Skip to main content
Erschienen in: Arthritis Research & Therapy 1/2020

Open Access 01.12.2020 | Research article

Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes

verfasst von: Jing Xu, Congshan Jiang, Yongsong Cai, Yuanxu Guo, Xipeng Wang, Jiaxiang Zhang, Jiawen Xu, Ke Xu, Wenhua Zhu, Si Wang, Fujun Zhang, Manman Geng, Yan Han, Qilan Ning, Peng Xu, Liesu Meng, Shemin Lu

Erschienen in: Arthritis Research & Therapy | Ausgabe 1/2020

Abstract

Objective

The disruption of metabolic events and changes to nutrient and oxygen availability due to sustained inflammation in RA increases the demand of bioenergetic and biosynthetic processes within the damaged tissue. The current study aimed to understand the molecular mechanisms of SLC7A5 (amino acid transporter) in synoviocytes of RA patients.

Methods

Synovial tissues were obtained from OA and RA patients. Fibroblast-like synoviocytes (FLS) were isolated, and SLC7A5 expression was examined by using RT-qPCR, immunofluorescence, and Western blotting. RNAi and antibody blocking treatments were used to knockdown SLC7A5 expression or to block its transporter activities. mTOR activity assay and MMP expression levels were monitored in RA FLS under amino acid deprivation or nutrient-rich conditions.

Results

RA FLS displayed significantly upregulated expression of SLC7A5 compared to OA FLS. Cytokine IL-1β was found to play a crucial role in upregulating SLC7A5 expression via the NF-κB pathway. Intervening SLC7A5 expression with RNAi or blocking its function by monoclonal antibody ameliorated MMP3 and MMP13 protein expression. Conversely, upregulation of SLC7A5 or tryptophan supplementation enhanced mTOR-P70S6K signals which promoted the protein translation of MMP3 and MMP13 in RA FLS.

Conclusion

Activated NF-κB pathway upregulates SLC7A5, which enhances the mTOR-P70S6K activity and MMP3 and MMP13 expression in RA FLS.
Hinweise
Jing Xu and Congshan Jiang are co-first authors.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13075-020-02296-8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CRP
C-reactive protein
ESR
Erythrocyte sedimentation rate
FLS
Fibroblast-like synoviocytes
Kyn
Kynurenine
MMPs
Matrix metalloproteinases
mTORC1
Mechanistic target of rapamycin complex 1
Phe
Phenylalanine
RA
Rheumatoid arthritis
RF
Rheumatoid factor
SLC7A5
Solute carrier family 7 member 5
Trp
Tryptophan

Background

Rheumatoid arthritis (RA) is a chronic autoimmune disease with a global prevalence of 0.24% [1], characterized by synovial hyperplasia and progressive destruction of mainly the small joints. Many cell types, including T cells, B cells, macrophages, and fibroblast-like synoviocytes (FLSs), participate in the complex mechanism of RA pathogenesis. FLSs in the lining of the synovium play a major role and express high levels of inflammatory cytokines that perpetuate inflammation and proteases that degrade the cartilage [2]. Furthermore, RA FLSs are described to present a tumor-like phenotype [3], with increased invasiveness into the extracellular matrix (ECM), which further exacerbates synovial hyperplasia and joint damage [4, 5]. Meanwhile, these quickly proliferated FLS demand high energy, which is well associated with high-level transportation and consumption of glucose and amino acids.
Solute carrier family 7 member 5 (SLC7A5), alias L-type amino acid transporter (LAT1) [6], is a sodium-independent high-affinity amino acid transporter. SLC7A5 together with SLC3A2 mediates cellular uptake of the large neutral amino acids such as phenylalanine, tyrosine, leucine, and tryptophan [7]. The SLC7A5 is mainly distributed in the placenta, testis, bone marrow, and brain, whereas SLC3A2 is expressed ubiquitously in all tissues [8]. Global knockout of Slc7a5 resulted in an embryonic lethal phenotype in mice, and it may be partly due to a deleterious effect upon Slc7a5 transport function during post-implantation embryonic development [9, 10]. The conditional knockout of Slc7a5 showed that Slc7a5 worked as a checkpoint in T cell activation via the mTORC1 complex [11]. Meanwhile, the hypoxia-inducible factor 2α binds to the SLC7A5 proximal promoter and drives its transcription in the WT8 cell line [12]. In the inflamed RA joints, the hypoxic condition becomes gradually severe due to increased metabolic demand of the active cells and due to inadequate oxygen delivery through poor perfusion of the inflamed joint [13]. Recently, an mRNA expression profiling study has documented the elevated levels of SLC7A5 in RA synovial tissue [14].
Different studies have indicated the potential role of SLC7A5 in RA pathogenesis; however, much is not known about its actual function in the inflamed FLS. This study was proposed to explore the potential role of SLC7A5 and understand the underlying molecular mechanism in FLS of RA patients.

Methods

Patients’ samples

Synovial tissues and FLS were derived from patients with RA and OA who underwent surgical knee joint replacement (Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, China). All the patients’ data are summarized in Table 1. All participants gave their written informed consent prior to inclusion in the study. The study was approved by the Medical Ethics Committee of Xi’an Jiaotong University (No. 2016-261 and No.2017-666).
Table 1
Patient characteristics
Clinical data
RA
OA
Number of patients
24
24
Sex
 Female
17
19
 Male
7
5
Age#
56.71 ± 1.673
66.38 ± 1.396
CRP# (mg/L)
29.30 ± 3.615
4.25 ± 1.608
RF# (IU/mL)
92.57 ± 15.07
6.846 ± 0.9816
ESR# (mm/h)
64.83 ± 7.18
15.79 ± 3.774
CRP C-reactive protein, RF rheumatoid factor, ESR erythrocyte sedimentation rate
#Mean ± SEM

