Belcastro V, Ballabio A, Verde P, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 2012;22(6):1163–72.PubMedPubMedCentralCrossRef Gennarino VA, D'Angelo G, Dharmalingam G, Fernandez S, Russolillo G, Sanges R, Mutarelli M, Belcastro V, Ballabio A, Verde P, et al. Identification of microRNA-regulated gene networks by expression analysis of target genes. Genome Res. 2012;22(6):1163–72.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Li L, Wang D, Xue M, Mi X, Liang Y, Wang P. UTR shortening identifies high-risk cancers with targeted dysregulation of the ceRNA network. Sci Rep. 2014;4(3):5406.PubMedPubMedCentral Li L, Wang D, Xue M, Mi X, Liang Y, Wang P. UTR shortening identifies high-risk cancers with targeted dysregulation of the ceRNA network. Sci Rep. 2014;4(3):5406.PubMedPubMedCentral
19.
20.
Zurück zum Zitat Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.PubMedCrossRef Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4(9):721–6.PubMedCrossRef
21.
Zurück zum Zitat Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8.PubMedPubMedCentralCrossRef Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen N, Sun F, Fan Q. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38(16):5366–83.PubMedPubMedCentralCrossRef Wang J, Liu X, Wu H, Ni P, Gu Z, Qiao Y, Chen N, Sun F, Fan Q. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010;38(16):5366–83.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Lee DY, Jeyapalan Z, Fang L, Yang J, Zhang Y, Yee AY, Li M, Du WW, Shatseva T, Yang BB. Expression of versican 3′-untranslated region modulates endogenous microRNA functions. PLoS One. 2010;5(10):e13599.PubMedPubMedCentralCrossRef Lee DY, Jeyapalan Z, Fang L, Yang J, Zhang Y, Yee AY, Li M, Du WW, Shatseva T, Yang BB. Expression of versican 3′-untranslated region modulates endogenous microRNA functions. PLoS One. 2010;5(10):e13599.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2011;39(8):3026–41.PubMedCrossRef Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB. Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res. 2011;39(8):3026–41.PubMedCrossRef
26.
Zurück zum Zitat Zhao Y, Wang J, Ma K. Knockdown of lncRNA SNHG6 inhibites the proliferation and epithelial mesenchymal transition in tongue cancer cells. Xi bao yu fen zi mian yi xue za zhi. 2018;34(9):806–11.PubMed Zhao Y, Wang J, Ma K. Knockdown of lncRNA SNHG6 inhibites the proliferation and epithelial mesenchymal transition in tongue cancer cells. Xi bao yu fen zi mian yi xue za zhi. 2018;34(9):806–11.PubMed
27.
Zurück zum Zitat Zhang S, Ma H, Zhang D, Xie S, Wang W, Li Q, Lin Z, Wang Y. LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via miR-211-5p mediated Ezrin/Fak/Src signaling. Cell Death Dis. 2018;9(7):742.PubMedPubMedCentralCrossRef Zhang S, Ma H, Zhang D, Xie S, Wang W, Li Q, Lin Z, Wang Y. LncRNA KCNQ1OT1 regulates proliferation and cisplatin resistance in tongue cancer via miR-211-5p mediated Ezrin/Fak/Src signaling. Cell Death Dis. 2018;9(7):742.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Yin H, Wang X, Zhang X, Wang Y, Zeng Y, Xiong Y, Li T, Lin R, Zhou Q, Ling H, et al. Integrated analysis of long noncoding RNA associated-competing endogenous RNA as prognostic biomarkers in clear cell renal carcinoma. Cancer Sci. 2018;109(10):3336–49.PubMedPubMedCentralCrossRef Yin H, Wang X, Zhang X, Wang Y, Zeng Y, Xiong Y, Li T, Lin R, Zhou Q, Ling H, et al. Integrated analysis of long noncoding RNA associated-competing endogenous RNA as prognostic biomarkers in clear cell renal carcinoma. Cancer Sci. 2018;109(10):3336–49.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Guo LL, Song CH, Wang P, Dai LP, Zhang JY, Wang KJ. Competing endogenous RNA networks and gastric cancer. World J Gastroenterol. 2015;21(41):11680–7.PubMedPubMedCentralCrossRef Guo LL, Song CH, Wang P, Dai LP, Zhang JY, Wang KJ. Competing endogenous RNA networks and gastric cancer. World J Gastroenterol. 2015;21(41):11680–7.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Li R, Qu H, Wang S, Wei J, Zhang L, Ma R, Lu J, Zhu J, Zhong WD, Jia Z. GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics. 2018;34(14):2515–7.PubMedCrossRef Li R, Qu H, Wang S, Wei J, Zhang L, Ma R, Lu J, Zhu J, Zhong WD, Jia Z. GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA and mRNA data in GDC. Bioinformatics. 2018;34(14):2515–7.PubMedCrossRef
31.
