Skip to main content
Erschienen in: BMC Geriatrics 1/2021

Open Access 01.12.2021 | Research article

Is acute kidney injury age-dependent in older adults: an observational study in two centers from North China

verfasst von: Libin Xu, Yanhua Wu, Yuanhan Chen, Ruiying Li, Zhiqiang Wang, Zhilian Li, Guoping Liu, Lei Yu, Wei Shi, Xinling Liang, on behalf of China collaborative study on AKI (CCS-AKI)

Erschienen in: BMC Geriatrics | Ausgabe 1/2021

Abstract

Background

Although aging increases susceptibility to acute kidney injury (AKI), whether the AKI risk and the association between AKI and adverse outcomes are age-dependent remain unclear in older adults. The current study aimed to identify whether AKI risk was age-dependent in older adults and to investigate whether the association between AKI and mortality increased with increasing age.

Methods

Medical records from 47,012 adult hospital admissions, including 30,194 older adults aged 60 or older, in two tertiary general hospitals were studied retrospectively. AKI was identified based on changes in blood creatinine levels according to the Kidney Disease: Improving Global Outcomes criteria.

Results

Among the total population and 30,194 older adult patients, the raw incidences of AKI were 8.2 and 8.3%, respectively. The curve of the age-grouped AKI incidence was “U-shaped”, which revealed a positive relationship between the AKI incidence and age among the older adults aged 75 years or older. This trend of the age-AKI relationship was supported by further multivariable analysis. After adjusting for the Charlson Comorbidity Index score, the AKI was associated with in-hospital mortality; however, the associations did not increase with increasing age.

Conclusion

The AKI risk does not increase with age in older adults, except for those aged 75 and above. The association between AKI and in-hospital death did not increase in an age-dependent manner in older adults.

Trial registration

This study was retrospectively registered at clinicaltrials.gov (NCT03054142) on February 13, 2017.
Hinweise
Libin Xu, Yanhua Wu and Yuanhan Chen contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AKI
acute kidney injury
CI
confidence interval
GPPH
Guangdong Provincial People’s Hospital
KDIGO
Kidney Disease: Improving Global Outcomes
IMPH
Inner Mongolia People’s Hospital
HFH
Hohhot First Hospital
CCS-AKI
China Collaborative Study on AKI
ICD
International Classification of Disease
CKD
chronic kidney disease

Background

Population aging is an increasing global problem; China’s aging population is increasing rapidly, and in 2016, the number of Chinese people > 65 years soared to 150 million, or 10.8% of the population [1]. This aging population has imposed heavy burdens on healthcare systems and has become a challenge for clinicians.
Age-related changes in kidney function and multiple comorbidities can increase the susceptibility of older adults to acute kidney injury (AKI) [2, 3]. AKI refers to an abrupt decrease in kidney function, previously termed acute renal failure, which is based typically accompanied by an elevation in the serum creatinine concentration [4, 5]. The change in terminology from acute renal failure to AKI reflects the recognition that smaller decreases in kidney function without overt organ failure are of substantial clinical relevance and are associated with increased morbidity and mortality [5]. The pooled incidence of hospital admissions according to the Kidney Disease: Improving Global Outcomes (KDIGO) definition was 21% in a preliminary meta-analysis including 266 studies (4,502,158 patients) [6]. Because AKI is strongly associated with increased morbidity and mortality, it has become an increasing global concern. However, the clinical characteristics and outcomes have not been well studied in older adults.
Several earlier studies have shown that older patients have a higher risk of acute renal failure or hospital-acquired renal insufficiency than younger patients [7, 8]. Some studies evaluating AKI among older adults included only older adults but did not compare this population with a non-older population [9, 10]. Even in a recent nationwide large-sample study, subjects were not stratified by age [11]. Thus, whether AKI in older adults is age-dependent and whether a cutoff age exists remain unclear.
Although the majority of studies have shown the adverse outcomes of AKI, whether it is age-dependent in older adults has not been demonstrated, and a few studies have indicated a negative conclusion. A previous study showed that older patients with acute renal failure in advanced age subgroups did not have a greater risk of mortality than those aged < 65 years [8]. In 82 patients with acute renal failure following cardiac surgery who required dialysis, the outcomes among older adults were comparable to those among the younger patients [12]. In older patients who underwent major surgery, a higher postoperative AKI grade was associated with increased in-hospital mortality only in patients ≤76 years and not in patients > 76 years [13, 14]. However, the sample sizes were very limited, and some important confounding factors were uncontrolled in these studies.
In the aforementioned context, we investigated whether the AKI risk was age-dependent in older adults and explored whether the association between AKI and mortality increased with increasing age. To achieve these aims, a large-sample investigation was conducted in two tertiary centers in China.