Histology and immunofluorescence

For routine histopathological analysis, paraffin-embedded synovial tissue sections from RA and OA patients were deparaffinized and stained with hematoxylin and eosin (H&E). For immunofluorescence staining, 6-μm-thick tissue sections were incubated overnight at 4 °C with the following primary antibodies diluted in PBS: mouse monoclonal antibody against SLC7A5 (1:100, Santa Cruz, sc-374232) and rabbit polyclonal antibody to vimentin (1:100, Bioss, bs-23064R). Next morning, the samples were washed three times in PBS and incubated for 45 min at room temperature with secondary antibodies, i.e., FITC AffiniPure goat anti-mouse IgG (H+L) (1:400, Earthox, E031210-01) and Cy3 AffiniPure goat anti-rabbit IgG (H+L) (1:400, Earthox, E031620-01). 4′,6-Diamidino-2-phenylindole (DAPI) was used to detect the nucleus (1:100,000, Sigma-Aldrich, D9542). Immunofluorescent staining procedure was followed with slight modifications, as previously described [15]. The immunofluorescent images were captured with a fluorescence microscope (Olympus, Japan) and analyzed by the ImageJ software.

Cytokines and inhibitor treatment

Cells were treated with IL-1β (20 ng/mL), TNF-α (20 ng/mL), IFN-γ (20 ng/mL), IL-6 (20 ng/mL), and IL-17A (20 ng/mL) (Genscript, China) for 24 h, and total protein analysis was performed using Western blotting assay.
The samples were incubated with JNK inhibitor SP600125 (10 μM, Selleckchem, s1460), NF-κB inhibitor BAY11-7085 (10 μM, Selleckchem, s7352), or P38 inhibitor SB203580 (10 μM, MEC, HY10256A) for 4 h, followed by the addition of 20 ng/mL IL-1β for 24 h, to stimulate the cells. The expression at the mRNA and protein levels was determined by RT-qPCR and Western blotting, respectively.

Blocking assay of SLC7A5

SLC7A5 antibody (20 μg/mL, a mouse anti-SLC7A5 monoclonal antibody, IgG1, Santa Cruz, USA) was administrated to the FLS, following the procedure as detailed in our previous paper [16]. Briefly, FLSs were seeded in 12-well plates at a density of 4 × 104/mL and incubated with SLC7A5 antibody or isotype-matched IgG1 (CST, #5415, USA) for 24 h. The cells were then treated with IL-1β for 18 h and collected to detect the mRNA and protein levels of MMP3 and MMP13.

Western blotting

Total protein lysates from synovial tissues and cells were extracted by using the RIPA solution (Beyotime, China) with a cocktail of protease and phosphatase inhibitors (Roche). The total protein concentration of each sample was determined by a BCA Protein Assay kit (Thermo Scientific, USA). Subsequently, 20 μg from cell lysates was separated by 6% or 8% SDS-PAGE gels and transferred to the polyvinylidene fluoride membrane (EMD Millipore, Billerica, MA, USA). The membrane was incubated with primary antibodies at 4 °C overnight. The list of primary antibodies is depicted in supplemental Table S5. After washing, the membrane was further incubated with a horseradish peroxidase-conjugated goat anti-rabbit or goat anti-mouse IgG secondary antibody (0.4 μg/mL, Abcam, USA) for 2 h at room temperature. Signal intensity was determined by the Supersignal® West Pico Kit (Thermo Scientific) using the enhanced chemiluminescence detection system (EMD Millipore). The band density was measured by the ImageJ software normalized to β-actin.

RNA isolation and RT-qPCR

Total RNA from the synovial tissues and cells was isolated using the TRI Reagent™ solution (Thermo Scientific, USA) and reverse transcribed to cDNA using the First Strand cDNA Synthesis Kit (Thermo Scientific, USA) according to the manufacturer’s instructions. RT-qPCR was performed by using the iQ5 optical system software (Bio-Rad Laboratories, USA) with Fast Start Universal SYBR Green Master (ROX) (Roche, USA) for relative quantification of the target genes at mRNA level. Gene expression analyses were calculated by 2−ΔΔCt method.

RNAi

Small interfering RNAs (siRNAs) targeting SLC7A5 (si1: 5′-CATTATACAGCGGCCTCTTT-3′, si2: 5′-TAGATCCCAACTTCTCATTT-3′) and the negative control (NC, 5′-GCGACGAUCUGCCUAAGAUTT-3′) were purchased from Oligobio (Beijing, China). Cells were transfected with 75 nmol/L of either SLC7A5 siRNA or NC siRNA using Lipofectamine™ 2000 Transfection Reagent (Thermo Scientific, USA) according to the manufacturer’s guidelines. The cells were collected for RNA or protein isolation 24–48 h post-transfection, where indicated to detect the treatment effects and the signal pathways.

Cytokine profiling assay

RA FLSs were seeded in 6-well plates (2 × 105 cells/mL) and incubated overnight in DMEM medium containing 5% FBS. Subsequently, the cells were transfected with siRNA, and 4 h later, the medium was replaced by containing 0.2% FBS and incubated for 48 h. Supernatants were collected and centrifuged (at 2000 rpm for 10 min at 4 °C), and aliquots were stored at − 80 °C before further analyses.
Cytokine expression in siRNA-treated RA FLS supernatants was detected by using RayBio® C-Series human cytokine antibody array (AAH-CYT-5). Dot ELISA-based membrane coated with 80 human cytokines (listed in supplemental Table S2) was incubated with RA FLS supernatants pooled from 4 donors, transfected with si-SLC7A5 or si-NC for 48 h. The detection and analysis of the cytokine array were performed by RayBiotech Company according to the manufacturer’s instructions. Dot immunoblot signals from the membrane array were captured, and the raw intensity was calculated as shown in supplemental Table S3.

