Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2016

Open Access 01.12.2016 | Research article

Is there any association between Sarcoidosis and infectious agents?: a systematic review and meta-analysis

verfasst von: Tiago Esteves, Gloria Aparicio, Vicente Garcia-Patos

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2016

Abstract

Background

During the last few years, investigators have debated the role that infectious agents may have in sarcoidosis pathogenesis. With the emergence of new molecular biology techniques, several studies have been conducted; therefore, we performed a meta-analysis in order to better explain this possible association.

Methods

This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement from the Cochrane collaboration guidelines. Four different databases (Medline, Scopus, Web of Science, and Cochrane Collaboration) were searched for all original articles published from 1980 to 2015. The present meta-analysis included case–control studies that reported the presence of microorganisms in samples of patients with sarcoidosis using culture methods or molecular biology techniques. We used a random effects or a fixed-effect model to calculate the odds ratio (OR) and 95% confidence intervals (CI). Sensitivity and subgroup analyses were performed in order to explore the heterogeneity among studies.

Results

Fifty-eight studies qualified for the purpose of this analysis. The present meta-analysis, the first, to our knowledge, in evaluation of all infectious agents proposed to be associated with sarcoidosis and involving more than 6000 patients in several countries, suggests an etiological link between Propionibacterium acnes and sarcoidosis, with an OR of 18.80 (95% CI 12.62, 28.01). We also found a significant association between sarcoidosis and mycobacteria, with an OR of 6.8 (95% CI 3.73, 12.39). Borrelia (OR 4.82; 95% CI 0.98, 23.81), HHV-8 (OR 1.47; 95% CI 0.02, 110.06) as well as Rickettsia helvetica, Chlamydia pneumoniae, Epstein-barr virus and Retrovirus, although suggested by previous investigations, were not associated with sarcoidosis.

Conclusion

This meta-analysis suggests that some infectious agents can be associated with sarcoidosis. What seems clear is that more than one infectious agent might be implicated in the pathogenesis of sarcoidosis; probably the patient’s geographical location might dictate which microorganisms are more involved. Future investigations and more clinical trials are need to bring these evidences to a more global level.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12890-016-0332-z) contains supplementary material, which is available to authorized users.
Abkürzungen
B. burgdorferi
Borrelia burgdorferi
CI
Confidence interval
HHV-8
Human herpesvirus 8
MTBC
Mycobacterium tuberculosis complex
NTM
Nontuberculous mycobacteria
OR
Odds ratio
P. acnes
Propionibacterium acnes
PRISMA
Preferred Reporting Items for Systematic Reviews and Meta-Analyses

Background

Sarcoidosis is a systemic disorder of unknown origin that is characterized by the presence of non-caseating granulomas. With worldwide distribution, more than one causative agent may be implicated in its pathogenesis [1], with numerous infectious and non-infectious etiological agents having been identified [2]. Currently, the focus is on infectious agents, especially species of Mycobacterium and Propionibacterium. Other infectious agents have been investigated with inconclusive or conflicting results, such as Borrelia burgdorferi, Rickettsia helvetica, Chlamydia pneumoniae, viruses, fungal infections, and Leishmania species [311].
There are only two relevant meta-analyses in the literature [12, 13], which address the causal relationship of some infectious agents in sarcoidosis. Since then, more than 20 new investigations have been published, thus adding new relevant data to the discussion. This meta-analysis is the first to evaluate all infectious agents that may be involved in sarcoidosis.

Methods

Search strategy

This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement from the Cochrane collaboration guidelines. A checklist is available (Additional file 1). Since this study was a literature review and meta-analysis of previously reported studies, ethical approval or additional consent from participants was not required. Four different databases (Medline, Scopus, Web of Science and Cochrane Database) were searched for all original articles without language restriction published from January 1980 to May 2015, using the search strategy described in online supplementary data (Additional file 2).

Inclusion criteria

The inclusion criteria were as follows: (i) the diagnosis of sarcoidosis was made according to the classical criteria: a compatible clinical and radiological picture, histopathological demonstration of non-caseating granulomas with negative stains for mycobacterium and fungi, and exclusion of other granulomatous diseases; [14] (ii) case–control studies that reported the presence of microorganisms in samples, both histological and cellular, of patients with sarcoidosis, using either culture methods (direct isolation of the organism) or molecular biology techniques (analysis of DNA, RNA or proteins); (iii) odds ratios (OR) and the corresponding confidence intervals (CI) or sufficient information to calculate them; (iv) patients without sarcoidosis were used as a reference group.