Methods

Study design and data source

A retrospective investigation was conducted using electronic medical records from Inner Mongolia People’s Hospital (IMPH) and Hohhot First Hospital (HFH). IMPH (3000 beds) and HFH (1200 beds) are both tertiary general hospitals located in Hohhot, the capital of the Inner Mongolia Autonomous Region of Northern China. Data were derived from the China Collaborative Study on AKI (CCS-AKI), which was sponsored by the Guangdong Provincial People’s Hospital (GPPH). This study was registered at clinicaltrials.gov on 2017 February 13 (NCT03054142). The multicenter study protocol complied with the Declaration of Helsinki and was approved by the Ethics Research Committee of Guangdong Provincial People’s Hospital (GDREC2016327H). It was also approved by the Ethics Research Committee of Hohhot First Hospital (20170210) and the Ethics Research Committee of Inner Mongolia People’s Hospital (20160825). These committees waived the normal requirement for informed consent because we only worked with deidentified records and linked data.

Subjects

All patients aged 18 years or older who were admitted to IMPH between February 2012 and September 2016 and to HFH between February 2012 and December 2016 were screened. A total of 56,101 admissions with the necessary medical records were enrolled.
Patients who were not applicable for AKI evaluation were excluded from the subsequent risk factor analysis. These conditions were as follows: lacking at least 2 creatinine tests during hospitalization, previous amputations, advanced chronic kidney disease (CKD) and extremely low creatinine values (peak creatinine < 0.6 mg/dl). CKD was classified by the estimated glomerular filtration rate, which was calculated based on the minimum creatinine level during the hospitalization by the CKD Epidemiology Collaboration creatinine equation [15]. The definition of advanced CKD included the following: (1) a diagnosis record of stage 5 CKD or equivalent diagnosis, (2) a glomerular filtration rate less than 15 ml/min/1.73 m2, or (3) a minimum serum creatinine more than 4.0 mg/dL.

Identification and classification of AKI

AKI was defined as an increase in serum creatinine of 0.3 mg/dL within 48 h or a 50% increase in creatinine from baseline within 7 d based on the KDIGO criteria [16]. To calibrate the intrahospital difference in creatinine measurements, 20 samples were tested for creatinine (ranging from 0.5 to 10 mg/dL) in each of the two study centers and GPPH. The calibrated values, which were based on the linear regression coefficients with GPPH, were used in this study. To screen for AKI, blood creatinine data across all hospitalizations were sorted in both increasing and decreasing order according to the time of testing. According to the KDIGO-AKI definition, AKI can be further categorized into the community-acquired subtype and the hospital-acquired subtype, according to whether AKI occurs within 48 h after admission. However, because preadmission creatinine was unavailable in the dataset of the current study, the type of AKI could not be identified accurately. Therefore, we did not analyze AKI by subtype. The stage of AKI was determined using the peak creatinine level after AKI onset.

Determining comorbidities

The International Classification of Disease (ICD) Code had not been standardized, and ICD codes were not identical to the diagnostic records in local hospitals; thus, comorbidities were screened using key fields from the electronic diagnostic records and then confirmed by trained nephrologists. Due to the lack of available resources, we only screened the fields associated with dialysis, hypertension and items included in the Charlson Comorbidity Index. Mortality was based on the death information in the electronic medical records.

Statistical analyses

Continuous variables are presented as medians (25th and 75th percentiles), and categorical data are presented as percentages. The raw incidence of AKI was calculated with a formula (number that met the AKI criteria – number that were ineligible for AKI evaluation)/all admissions, as described previously [11]. Variables were entered into a multivariate logistic regression model by the forward logistic regression (LR) method, and their associated 95% confidence intervals (95% CIs) were estimated. To focus on the effect of age, an interaction effect was tested with age stratification. If a significant interaction was detected between age and another variable, separate models for different age subgroups were generated. All statistical analyses were performed using IBM SPSS 24.0 (Armonk, NY, USA), and a two-tailed P <  0.05 was considered statistically significant.