Amino acid deficiency and supplement assay

Lab self-made DMEM were followed by Dulbecco’s modified Eagle’s medium (DME) formulation recipe in the Sigma-Aldrich website. The single amino acid-deficient medium was prepared at the laboratory based on the Dulbecco’s modified Eagle’s medium (DMEM) formulation from Sigma-Aldrich lacking either phenylalanine (Phe) or tryptophan (Trp). For the amino acid supplement assay, additional 1 mM phenylalanine (Phe), tryptophan (Trp), or kynurenine (Kyn) were added into the DMEM medium. The FLSs were cultured in a single amino acid deficiency medium initially for 8 h before the addition of IL-1β into the treatment group medium and incubated for another 16 h. The cells were collected for mTOR activity and MMP expression analyses.

Statistics

Data were expressed as mean ± standard error of mean and SPSS software was used for statistical analyses. One-way ANOVA among the groups and Student’s t test or Mann-Whitney-Wilcoxon test between the two groups were used to determine significant differences according to the distribution of the data (normal distribution was validated using Shapiro-Wilk test). p less than 0.05 was considered statistically significant.

Results

SLC7A5 expression is upregulated in fibroblast-like synoviocytes from RA patients

To investigate the involvement of SLC7A5 in RA pathogenesis, synovial tissues were collected from RA and OA patients. Histological examination revealed that the synovial tissues from RA patients were heavily proliferated and more infiltrated with inflammatory cells (blue arrow), compared with those from OA patients (Fig. 1a). The expression of SLC7A5 at the mRNA level was significantly upregulated in synovial tissues from RA patients as compared to those from OA patients (Fig. 1b). In addition, we observed a significant positive correlation of SLC7A5 expression at the mRNA level with both RF (Fig. 1c) and CRP (Fig. 1d). Likewise, SLC7A5 expression at the protein level was also found significantly upregulated in synovial tissues from RA patients as compared to those from OA patients (Fig. 1e, Supplementary Fig. S1). Immunofluorescence staining of the synovial tissues from RA patients revealed that SLC7A5 was overexpressed and co-localized in vimentin-positive cells (FLS) (Fig. 1f, g).

The upregulation of SLC7A5is mediated by IL-1β via the NF-κB pathway

To scrutinize which molecule is responsible for the upregulation of SLC7A5 in FLS, we focused on proinflammatory cytokines, the chief sponsors of inflammation in RA. Interestingly, we found that both IL-1β and IL-6 could significantly upregulate SLC7A5 expression at the protein level (Fig. 2a). We used IL-1β to activate both the JNK and NF-κB signaling pathways (Fig. 2b) in FLS, either by phosphorylating JNK or promoting IκB degradation. To know the underlying pathway involved in upregulating SLC7A5 expression, the cells were treated with SP600125 (JNK signaling inhibitor) or Bay11-7085 (NF-κB signaling inhibitor) and stimulated by IL-1β. The data revealed that the activated NF-κB signaling played a fundamental role in SLC7A5 upregulation (Fig. 2c, d, Supplementary Fig. S3). We also used SB203580 (P38 pathway inhibitor) in IL-1β-stimulated cells; however, the data showed no involvement of P38 signaling in SLC7A5 upregulation (Fig. 2e).

Upregulated SLC7A5 enhances MMP3 and MMP13 protein expression in FLS

To figure out the function of SLC7A5 as an amino acid transporter in activated FLS, the SLC7A5 monoclonal antibody was used as a blocker. RT-qPCR results showed that there was no change in the MMP3 and MMP13 expression at the mRNA level (Fig. 3a). However, the protein levels of MMP3 and MMP13 were decreased by the SLC7A5 blocker antibody (Fig. 3b, Supplementary Fig. S4A), indicating that the suppression of MMP3 and MMP13 happened only at the protein level.
Two sequences of small interfering RNAs specific to SLC7A5 were synthesized and optimized. siRNA No.2 was found to downregulate the expression of SLC7A5 significantly in FLS 48 h post-transfection both at the protein (Fig. 3c) and mRNA (Fig. 3d) levels. Although the siRNA downregulated the SLC7A5 expression at the mRNA level successfully, there was no change in the mRNA levels of MMP3 and MMP13 (Fig. 3e–g). However, the protein levels of MMP3 and MMP13 were found downregulated by the SLC7A5 siRNA (Fig. 3h, Supplementary Fig. S4B). These results uncovered the involvement of SLC7A5 in regulating MMP3 and MMP13 proteins in RA FLS.
A total of 80 human cytokines were detected (Fig. 4a) in conditioned media of RA FLSs transfected with SLC7A5 siRNA for 48 h (Fig. 3c). Semi-quantitative data showed that the fold change increase in the expression of IL-10, PARC, PLGF, TGFβ2, TGFβ3, and TIMP1 and the fold change decrease in PDGF-BB were beyond ± 1.5 (plotted in Fig. 4b; data shown in supplemental Tables S2, S3 and Supplemental Fig.S2). KEGG pathway analysis predicted that multiple pathways were significantly related to this altered cytokine profiling after SLC7A5 knockdown (supplemental Table S4). Among them, it is of particular interest that these pathways also included inflammatory bowel disease (IBD) and rheumatoid arthritis (Fig. 4c).

Upregulated SLC7A5 activates mTOR-P70S6K signaling and enhances MMP3 and MMP13 expression in FLS

To reveal the mechanism underlying MMP3 and MMP13 regulation at the protein level by SLC7A5, we detected amino acid sensor mTOR and its substrate in synovial tissues and inflamed FLSs. As shown in Fig. 5a, the expression of P70S6K and p-mTOR was significantly upregulated in RA synovial tissues compared with that of OA synovial tissues. IL-1β treatment led to the increased expression of SLC7A5 in FLS accompanied by P70S6K and 4EBP1 phosphorylation (Fig. 5b, Supplementary Fig. S5A). To confirm these results associated with the SLC7A5 role in amino acid sensor activation and signaling pathways involved in the regulation of translation, SLC7A5 was knocked down by RNAi in FLS. We found that phosphorylation of mTOR, P70S6K, and 4EBP1 was significantly intervened by si-SLC7A5 in IL-1β treatment groups (Fig. 5c, Supplementary Fig. S5B). By using mTOR complex 1 (mTORC1) signal inhibitor rapamycin, protein levels of both MMP3 and MMP13 were also decreased significantly (Fig. 5d, Supplementary Fig. S5C). These findings suggest that the overexpressed SLC7A5 in FLS from RA patients has a crucial role in the activation of the mTORC1 pathway and subsequent regulation of the mRNA translation.

