Skip to main content
Erschienen in: Tumor Biology 5/2016

19.11.2015 | Original Article

Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype

verfasst von: Hee-Young Jeon, Jun-Kyum Kim, Seok Won Ham, Se-Yeong Oh, Jaebong Kim, Jae-Bong Park, Jae-Yong Lee, Sung-Chan Kim, Hyunggee Kim

Erschienen in: Tumor Biology | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Glioblastoma multiforme (GBM) is one of the most aggressive and fatal primary brain tumors in humans. The standard therapy for the treatment of GBM is surgical resection, followed by radiotherapy and/or chemotherapy. However, the frequency of tumor recurrence in GBM patients is very high, and the survival rate remains poor. Delineating the mechanisms of GBM recurrence is essential for therapeutic advances. Here, we demonstrate that irradiation rendered 17–20 % of GBM cells dead, but resulted in 60–80 % of GBM cells growth-arrested with increases in senescence markers, such as senescence-associated beta-galactosidase-positive cells, H3K9me3-positive cells, and p53-p21CIP1-positive cells. Moreover, irradiation induced expression of senescence-associated secretory phenotype (SASP) mRNAs and NFκB transcriptional activity in GBM cells. Strikingly, compared to injection of non-irradiated GBM cells into immune-deficient mice, the co-injection of irradiated and non-irradiated GBM cells resulted in faster growth of tumors with the histological features of human GBM. Taken together, our findings suggest that the increases in senescent cells and SASP in GBM cells after irradiation is likely one of main reasons for tumor recurrence in post-radiotherapy GBM patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMed Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefPubMed
3.
Zurück zum Zitat Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res. 2010;16:2443–9.CrossRefPubMedPubMedCentral Grossman SA, Ye X, Piantadosi S, Desideri S, Nabors LB, Rosenfeld M, et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin Cancer Res. 2010;16:2443–9.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Liang BC, Thornton Jr AF, Sandler HM, Greenberg HS. Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg. 1991;75:559–63.CrossRefPubMed Liang BC, Thornton Jr AF, Sandler HM, Greenberg HS. Malignant astrocytomas: focal tumor recurrence after focal external beam radiation therapy. J Neurosurg. 1991;75:559–63.CrossRefPubMed
5.
Zurück zum Zitat Sneed PK, Gutin PH, Larson DA, Malec MK, Phillips TL, Prados MD, et al. Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int J Radiat Oncol Biol Phys. 1994;29:719–27.CrossRefPubMed Sneed PK, Gutin PH, Larson DA, Malec MK, Phillips TL, Prados MD, et al. Patterns of recurrence of glioblastoma multiforme after external irradiation followed by implant boost. Int J Radiat Oncol Biol Phys. 1994;29:719–27.CrossRefPubMed
6.
Zurück zum Zitat Chang JE, Khuntia D, Robins HI, Mehta MP. Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol. 2007;894–902:7–15. Chang JE, Khuntia D, Robins HI, Mehta MP. Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol. 2007;894–902:7–15.
7.
Zurück zum Zitat Tanaka S, Louis DN, Curry WT, Batchelor TT, Dietrich J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat Rev Clin Oncol. 2013;10:14–26.CrossRefPubMed Tanaka S, Louis DN, Curry WT, Batchelor TT, Dietrich J. Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat Rev Clin Oncol. 2013;10:14–26.CrossRefPubMed
8.
Zurück zum Zitat Persano L, Rampazzo E, Basso G, Viola G. Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol. 2013;85:612–22.CrossRefPubMed Persano L, Rampazzo E, Basso G, Viola G. Glioblastoma cancer stem cells: role of the microenvironment and therapeutic targeting. Biochem Pharmacol. 2013;85:612–22.CrossRefPubMed
9.
Zurück zum Zitat Mitchell JB, Choudhuri R, Fabre K, Sowers AL, Citrin D, Zabludoff SD, et al. In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762. Clin Cancer Res. 2010;16:2076–84.CrossRefPubMedPubMedCentral Mitchell JB, Choudhuri R, Fabre K, Sowers AL, Citrin D, Zabludoff SD, et al. In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762. Clin Cancer Res. 2010;16:2076–84.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Bernhard EJ, Maity A, Muschel RJ, McKenna WG. Effects of ionizing radiation on cell cycle progression. Radiat Environ Biophys. 1995;34:79–83.CrossRefPubMed Bernhard EJ, Maity A, Muschel RJ, McKenna WG. Effects of ionizing radiation on cell cycle progression. Radiat Environ Biophys. 1995;34:79–83.CrossRefPubMed