Exclusion criteria

Studies involving other techniques (e.g. ELISA, immunohistochemistry and immunofluorescence) were excluded from the analysis.

Data extraction

First, two independent authors (T. Esteves and V. Garcia-Patos) reviewed all titles and abstracts. A second selection was based on a full-text review of potentially relevant articles and any disagreement was resolved by discussion between the three authors of this meta-analysis. A standardized data collection form was used to extract the following items: author(s), title of article, study design, year of publication, country of origin, study size, details of molecular or other techniques used.

Statistical analysis and methodological quality assessment

The measure of interest was the OR and 95% CI calculated from each study, in order to assess the presence of microorganisms in sarcoidosis samples versus controls. Data analyses were performed using Stata Statistical Software 2015 (StataCorp LP, College Station, Texas, USA). We used a random-effects model to calculate the OR and 95% CI from each study [15].
We assessed the heterogeneity among studies using Cochran’s Q test [16], complemented by the I2-test. [17] An I2 value of 76–100% represents high heterogeneity, 51–75% moderate heterogeneity and 0–50% low or insignificant heterogeneity [17]. If the result of the Chi-square heterogeneity test was not significant (p > 0.10), we used the fixed-effects model described by Mantel and Haenszel [18] to calculate the pooled OR estimate. Additionally, sensitivity and subgroup analyses were performed in order to explore the heterogeneity among studies.