Tryptophan stimulates mTOR activity and enhances MMP3 and MMP13 expression in RA FLS

Downregulation of SLC7A5 (either by siRNA or through antibody blocking) led to the decreased expression of MMP3 and MMP13 via inhibition of mTORC1 signaling in IL-1β treated FLS. We speculated the possible role of the amino acid transported via SLC7A5 in regulating MMP3 and MMP13 expression via mTORC1 signaling. To check that, extra amino acids (Phe, Trp, or Trp metabolic product Kyn) were added into the culture medium. As shown in Fig. 6a–f, only MMP13 could be upregulated significantly in the IL-1β treatment group after the addition of extra Trp or Kyn (Supplementary Fig. S6). Meanwhile, the addition of extra Trp or Kyn could active the mTOR complex 1 signaling, as measured by 4EBP1 phosphorylation (Fig. 6d). For further investigations, FLSs were cultured in single amino acid (Phe or Trp)-deficient medium. We observed that the expression levels of both MMP3 and MMP13 were decreased significantly in the IL-1β treatment groups, under Trp deficiency (Fig. 6k, l), along with the reduction of the phosphorylated mTOR, P70S6K, and 4EBP1 (Fig. 6h–j). All these data suggest that the upregulated SLC7A5 may transport more special amino acid like Trp and regulate the MMP3 and MMP13 protein expression.

Discussion

In the present study, we demonstrated that the highly expressed SLC7A5 in the synoviocytes is induced by proinflammatory IL-1β via NF-κB signaling activation. Overexpressed SLC7A5 promotes mTOR-P70S6K signals and enhances the expression of MMP3 and MMP13 at the protein level in RA FLS.
Studies regarding the extent of metabolic changes and the types of metabolites involved may provide us suitable biomarkers for RA diagnosis. Mounting evidence supports the notion that the metabolic changes occurring in the pathogenesis of RA are different from those found in other arthritis diseases [17]. Multiple amino acids such as glycine, leucine, serine, tyrosine, isoleucine, and proline have been reported in the synovial fluid of patients with RA [18]. However, only a few studies are available focusing on the involvement of amino acid transporter in RA pathogenesis. The metabolic changes in joint inflammation are complicated, and many interactions may take place, leading to a complex communication network between different cell types. Therefore, more knowledge is needed to unveil the critical interactions between amino acid transporter and FLS function in the arthritis process. In this study, we established that an amino acid transporter, SLC7A5, is overexpressed in FLS of RA patients, resulting in the upregulation of the MMPs at the protein level, which plays a critical role in maintaining FLS invasive phenotype and degradation of the extracellular matrix. Blocking SLC7A5 activity may slow down the FLS infiltration hence reducing MMP3 and MMP13 expression in RA development.
To understand the mechanism of SLC7A5 upregulation in RA FLS, the FLS inflammatory microenvironment was studied in this study. In RA synovial fluid, a lot of inflammatory mediators are secreted by immune cells. IFN-γ and TNF-α are secreted by activated T cells [19]. IL-17 is produced by Th17 and mast cells [20]. Activated macrophages have been reported to secrete other cytokines like IL-1β, IL-6, and TNF-α [21]. These inflammatory cytokines are well known to accelerate the process of matrix degradation in RA. Hence, we used a series of cytokines to stimulate FLS and observed the behavior of SLC7A5 in vitro. We found that IL-1β-treated cells exhibited upregulated SLC7A5 expression via NF-κB activation. Yoon et al. have recently demonstrated that SLC7A5 expression was upregulated by LPS in RA monocytes [22]. More interestingly, HIF-2α was found binding to the Slc7a5 promoter and increased the Slc7a5 expression in normal liver and lung tissues [12]. Hypoxia is an important micro-environmental characteristic of RA, and hypoxia-inducible factors (HIFs) are key transcriptional factors that are highly expressed in RA synovium and are reported to modulate the expression of mediators that are involved in cellular infiltration of the synovial tissue, cartilage destruction, and bone erosion [23]. These findings suggested the potential role of SLC7A5 in RA pathogenesis.