11.
Zurück zum Zitat Maity A, McKenna WG, Muschel RJ. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 1994;31:1–13.CrossRefPubMed Maity A, McKenna WG, Muschel RJ. The molecular basis for cell cycle delays following ionizing radiation: a review. Radiother Oncol. 1994;31:1–13.CrossRefPubMed
12.
Zurück zum Zitat Campisi J, di Fagagna FA. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.CrossRefPubMed Campisi J, di Fagagna FA. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007;8:729–40.CrossRefPubMed
13.
Zurück zum Zitat Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res. 2003;63:2705–15.PubMed Roninson IB. Tumor cell senescence in cancer treatment. Cancer Res. 2003;63:2705–15.PubMed
14.
Zurück zum Zitat Bravata V, Minafra L, Russo G, Forte GI, Cammarata FP, Ripamonti M, et al. High-dose ionizing radiation regulates gene expression changes in the MCF7 breast cancer cell line. Anticancer Res. 2015;35:2577–91.PubMed Bravata V, Minafra L, Russo G, Forte GI, Cammarata FP, Ripamonti M, et al. High-dose ionizing radiation regulates gene expression changes in the MCF7 breast cancer cell line. Anticancer Res. 2015;35:2577–91.PubMed
15.
Zurück zum Zitat Ye C, Zhang X, Wan J, Chang L, Hu W, Bing Z, et al. Radiation-induced cellular senescence results from a slippage of long-term G2 arrested cells into G1 phase. Cell Cycle. 2013;12:1424–32.CrossRefPubMedPubMedCentral Ye C, Zhang X, Wan J, Chang L, Hu W, Bing Z, et al. Radiation-induced cellular senescence results from a slippage of long-term G2 arrested cells into G1 phase. Cell Cycle. 2013;12:1424–32.CrossRefPubMedPubMedCentral
16.
17.
Zurück zum Zitat Wu C-H, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci U S A. 2007;104:13028–33.CrossRefPubMedPubMedCentral Wu C-H, van Riggelen J, Yetil A, Fan AC, Bachireddy P, Felsher DW. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci U S A. 2007;104:13028–33.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Cerella C, Grandjenette C, Dicato M, Diederich M. Roles of apoptosis and cellular senescence in cancer and aging. Curr Drug Targets. 2015. Cerella C, Grandjenette C, Dicato M, Diederich M. Roles of apoptosis and cellular senescence in cancer and aging. Curr Drug Targets. 2015.
19.
Zurück zum Zitat Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15:978–90.CrossRefPubMedPubMedCentral Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15:978–90.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Han NK, Kim BC, Lee HC, Lee YJ, Park MJ, Chi SG, et al. Secretome analysis of ionizing radiation‐induced senescent cancer cells reveals that secreted rkip plays a critical role in neighboring cell migration. Proteomics. 2012;12:2822–32.CrossRefPubMed Han NK, Kim BC, Lee HC, Lee YJ, Park MJ, Chi SG, et al. Secretome analysis of ionizing radiation‐induced senescent cancer cells reveals that secreted rkip plays a critical role in neighboring cell migration. Proteomics. 2012;12:2822–32.CrossRefPubMed
22.
Zurück zum Zitat Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18.CrossRefPubMed Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18.CrossRefPubMed
23.
Zurück zum Zitat Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.CrossRefPubMed Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–68.CrossRefPubMed
24.
Zurück zum Zitat Liao EC, Hsu YT, Chuah QY, Lee YJ, Hu JY, Huang TC, et al. Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 2014;5, e1255.CrossRefPubMedPubMedCentral Liao EC, Hsu YT, Chuah QY, Lee YJ, Hu JY, Huang TC, et al. Radiation induces senescence and a bystander effect through metabolic alterations. Cell Death Dis. 2014;5, e1255.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Mosieniak G, Strzeszewska A. The role of cellular senescence in carcinogenesis and antitumor therapy. Postepy Biochem. 2014;60:194–206.PubMed Mosieniak G, Strzeszewska A. The role of cellular senescence in carcinogenesis and antitumor therapy. Postepy Biochem. 2014;60:194–206.PubMed