Zurück zum Zitat Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.PubMedCrossRef Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.PubMedCrossRef
32.
Zurück zum Zitat Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.PubMedCrossRef Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.PubMedCrossRef
33.
Zurück zum Zitat Otsuka Y, Sato H, Oikawa T, Onodera Y, Nam JM, Hashimoto A, Fukunaga K, Hatanaka KC, Hatanaka Y, Matsuno Y, et al. High expression of EPB41L5, an integral component of the Arf6-driven mesenchymal program, correlates with poor prognosis of squamous cell carcinoma of the tongue. Cell Commun Signal. 2016;14(1):28.PubMedPubMedCentralCrossRef Otsuka Y, Sato H, Oikawa T, Onodera Y, Nam JM, Hashimoto A, Fukunaga K, Hatanaka KC, Hatanaka Y, Matsuno Y, et al. High expression of EPB41L5, an integral component of the Arf6-driven mesenchymal program, correlates with poor prognosis of squamous cell carcinoma of the tongue. Cell Commun Signal. 2016;14(1):28.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, Zhang Y, Gorospe M, Prasanth SG, Lal A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.PubMedPubMedCentralCrossRef Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, Zhang Y, Gorospe M, Prasanth SG, Lal A, et al. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013;9(3):e1003368.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, Liu Y, Qiu F. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol BioSyst. 2013;9(3):407–11.PubMedCrossRef Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, Liu Y, Qiu F. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol BioSyst. 2013;9(3):407–11.PubMedCrossRef
36.
Zurück zum Zitat Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69.PubMedPubMedCentralCrossRef Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2):358–69.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25(1):69–80.PubMedCrossRef Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013;25(1):69–80.PubMedCrossRef
38.
Zurück zum Zitat Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–12.PubMedCrossRef Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52(1):101–12.PubMedCrossRef
39.
Zurück zum Zitat Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 2015;1855(1):104–21.PubMed Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 2015;1855(1):104–21.PubMed
40.
41.
Zurück zum Zitat Zhang H, Zeitz MJ, Wang H, Niu B, Ge S, Li W, Cui J, Wang G, Qian G, Higgins MJ, et al. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. J Cell Biol. 2014;204(1):61–75.PubMedPubMedCentralCrossRef Zhang H, Zeitz MJ, Wang H, Niu B, Ge S, Li W, Cui J, Wang G, Qian G, Higgins MJ, et al. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. J Cell Biol. 2014;204(1):61–75.PubMedPubMedCentralCrossRef
42.
43.
Zurück zum Zitat Zhang Z, Weaver DL, Olsen D, deKay J, Peng Z, Ashikaga T, Evans MF. Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. J Clin Pathol. 2016;69(1):76–81.PubMedCrossRef Zhang Z, Weaver DL, Olsen D, deKay J, Peng Z, Ashikaga T, Evans MF. Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. J Clin Pathol. 2016;69(1):76–81.PubMedCrossRef
44.
Zurück zum Zitat Wan J, Huang M, Zhao H, Wang C, Zhao X, Jiang X, Bian S, He Y, Gao Y. A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma. DNA Cell Biol. 2013;32(11):628–34.PubMedCrossRef Wan J, Huang M, Zhao H, Wang C, Zhao X, Jiang X, Bian S, He Y, Gao Y. A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma. DNA Cell Biol. 2013;32(11):628–34.PubMedCrossRef
Metadaten
Titel
Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue
verfasst von
Rui-Sheng Zhou
En-Xin Zhang
Qin-Feng Sun
Zeng-Jie Ye
Jian-Wei Liu
Dai-Han Zhou
Ying Tang
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2019
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5983-8

Weitere Artikel der Ausgabe 1/2019

BMC Cancer 1/2019 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.