To investigate the function of overexpressed SLC7A5 in RA, we focused on the amino acid transportability of this molecule. We hypothesized that amino acid transport may modulate the FLS infiltration in RA. Our data shows that siRNA knockdown0 or antibody blocking of SLC7A5 suppressed the protein levels of MMP3 and MMP13 significantly. And these two proteinases are responsible to mediate the cleavage of aggrecan and collagen in damaged cartilage [24]. Raposo et al. found that using the amino acid transport inhibitor 2-(methylamino) isobutyric acid could attenuate the severity of arthritis in diseased animals [25], suggesting that the amino acids and their transporters might be the key factor in RA pathogenesis. As we mentioned before, some studies suggest the synovial infiltration and tumor cell-like behavior of FLS in RA. Likewise, many SLC7A5-related tumor studies have demonstrated a critical role of SLC7A5 in tumor migration and invasion. For example, Janpipatkul et al. showed that the downregulation of the SLC7A5 expression suppressed cholangiocarcinoma cell migration and invasion [26]. Further, SLC7A5 regulated by miR-126-3p exhibited a strong association with cellular migration and metastasis in thyroid cancer cells [27]. All these data support the participation of SLC7A5 in regulating cellular infiltration and invasion, and MMP expression in RA FLS. We observed that antibody blocking of SLC7A5 suppressed the MMP3 and MMP13 expression only at the protein level, and not affected their mRNA levels, suggesting that blocked SLC7A5 might contribute to modulate the amino acid-sensing mechanism. mTOR is a central nutrient sensor that signals a cell to grow and proliferate. One of the important functions of the mTOR complex (mTORC) is to maintain the available amino acid pool by regulating protein translation [28]. Dysregulation of the mTOR pathway leads to aberrant protein translation which manifests into various pathological states [29]. We showed that knocked down by siRNA, SLC7A5 could decrease the protein level of MMP3 and MMP13 via suppressing the phosphorylation of mTOR and P70S6K significantly. MMP3 and MMP13 expression was also decreased significantly when we used rapamycin to inhibit mTORC1 signaling. Ito et al. have shown that knockdown of Raptor (a component of mTORC1), reduced the MMP3 and MMP13 expression in nucleus pulposus cells of the human intervertebral disc treated with IL-1β [30]. Cejka et al. showed that inhibited mTORC1 via sirolimus or everolimus could reduce synovial osteoclast formation and protect against local bone erosions and cartilage loss [31]. Curcumin, another inhibitor of mTOR signaling, was also reported to alleviate rheumatoid arthritis-induced inflammation and synovial hyperplasia by reducing inflammatory mediators like IL-1β, TNF-α, MMP-1, and MMP-3 [32]. SLC7A5 mediates amino acid flux and activates mTORC1 signaling in tumors as well as immune cells [12, 22]. SLC7A5 knockout cancer cell lines showed decreased P70S6K phosphorylation and compromised cell proliferation [33]. Intracellular amino acids induce mTOR phosphorylation which activates its downstream target P70S6K [34]. P70S6K plays important roles in cell growth, proliferation, and differentiation by regulating cell cycle progression and ribosome biogenesis [35, 36]. It phosphorylates multiple components of the translational machinery and related regulators and increases translation by stimulating rRNA and tRNA synthesis [37]. It is reported that SLC7A5 together with SLC3A2 participates in transporting large neutral amino acids such as Phe, tyrosine, or Trp into the cell [38]. As shown in the present study, FLS cultured in a Trp-deficient medium exhibited a decreased expression of MMP13. In contrast, when FLS were cultured in the Trp supplemented medium, the expression of MMP13 was increased. At the same time, the supplemented Trp could activate the mTOR complex 1 signaling. Likewise, Kyn (a metabolite of Trp) was also able to activate mTOR signaling in T cells of SLE patients [39], suggesting that amino acids and their metabolites may also play important roles in regulating autoimmune response. Moreover, the upstream of mTOR signal, Akt activation, could also induce MMP3 and MMP13 expression in the microglia [40]. In the present study, we also found that SLC7A5 siRNA could cause increased IL-10 and TIMP1 and decreased PDGF-BB protein production in RA FLS supernatant. Previously, it was reported that IL-10 works as an anti-inflammatory cytokine, inhibits VEGF [41], and suppresses inflammatory response [42]. The increased Timp1 has been reported to ameliorate cartilage destruction in collagen-induced arthritis in rats [43]. All these findings are in accordance with our hypothesis that the amino acid transporter SLC7A5 takes part in cellular invasion and regulates protein levels of MMP3 and MMP13 via the mTOR signaling pathway in RA FLS. Downregulated or blocked SLC7A5 in FLS could serve as an anti-inflammatory molecule and a potential therapeutic target in arthritis.