Results

Prevalence of detected AKI

Among all 56,101 hospital admissions during the study period, 47,012 patients aged 18 years or older and 30,194 patients aged 60 years or older met the inclusion criteria. In the 47,012 included admissions, 3846 (8.2%) met the criteria for AKI. The numbers of admissions with grades 1, 2 and 3 AKI were 3055 (6.5%), 555 (1.2%) and 236 (0.50%), respectively. Table 1 shows the clinical characteristics of the enrolled admissions without or with AKI. In the 30,194 older adult patients, 2509 had AKI, and the raw incidence of AKI was 8.3%, which was similar to that of the total population.
Table 1
Clinical characteristics of the study subjects
 
Non-AKI
(n = 43,166)
AKI
(n = 3846)
P value
Age (years)
64 ± 16
65 ± 18
0.005
Male [n (%)]
26,053 (60.4%)
2184 (56.8%)
<  0.001
eGFR (ml/min/1.73 m2)
87.1 ± 24.9
86.9 ± 36.4
0.653
Length of hospital stay (days)
15 (11, 23)
17 (10, 31)
<  0.001
Comorbidity [n (%)]
 Hypertension
12,064 (27.9%)
973 (25.3%)
<  0.001
 Myocardial infarction
1987 (4.6%)
232 (6.0%)
<  0.001
 Congestive heart failure
6983 (16.2%)
560 (14.6%)
0.009
 Peripheral disease
7795 (18.1%)
744 (19.3%)
0.047
 Cerebrovascular disease
7795 (18.1%)
744 (19.3%)
0.047
 Chronic pulmonary disease
6019 (13.9%)
364 (9.5%)
<  0.001
 Dementia
173 (0.4%)
16 (0.4%)
0.886
 Connective tissue disease
703 (1.6%)
68 (1.8%)
0.514
 Peptic ulcer disease
517 (1.2%)
44 (1.1%)
0.769
 Mild liver disease
5134 (11.9%)
496 (12.9%)
0.066
 Diabetes without end-organ damage
5428 (12.6%)
460 (12.0%)
0.270
 Hemiplegia
49 (0.1%)
0 (0.0%)
0.037
 Mild to moderate renal disease
3248 (7.5%)
432 (11.2%)
<  0.001
 Diabetes with end-organ damage
1946 (4.5%)
154 (4.0%)
0.147
 Tumor without metastasis
8702 (20.2%)
682 (17.7%)
<  0.001
 Leukemia
232 (0.5%)
27 (0.7%)
0.186
 Lymphoma
87 (0.2%)
18 (0.3%)
<  0.001
 Moderate or severe liver disease
229 (0.5%)
39 (1.0%)
<  0.001
 Metastatic solid tumor
1572 (3.6%)
164 (4.3%)
0.050
 Charlson Comorbidity Index
2 (0, 3)
2 (0, 3)
0.955
Medications [n (%)]
 Aminoglycosides
4310 (10.0%)
637 (16.6%)
<  0.001
 Glycopeptides
191 (0.4%)
69 (1.8%)
<  0.001
 ACEIs or ARBs
7412 (17.2%)
610 (15.9%)
0.038
 Diureticsa
6336 (14.7%)
1070 (27.8%)
<  0.001
 NSAIDs
4810 (11.1%)
675 (17.6%)
<  0.001
eGFR estimated glomerular filtration rate, ACEI angiotensin-converting enzyme inhibitor, ARB angiotensin II receptor antagonist
a including antihypertensive drug combination

Relationship between age and AKI

We investigated the AKI incidence by age subgroup with 5-year intervals. The two age groups on the ends of the spectrum were 18–24 years and 90 years or older. The curve of total AKI incidence was “U shaped”, and the incidence was lowest in the age group of 45–74 years (Fig. 1).
We further tested the association between the AKI risk and age in multivariable logistic regression models. We defined 45–74 years as a reference age for AKI based on the lowest AKI incidence in univariable analysis. After adjusting for eGFR, hypertension, diabetes mellitus, myocardial infarction, peripheral angiopathy, cerebrovascular disease and heart failure, the risk of AKI was increased in the age subgroups younger than 45 years or older than 75 years compared with the reference age group (Fig. 2).
To investigate the clinical outcomes of AKI in the older adults, we studied the relationship between AKI and in-hospital mortality. Because of the interaction between AKI and age group in the preliminary analysis, we analyzed the relation of AKI and in-hospital mortality stratified by age group with 5-year intervals. After adjusting for the Charlson Comorbidity Index score, AKI was still associated with a higher risk for in-hospital mortality in each age group. These associations did not increase with age, showing an age-independent trend (Fig. 3).