26.
Zurück zum Zitat Petit V, Massonnet G, Maciorowski Z, Touhami J, Thuleau A, Nemati F, et al. Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters. Lab Investig. 2013;93:611–21.CrossRefPubMed Petit V, Massonnet G, Maciorowski Z, Touhami J, Thuleau A, Nemati F, et al. Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters. Lab Investig. 2013;93:611–21.CrossRefPubMed
27.
28.
Zurück zum Zitat Pyrko P, Soriano N, Kardosh A, Liu Y-T, Uddin J, Petasis NA, et al. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol Cancer. 2006;5:19.CrossRefPubMedPubMedCentral Pyrko P, Soriano N, Kardosh A, Liu Y-T, Uddin J, Petasis NA, et al. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol Cancer. 2006;5:19.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25:2125–36.CrossRefPubMedPubMedCentral Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25:2125–36.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Bartkova J, Hořejší Z, Koed K, Krämer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.CrossRefPubMed Bartkova J, Hořejší Z, Koed K, Krämer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.CrossRefPubMed
31.
Zurück zum Zitat Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.CrossRefPubMed Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436:720–4.CrossRefPubMed
32.
Zurück zum Zitat Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98:12072–7.CrossRefPubMedPubMedCentral Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98:12072–7.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMed Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.CrossRefPubMed
34.
Zurück zum Zitat Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol. 2009;6:648–57.CrossRefPubMed Yang I, Aghi MK. New advances that enable identification of glioblastoma recurrence. Nat Rev Clin Oncol. 2009;6:648–57.CrossRefPubMed
35.
Zurück zum Zitat Liu SC, Alomran R, Chernikova SB, Lartey F, Stafford J, Jang T, et al. Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats. Neuro Oncol. 2014;16:21–8.CrossRefPubMed Liu SC, Alomran R, Chernikova SB, Lartey F, Stafford J, Jang T, et al. Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats. Neuro Oncol. 2014;16:21–8.CrossRefPubMed
36.
Zurück zum Zitat Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5.CrossRefPubMedPubMedCentral Qian B-Z, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222–5.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem. 2009;284:29087–96.CrossRefPubMedPubMedCentral Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem. 2009;284:29087–96.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Kuo PL, Shen KH, Hung SH, Hsu YL. CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis. 2012;33:2477–87.CrossRefPubMed Kuo PL, Shen KH, Hung SH, Hsu YL. CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis. 2012;33:2477–87.CrossRefPubMed
39.
Zurück zum Zitat Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.CrossRefPubMed Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.CrossRefPubMed
40.
Zurück zum Zitat Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ. 2006;13:738–47.CrossRefPubMed Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ. 2006;13:738–47.CrossRefPubMed
41.
Zurück zum Zitat Atkinson GP, Nozell SE, Benveniste ET. NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother. 2010;10:575–86.CrossRefPubMed Atkinson GP, Nozell SE, Benveniste ET. NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother. 2010;10:575–86.CrossRefPubMed
Metadaten
Titel
Irradiation induces glioblastoma cell senescence and senescence-associated secretory phenotype
verfasst von
Hee-Young Jeon
Jun-Kyum Kim
Seok Won Ham
Se-Yeong Oh
Jaebong Kim
Jae-Bong Park
Jae-Yong Lee
Sung-Chan Kim
Hyunggee Kim
Publikationsdatum
19.11.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 5/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4439-2

Weitere Artikel der Ausgabe 5/2016

Tumor Biology 5/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.