Conclusion

The present study highlights the important function of SLC7A5 in FLS from RA patients. IL-1β treatment of the cells causes higher expression of SLC7A5 through the NF-κB pathway. Blocking SLC7A5 activity inhibits MMP3 and MMP13 expression in FLS. Contrarily, overexpressed SLC7A5 enhances the protein production of MMP and MMP13 mediated by the mTOR-P70S6K-translation pathway. The findings provide new insights into the pathogenesis of RA and may pave the way for novel therapeutic strategies for the treatment of the disease.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13075-020-02296-8.

Acknowledgements

We are grateful to Dr. Safdar Hussain for the careful proofreading of our manuscript.
Written informed consent was obtained from all the patients. This study was approved by the Medical Ethics Committee of Xi’an Jiaotong University (No. 2016-261 and No.2017-666).
Not applicable.

Competing interests

Authors declare that they have no competing financial interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.PubMedPubMedCentral Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.PubMedPubMedCentral
2.
Zurück zum Zitat Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233–55.PubMedPubMedCentral Bartok B, Firestein GS. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010;233(1):233–55.PubMedPubMedCentral
3.
Zurück zum Zitat Fassbender HG, Simmling-Annefeld M. The potential aggressiveness of synovial tissue in rheumatoid arthritis. J Pathol. 1983;139(3):399–406.PubMed Fassbender HG, Simmling-Annefeld M. The potential aggressiveness of synovial tissue in rheumatoid arthritis. J Pathol. 1983;139(3):399–406.PubMed
4.
Zurück zum Zitat Li X, Makarov SS. An essential role of NF-κB in the “tumor-like” phenotype of arthritic synoviocytes. Proc Natl Acad Sci. 2006;103(46):17432–7.PubMedPubMedCentral Li X, Makarov SS. An essential role of NF-κB in the “tumor-like” phenotype of arthritic synoviocytes. Proc Natl Acad Sci. 2006;103(46):17432–7.PubMedPubMedCentral
5.
Zurück zum Zitat Zeisel MB, Druet VA, Wachsmann D, Sibilia J. MMP-3 expression and release by rheumatoid arthritis fibroblast-like synoviocytes induced with a bacterial ligand of integrin α5β1. Arthritis Res Ther. 2004;7(1):R118.PubMedPubMedCentral Zeisel MB, Druet VA, Wachsmann D, Sibilia J. MMP-3 expression and release by rheumatoid arthritis fibroblast-like synoviocytes induced with a bacterial ligand of integrin α5β1. Arthritis Res Ther. 2004;7(1):R118.PubMedPubMedCentral
6.
Zurück zum Zitat Galluccio M, Pingitore P, Scalise M, Indiveri C. Cloning, large scale over-expression in E. coli and purification of the components of the human LAT 1 (SLC7A5) amino acid transporter. Protein J. 2013;32(6):442–8.PubMed Galluccio M, Pingitore P, Scalise M, Indiveri C. Cloning, large scale over-expression in E. coli and purification of the components of the human LAT 1 (SLC7A5) amino acid transporter. Protein J. 2013;32(6):442–8.PubMed
7.
Zurück zum Zitat Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998;395(6699):288–91.PubMed Mastroberardino L, Spindler B, Pfeiffer R, Skelly PJ, Loffing J, Shoemaker CB, Verrey F. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature. 1998;395(6699):288–91.PubMed
8.
Zurück zum Zitat Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514(2):291–302.PubMed Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, Cha SH, Matsuo H, Fukushima J, Fukasawa Y, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514(2):291–302.PubMed
9.
Zurück zum Zitat Poncet N, Mitchell FE, Ibrahim AF, McGuire VA, English G, Arthur JS, Shi YB, Taylor PM. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PLoS One. 2014;9(2):e89547.PubMedPubMedCentral Poncet N, Mitchell FE, Ibrahim AF, McGuire VA, English G, Arthur JS, Shi YB, Taylor PM. The catalytic subunit of the system L1 amino acid transporter (slc7a5) facilitates nutrient signalling in mouse skeletal muscle. PLoS One. 2014;9(2):e89547.PubMedPubMedCentral
10.
Zurück zum Zitat Sato Y, Heimeier RA, Li C, Deng C, Shi YB. Extracellular domain of CD98hc is required for early murine development. Cell Biosci. 2011;1(1):7.PubMedPubMedCentral Sato Y, Heimeier RA, Li C, Deng C, Shi YB. Extracellular domain of CD98hc is required for early murine development. Cell Biosci. 2011;1(1):7.PubMedPubMedCentral
11.
Zurück zum Zitat Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. 2013;14(5):500–8.PubMedPubMedCentral Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM, Cantrell DA. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol. 2013;14(5):500–8.PubMedPubMedCentral
12.
Zurück zum Zitat Elorza A, Soro-Arnaiz I, Melendez-Rodriguez F, Rodriguez-Vaello V, Marsboom G, de Carcer G, Acosta-Iborra B, Albacete-Albacete L, Ordonez A, Serrano-Oviedo L, et al. HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol Cell. 2012;48(5):681–91.PubMed Elorza A, Soro-Arnaiz I, Melendez-Rodriguez F, Rodriguez-Vaello V, Marsboom G, de Carcer G, Acosta-Iborra B, Albacete-Albacete L, Ordonez A, Serrano-Oviedo L, et al. HIF2alpha acts as an mTORC1 activator through the amino acid carrier SLC7A5. Mol Cell. 2012;48(5):681–91.PubMed
13.
Zurück zum Zitat Brenchley PE. Angiogenesis in inflammatory joint disease: a target for therapeutic intervention. Clin Exp Immunol. 2000;121(3):426–9.PubMedPubMedCentral Brenchley PE. Angiogenesis in inflammatory joint disease: a target for therapeutic intervention. Clin Exp Immunol. 2000;121(3):426–9.PubMedPubMedCentral
14.
Zurück zum Zitat Yu Z, Lin W, Rui Z, Jihong P. Fibroblast-like synoviocyte migration is enhanced by IL-17-mediated overexpression of L-type amino acid transporter 1 (LAT1) via the mTOR/4E-BP1 pathway. Amino Acids. 2018;50(2):331–40.PubMed Yu Z, Lin W, Rui Z, Jihong P. Fibroblast-like synoviocyte migration is enhanced by IL-17-mediated overexpression of L-type amino acid transporter 1 (LAT1) via the mTOR/4E-BP1 pathway. Amino Acids. 2018;50(2):331–40.PubMed
15.