Discussion

The “U shaped” distribution revealed a positive relationship of AKI incidence and age among the older adults aged 75 years or older. Further multivariable analysis confirmed this cut-off age for higher risk of AKI. We further studied the association between AKI and mortality stratified by age. After adjusting for the Charlson Comorbidity Index scores, the AKI was associated with in-hospital death in all age subgroups in the older adults; however, these associations were not age-dependent.
Aging is regarded as an important risk factor for AKI. The AKI risk-age subgroup distribution curves indicated that the relatively younger adults does not have any additional risk for AKI. Although we could not compare the AKI risk stratified by age with one-year intervals due to limited sample size, the observation of this trend will facilitate the investigation of the cut-off age in older adults in future studies.
The 8.2% raw incidence of detected AKI in the hospitalized population of this study was much lower than the 21% pooled AKI prevalence in a previous report [6], which might be attributed for several reasons. First, AKI classification was based on the short-term changes in creatinine and urine output. Because of the retrospective nature, urine volume records were not available, which caused the underestimation of AKI. In addition, the preadmission level of creatinine was unavailable in our electronic records, which could result in the underestimation of AKI. Third, the majority of epidemiological studies on AKI have focused on patients in a critical condition and patients with cardiovascular disease; however, this study involved a general hospitalized population. The clinical characteristics and criteria for admission and discharge might differ from those in other studies that focused on specific populations; for example, the length of stay was relatively longer in our study (Table 1). Thus, our results revealed the epidemiological features of the older adults in a general hospitalized population.
There are several limitations due to the retrospective nature of this study. First, there is a low frequency of performance of the creatinine test in China [17]; therefore, only the patients with repeated creatinine tests during hospitalization were included to reduce the effect of fewer creatinine tests. Among all the admissions, 16% that were not evaluated for AKI were further excluded. Thus, selection bias could not be avoided. Second, due to the lack of time stamps on the diagnosis and medication data, we could not identify causal relations among acute morbidities, medications and AKI. Thus, the cause of AKI could not be investigated. Furthermore, although we standardized the ICD-10 codes relative to the Charlson Comorbidity Index, other codes were not standardized between hospitals; thus, other comorbidities could not be controlled for as confounding factors. In addition, several important factors, such as interventions, were lacking in the dataset.

Conclusion

The AKI risk did not increase with increasing age in older adults, except for the patients aged 75 and above. In addition, although AKI is associated with in-hospital death in older adults, older patients with AKI did not have a higher risk for mortality than the relatively younger adults.