Zurück zum Zitat Lin L, Taktakishvili O, Talman W. Colocalization of neurokinin-1, N-methyl-D-aspartate, and AMPA receptors on neurons of the rat nucleus tractus solitarii. Neuroscience. 2008;154(2):690–700.PubMed Lin L, Taktakishvili O, Talman W. Colocalization of neurokinin-1, N-methyl-D-aspartate, and AMPA receptors on neurons of the rat nucleus tractus solitarii. Neuroscience. 2008;154(2):690–700.PubMed
16.
Zurück zum Zitat Zhu W, Jiang C, Xu J, Geng M, Wu X, Sun J, Ma J, Holmdahl R, Meng L, Lu S. Pristane primed rat T cells enhance TLR3 expression of fibroblast-like synoviocytes via TNF-α initiated p38 MAPK and NF-κB pathways. Clin Immunol. 2015;156(2):141–53.PubMed Zhu W, Jiang C, Xu J, Geng M, Wu X, Sun J, Ma J, Holmdahl R, Meng L, Lu S. Pristane primed rat T cells enhance TLR3 expression of fibroblast-like synoviocytes via TNF-α initiated p38 MAPK and NF-κB pathways. Clin Immunol. 2015;156(2):141–53.PubMed
17.
Zurück zum Zitat Chimenti MS, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015;6:e1887.PubMedPubMedCentral Chimenti MS, Triggianese P, Conigliaro P, Candi E, Melino G, Perricone R. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015;6:e1887.PubMedPubMedCentral
18.
Zurück zum Zitat Priori R, Scrivo R, Brandt J, Valerio M, Casadei L, Valesini G, Manetti C. Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun Rev. 2013;12(10):1022–30.PubMed Priori R, Scrivo R, Brandt J, Valerio M, Casadei L, Valesini G, Manetti C. Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun Rev. 2013;12(10):1022–30.PubMed
19.
Zurück zum Zitat Su Z, Yang R, Zhang W, Xu L, Zhong Y, Yin Y, Cen J, DeWitt JP, Wei Q. The synergistic interaction between the calcineurin B subunit and IFN-gamma enhances macrophage antitumor activity. Cell Death Dis. 2015;6:e1740.PubMedPubMedCentral Su Z, Yang R, Zhang W, Xu L, Zhong Y, Yin Y, Cen J, DeWitt JP, Wei Q. The synergistic interaction between the calcineurin B subunit and IFN-gamma enhances macrophage antitumor activity. Cell Death Dis. 2015;6:e1740.PubMedPubMedCentral
20.
Zurück zum Zitat Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345–52.PubMedPubMedCentral Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, Ishiyama S, Saito S, Inoue K, Kamatani N, Gillespie MT, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103(9):1345–52.PubMedPubMedCentral
21.
Zurück zum Zitat Zhu W, Xu J, Jiang C, Wang B, Geng M, Wu X, Hussain N, Gao N, Han Y, Li D, et al. Pristane induces autophagy in macrophages, promoting a STAT1-IRF1-TLR3 pathway and arthritis. Clin Immunol. 2017;175:56–68.PubMed Zhu W, Xu J, Jiang C, Wang B, Geng M, Wu X, Hussain N, Gao N, Han Y, Li D, et al. Pristane induces autophagy in macrophages, promoting a STAT1-IRF1-TLR3 pathway and arthritis. Clin Immunol. 2017;175:56–68.PubMed
22.
Zurück zum Zitat Yoon BR, Oh YJ, Kang SW, Lee EB, Lee WW. Role of SLC7A5 in metabolic reprogramming of human monocyte/macrophage immune responses. Front Immunol. 2018;9:53.PubMedPubMedCentral Yoon BR, Oh YJ, Kang SW, Lee EB, Lee WW. Role of SLC7A5 in metabolic reprogramming of human monocyte/macrophage immune responses. Front Immunol. 2018;9:53.PubMedPubMedCentral
23.
Zurück zum Zitat Hua S, Dias TH. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis. Front Pharmacol. 2016;7:184.PubMedPubMedCentral Hua S, Dias TH. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis. Front Pharmacol. 2016;7:184.PubMedPubMedCentral
24.
Zurück zum Zitat Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta. 2012;1824(1):133–45.PubMed Troeberg L, Nagase H. Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta. 2012;1824(1):133–45.PubMed
25.
Zurück zum Zitat Raposo B, Vaartjes D, Ahlqvist E, Nandakumar KS, Holmdahl R. System A amino acid transporters regulate glutamine uptake and attenuate antibody-mediated arthritis. Immunology. 2015;146(4):607–17.PubMedPubMedCentral Raposo B, Vaartjes D, Ahlqvist E, Nandakumar KS, Holmdahl R. System A amino acid transporters regulate glutamine uptake and attenuate antibody-mediated arthritis. Immunology. 2015;146(4):607–17.PubMedPubMedCentral
26.
Zurück zum Zitat Janpipatkul K, Suksen K, Borwornpinyo S, Jearawiriyapaisarn N, Hongeng S, Piyachaturawat P, Chairoungdua A. Downregulation of LAT1 expression suppresses cholangiocarcinoma cell invasion and migration. Cell Signal. 2014;26(8):1668–79.PubMed Janpipatkul K, Suksen K, Borwornpinyo S, Jearawiriyapaisarn N, Hongeng S, Piyachaturawat P, Chairoungdua A. Downregulation of LAT1 expression suppresses cholangiocarcinoma cell invasion and migration. Cell Signal. 2014;26(8):1668–79.PubMed
27.
Zurück zum Zitat Xiong Y, Kotian S, Zeiger MA, Zhang L, Kebebew E. miR-126-3p inhibits thyroid cancer cell growth and metastasis, and is associated with aggressive thyroid cancer. PLoS One. 2015;10(8):e0130496.PubMedPubMedCentral Xiong Y, Kotian S, Zeiger MA, Zhang L, Kebebew E. miR-126-3p inhibits thyroid cancer cell growth and metastasis, and is associated with aggressive thyroid cancer. PLoS One. 2015;10(8):e0130496.PubMedPubMedCentral
28.
Zurück zum Zitat Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273(23):14484–94.PubMed Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem. 1998;273(23):14484–94.PubMed
30.
Zurück zum Zitat Ito M, Yurube T, Kakutani K, Maeno K, Takada T, Terashima Y, Kakiuchi Y, Takeoka Y, Miyazaki S, Kuroda R, et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthr Cartil. 2017;25(12):2134–46. Ito M, Yurube T, Kakutani K, Maeno K, Takada T, Terashima Y, Kakiuchi Y, Takeoka Y, Miyazaki S, Kuroda R, et al. Selective interference of mTORC1/RAPTOR protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism with Akt and autophagy induction. Osteoarthr Cartil. 2017;25(12):2134–46.
31.
Zurück zum Zitat Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, Schett G. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 2010;62(8):2294–302.PubMed Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, Schett G. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. Arthritis Rheum. 2010;62(8):2294–302.PubMed
32.
Zurück zum Zitat Dai Q, Zhou D, Xu L, Song X. Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug Design Dev Ther. 2018;12:4095–105. Dai Q, Zhou D, Xu L, Song X. Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug Design Dev Ther. 2018;12:4095–105.
33.
Zurück zum Zitat Cormerais Y, Giuliano S, LeFloch R, Front B, Durivault J, Tambutte E, Massard PA, de la Ballina LR, Endou H, Wempe MF, et al. Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. Cancer Res. 2016;76(15):4481–92.PubMed Cormerais Y, Giuliano S, LeFloch R, Front B, Durivault J, Tambutte E, Massard PA, de la Ballina LR, Endou H, Wempe MF, et al. Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. Cancer Res. 2016;76(15):4481–92.PubMed
34.
Zurück zum Zitat Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995;270(5):2320–6.PubMed Blommaart EF, Luiken JJ, Blommaart PJ, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem. 1995;270(5):2320–6.PubMed
35.
Zurück zum Zitat Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83.PubMedPubMedCentral Duvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83.PubMedPubMedCentral
36.
Zurück zum Zitat Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO. Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci U S A. 2011;108(47):E1204–13.PubMedPubMedCentral Shin S, Wolgamott L, Yu Y, Blenis J, Yoon SO. Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. Proc Natl Acad Sci U S A. 2011;108(47):E1204–13.PubMedPubMedCentral
37.
Zurück zum Zitat Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14(4):473–80.PubMedPubMedCentral Morita M, Gravel SP, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle. 2015;14(4):473–80.PubMedPubMedCentral
38.
Zurück zum Zitat Friesema EC, Docter R, Moerings EP, Verrey F, Krenning EP, Hennemann G, Visser TJ. Thyroid hormone transport by the heterodimeric human system L amino acid transporter. Endocrinology. 2001;142(10):4339–48.PubMed Friesema EC, Docter R, Moerings EP, Verrey F, Krenning EP, Hennemann G, Visser TJ. Thyroid hormone transport by the heterodimeric human system L amino acid transporter. Endocrinology. 2001;142(10):4339–48.PubMed
39.
Zurück zum Zitat Perl A, Hanczko R, Lai ZW, Oaks Z, Kelly R, Borsuk R, Asara JM, Phillips PE. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics. 2015;11(5):1157–74.PubMedPubMedCentral Perl A, Hanczko R, Lai ZW, Oaks Z, Kelly R, Borsuk R, Asara JM, Phillips PE. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: implications for activation of the mechanistic target of rapamycin. Metabolomics. 2015;11(5):1157–74.PubMedPubMedCentral
40.
Zurück zum Zitat Ito S, Kimura K, Haneda M, Ishida Y, Sawada M, Isobe K. Induction of matrix metalloproteinases (MMP3, MMP12 and MMP13) expression in the microglia by amyloid-beta stimulation via the PI3K/Akt pathway. Exp Gerontol. 2007;42(6):532–7.PubMed Ito S, Kimura K, Haneda M, Ishida Y, Sawada M, Isobe K. Induction of matrix metalloproteinases (MMP3, MMP12 and MMP13) expression in the microglia by amyloid-beta stimulation via the PI3K/Akt pathway. Exp Gerontol. 2007;42(6):532–7.PubMed
41.
Zurück zum Zitat Hong KH, Cho ML, Min SY, Shin YJ, Yoo SA, Choi JJ, Kim WU, Song SW, Cho CS. Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Clin Exp Immunol. 2007;147(3):573–9.PubMedPubMedCentral Hong KH, Cho ML, Min SY, Shin YJ, Yoo SA, Choi JJ, Kim WU, Song SW, Cho CS. Effect of interleukin-4 on vascular endothelial growth factor production in rheumatoid synovial fibroblasts. Clin Exp Immunol. 2007;147(3):573–9.PubMedPubMedCentral
42.
Zurück zum Zitat Broeren MG, de Vries M, Bennink MB, Arntz OJ, van Lent PL, van der Kraan PM, van den Berg WB, van den Hoogen FH, Koenders MI, van de Loo FA. Suppression of the inflammatory response by disease-inducible interleukin-10 gene therapy in a three-dimensional micromass model of the human synovial membrane. Arthritis Res Ther. 2016;18:186.PubMedPubMedCentral Broeren MG, de Vries M, Bennink MB, Arntz OJ, van Lent PL, van der Kraan PM, van den Berg WB, van den Hoogen FH, Koenders MI, van de Loo FA. Suppression of the inflammatory response by disease-inducible interleukin-10 gene therapy in a three-dimensional micromass model of the human synovial membrane. Arthritis Res Ther. 2016;18:186.PubMedPubMedCentral
43.
Zurück zum Zitat Guo J, Zhao W, Cao X, Yang H, Ding J, Ding J, Tan Z, Ma X, Hao C, Wu L, et al. SIRT1 promotes tumor-like invasion of fibroblast-like synoviocytes in rheumatoid arthritis via targeting TIMP1. Oncotarget. 2017;8(51):88965–73.PubMedPubMedCentral Guo J, Zhao W, Cao X, Yang H, Ding J, Ding J, Tan Z, Ma X, Hao C, Wu L, et al. SIRT1 promotes tumor-like invasion of fibroblast-like synoviocytes in rheumatoid arthritis via targeting TIMP1. Oncotarget. 2017;8(51):88965–73.PubMedPubMedCentral
Metadaten
Titel
Intervening upregulated SLC7A5 could mitigate inflammatory mediator by mTOR-P70S6K signal in rheumatoid arthritis synoviocytes
verfasst von
Jing Xu
Congshan Jiang
Yongsong Cai
Yuanxu Guo
Xipeng Wang
Jiaxiang Zhang
Jiawen Xu
Ke Xu
Wenhua Zhu
Si Wang
Fujun Zhang
Manman Geng
Yan Han
Qilan Ning
Peng Xu
Liesu Meng
Shemin Lu
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 1/2020
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-020-02296-8

Weitere Artikel der Ausgabe 1/2020

Arthritis Research & Therapy 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Klimaschutz beginnt bei der Wahl des Inhalators

14.05.2024 Klimawandel Podcast

Auch kleine Entscheidungen im Alltag einer Praxis können einen großen Beitrag zum Klimaschutz leisten. Die neue Leitlinie zur "klimabewussten Verordnung von Inhalativa" geht mit gutem Beispiel voran, denn der Wechsel vom klimaschädlichen Dosieraerosol zum Pulverinhalator spart viele Tonnen CO2. Leitlinienautor PD Dr. Guido Schmiemann erklärt, warum nicht nur die Umwelt, sondern auch Patientinnen und Patienten davon profitieren.

Zeitschrift für Allgemeinmedizin, DEGAM

Typ-2-Diabetes und Depression folgen oft aufeinander

14.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes sind überdurchschnittlich gefährdet, in den nächsten Jahren auch noch eine Depression zu entwickeln – und umgekehrt. Besonders ausgeprägt ist die Wechselbeziehung laut GKV-Daten bei jüngeren Erwachsenen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.