Acknowledgments

The authors thank the colleagues who provided assistance during this work.
The multicenter study protocol complied with the Declaration of Helsinki and was approved by the Ethics Research Committees of Guangdong Provincial People’s Hospital (GDREC2016327H), HFH (20170210), and IMPH (20160825). It was also approved by the Ethics Research Committee of Hohhot First Hospital (20170210) and the Ethics Research Committee of Inner Mongolia People’s Hospital (20160825). The committees waived the normal requirement for informed consent because we only worked with desensitized records and linked data.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Baraldi A, Ballestri M, Rapanà R, Lucchi L, Borella P, Leonelli M, et al. Acute renal failure of medical type in an elderly population. Nephrol Dial Transplant. 1998;13:25–9.CrossRef Baraldi A, Ballestri M, Rapanà R, Lucchi L, Borella P, Leonelli M, et al. Acute renal failure of medical type in an elderly population. Nephrol Dial Transplant. 1998;13:25–9.CrossRef
3.
Zurück zum Zitat Chronopoulos A, Rosner MH, Cruz DN, Ronco C. Acute kidney injury in the elderly: a review. Contrib Nephrol. 2010;165:315–21.CrossRef Chronopoulos A, Rosner MH, Cruz DN, Ronco C. Acute kidney injury in the elderly: a review. Contrib Nephrol. 2010;165:315–21.CrossRef
4.
Zurück zum Zitat Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, the ADQI workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.CrossRef Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, the ADQI workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.CrossRef
5.
Zurück zum Zitat Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31.
6.
Zurück zum Zitat Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, et al. Acute kidney injury: an increasing global concern. Lancet. 2013;382:170.
7.
Zurück zum Zitat Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–6.CrossRef Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–6.CrossRef
8.
Zurück zum Zitat Pascual J, Liaño F. Causes and prognosis of acute renal failure in the very old. Madrid acute renal failure study group. J Am Geriatr Soc. 1998;46:721–5.CrossRef Pascual J, Liaño F. Causes and prognosis of acute renal failure in the very old. Madrid acute renal failure study group. J Am Geriatr Soc. 1998;46:721–5.CrossRef
9.
Zurück zum Zitat Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA, et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol. 2009;20:223–8.CrossRef Ishani A, Xue JL, Himmelfarb J, Eggers PW, Kimmel PL, Molitoris BA, et al. Acute kidney injury increases risk of ESRD among elderly. J Am Soc Nephrol. 2009;20:223–8.CrossRef
10.
Zurück zum Zitat Wen J, Cheng Q, Zhao J, Ma Q, Song T, Liu S, et al. Hospital-acquired acute kidney injury in Chinese very elderly persons. J Nephrol. 2013;26:572–9.CrossRef Wen J, Cheng Q, Zhao J, Ma Q, Song T, Liu S, et al. Hospital-acquired acute kidney injury in Chinese very elderly persons. J Nephrol. 2013;26:572–9.CrossRef
11.
Zurück zum Zitat Yang L, Xing G, Wang L, Wu Y, Li S, Xu G, et al. Acute kidney injury in China: a cross-sectional survey. Lancet. 2015;386:1465–71.CrossRef Yang L, Xing G, Wang L, Wu Y, Li S, Xu G, et al. Acute kidney injury in China: a cross-sectional survey. Lancet. 2015;386:1465–71.CrossRef
12.
Zurück zum Zitat Van Den Noortgate N, Mouton V, Lamot C, Van Nooten G, Dhondt A, Vanholder R, et al. Outcome in a post-cardiac surgery population with acute renal failure requiring dialysis: does age make a difference. Nephrol Dial Transplant. 2003;18:732–6.CrossRef Van Den Noortgate N, Mouton V, Lamot C, Van Nooten G, Dhondt A, Vanholder R, et al. Outcome in a post-cardiac surgery population with acute renal failure requiring dialysis: does age make a difference. Nephrol Dial Transplant. 2003;18:732–6.CrossRef
13.
Zurück zum Zitat Chao CT, Wu VC, Lai CF, Shiao CC, Huang TM, Wu PC, et al. Advanced age affects the outcome-predictive power of RIFLE classification in geriatric patients with acute kidney injury. Kidney Int. 2012;82:920–7.CrossRef Chao CT, Wu VC, Lai CF, Shiao CC, Huang TM, Wu PC, et al. Advanced age affects the outcome-predictive power of RIFLE classification in geriatric patients with acute kidney injury. Kidney Int. 2012;82:920–7.CrossRef
14.
Zurück zum Zitat Chao CT, Lin YF, Tsai HB, Wu VC, Ko WJ. Acute kidney injury network staging in geriatric postoperative acute kidney injury patients: shortcomings and improvements. J Am Coll Surg. 2013;217:240–50.CrossRef Chao CT, Lin YF, Tsai HB, Wu VC, Ko WJ. Acute kidney injury network staging in geriatric postoperative acute kidney injury patients: shortcomings and improvements. J Am Coll Surg. 2013;217:240–50.CrossRef
15.
Zurück zum Zitat Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRef Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRef
16.
Zurück zum Zitat Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.CrossRef Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138.CrossRef
17.
Zurück zum Zitat Zhao Y, Yang L. Perspectives on acute kidney injury strategy in China. Nephrology (Carlton). 2018;23(Suppl 4):100–3.CrossRef Zhao Y, Yang L. Perspectives on acute kidney injury strategy in China. Nephrology (Carlton). 2018;23(Suppl 4):100–3.CrossRef
Metadaten
Titel
Is acute kidney injury age-dependent in older adults: an observational study in two centers from North China
verfasst von
Libin Xu
Yanhua Wu
Yuanhan Chen
Ruiying Li
Zhiqiang Wang
Zhilian Li
Guoping Liu
Lei Yu
Wei Shi
Xinling Liang
on behalf of China collaborative study on AKI (CCS-AKI)
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Geriatrics / Ausgabe 1/2021
Elektronische ISSN: 1471-2318
DOI
https://doi.org/10.1186/s12877-020-01906-z

Weitere Artikel der Ausgabe 1/2021

BMC Geriatrics 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.