Results

Studies included

A total of 2465 articles were identified from the initial electronic search using the outlined search term parameters (Additional file 2). Among these, 2401 studies were excluded because they did not meet the inclusion criteria. A total of 64 articles were identified as investigating the role of infectious agents in sarcoidosis using either microbial culture or molecular methods. Six of these were later excluded since they were descriptive studies without a control group. Therefore, 58 case–control studies were qualified for the analysis according to the inclusion and exclusion criteria. Additional file 3 summarizes the study flow.
In total, the 58 studies involved 2467 samples from patients with proven sarcoidosis and 3656 samples from control patients with other non-sarcoid disorders. All studies used molecular techniques to identify the different types of infectious agents except for two, which used microbial culture in their analyses [19, 20].
With regard to the infectious agents investigated, 36 studies evaluated the presence of mycobacteria [2055] (Table 1), 11 evaluated P. acnes [19, 22, 24, 25, 31, 35, 38, 5659] (Table 2), seven evaluated human herpesvirus-8 (HHV-8) [22, 40, 6064] (Table 3), and six evaluated Borrelia species [4, 6569] (Table 4). Other infectious agents were investigated in some of the studies included, but there were insufficient cases to perform a meta-analysis. Three studies evaluated the presence of Rickettsia species, and one found a strong association between Rickettsia helvetica and sarcoidosis [70] (OR 21.72; CI:1.23–384.74). The second study did not reveal a significant association [3] (OR 0.43; CI:0–23.23), while in the third, all real-time PCR analyses for the detection of Rickettsia were negative [71]. None of the studies reported a significant association with Chlamydia pneumonia [7, 8, 72], Epstein-Barr virus [40], or retrovirus [73].
Table 1
Case–control studies evaluating the role of mycobacteria in sarcoidosis
First author/Year (Ref.)
Country
Molecular technique
Sarcoidosis patients
Non-sarcoidosis controls
OR (95% CI)
n/N
Type of microorganisms
n/N
Type of microorganisms
Bocart, 1992 [23]
France
PCR of 65 kDa mycobacterial antigen and IS6110
2/22
MTBC
0/22
-
5.49 (0.25–121.18)
Hofland, 2014 [20]
Netherlands
NAAT for Mycobacteria and Culture
0/32
-
2/86
1 MTBC, 1NTM
0.52 (0.02–11.13)
Robinson, 2013 [24]
USA
PCR for 16S rDNA, hsp65 and rpoB
2/30
NTM
1/30
NTM
2.07 (0.18–24.15)
Oswald-Richter, 2012 [25]
USA
MALDI-IMS for ESAT-6
5/15
Mycobacterium spp
0/4
-
4.71 (0.21–104.49)
Svendsen, 2011 [26]
Denmark
BD ProbeTec IS6110 amplification
1/52
MTBC
0/50
-
2.94 (0.12–73.93)
Mootha, 2010 [27]
India
PCR of 65 kDa mycobacterial antigen and IS6110
13/27
10 MTBC, 3 NTM
2/40
NTM
17.64 (3.53–88.25)
Zhou, 2008 [28]
China
Real-time PCR of IS986 and human β-blobin gene
20/104
MTBC
7/55
MTBC
1.63 (0.64–4.14)
Dubaniewicz, 2006 [29]
Poland
BD ProbeTec IS6110 amplification
3/50
MTBC
0/10
-
1.55 (0.07–32.27)
Fite, 2006 [30]
Spain
PCR of IS6110 and Southern blot hybridisation
9/23
MTBC
1/23
MTBC
14.14 (1.61–124.11)
Yasuhara, 2005 [31]
Japan
PCR of IS6110
0/6
-
0/6
-
-
Song, 2005 [32]
USA
PCR of MTB 16S rRNA
6/16
MTBC
0/16
-
20.43 (1.04–401.67)
Marcoval, 2005 [33]
Spain
NAAT for rRNA of MTBC
0/35
-
0/39
_
-
Yu-Yun Lee, 2002 [34]
Taiwan
Nested PCR for mycobacterial hsp65 DNA
7/21
NTM
0/16
-
17.07 (0.89–325.59)
Drake, 2002 [21]
USA
PCR of 16S rRNA, rpoB and IS6110
15/25
11 MTBC, 3 NTM, 1 both
0/25
_
75.29 (4.12–1377.06)
Gazouli, 2002 [22]
Greece
PCR of IS6110/IS1245/IS900/IS901, 16S rRNA, MPB64 and mtp40
33/46
MTBC
0/20
-
101.74 (5.74–1804.62)
Eish, 2002 [35]
Japan
PCR of IS6110/IS900
5/108
MTBC
2/86
MTBC
2.04 (0.39–10.78)
Klemen, 2000 [36]
Austria
PCR of IS6110 and mycobacterial chaperonin
3/4
NTM
0/39
_
184.33 (6.26–5425.48)
Li, 1999 [37]
USA
PCR of 65 kDa mycobacterialantigen and RFLP analysis
16/20
2 MTBC, 14 NTM
0/20
_
150.33 (7.54–2997.83)
Ishige, 1999 [38]
Japan
PCR of IS6110
3/15
MTBC
1/15
MTBC
3.50 (0.32–38.23)
Wilsher, 1998 [39]
NZ
PCR of IS6110, nested PCR to amplify 85 bp sequence within the 123 bp product
0/31
_
0/10
-
-
Di Alberti, 1997 [40]
Italy
Heminested PCR for 16S rRNA
17/38
4 NTM, 13 Mycobacterium spp
39/113
39 Mycobacterium spp
1.54 (0.73–3.24)
Vokurka, 1997 [41]
France
PCR of IS6110 and DR region
0/15
_
0/27
_
-
Ozcelik, 1997 [42]
Turkey
PCR of IS6110
5/11
MTBC
2/15
MTBC
5.42 (0.81-36.36)
Popper, 1997 [43]
Austria
PCR of 65 kDa mycobacterial antigen and IS6110
11/35
NTM
0/39
-
37.08 (2.09–657.90)
El-Zaatari, 1996 [44]
USA
PCR of IS900/IS902, MAC-specific PCR assay and Western blot
7/7
NTM
13/38
NTM
28.33 (1.50–534.74)
Fidler, 1993 [45]
UK
PCR of 65 kDa mycobacterial antigen and IS6110
7/16
MTBC
1/16
MTBC
11.67 (1.23–110.95)
Thakker, 1992 [46]
UK
PCR of groEL
1/14
MTBC
1/11
MTBC
0.77 (0.04–13.87)
Gerdes, 1992 [47]
Germany
PCR of 16S rDNA
0/14
-
0/10
-
-
Mitchell, 1992 [48]
UK
Mycobacterial rRNA detection by liquid phase hybridisation
5/5
MTBC
0/5
-
121 (2.02–7259.18)
Saboor, 1992 [49]
UK
PCR of IS986/IS6110 and groEL
14/20
10 MTBC, 4 NTM
5/22
3 MTBC, 2 NTM
7.93 (1.99–31.59)
Lisby, 1993 [50]
Denmark
Nested PCR for IS900
0/18
-
0/18
-
-
Grosser, 1999 [51]
Germany
PCR of IS986/IS6110
35/65
MTBC
1/34
MTBC
38.50 (4.96–298.57)
Vago, 1998 [52]
Italy
PCR of IS6110
2/30
MTBC
0/17
-
3.07 (0.14–67.75)
Richter, 1996 [53]
Germany
PCR of mycobacterial 16S rDNA
1/24
MTBC
3/57
MTBC
0.78 (0.08–7.93)
Ghossein, 1994 [54]
USA
PCR of 65 kDa mycobacterial antigen
0/10
-
0/10
-
-
Cannone, 1997 [55]
Italy
PCR of IS6110
2/30
MTBC
0/10
-
1.84 (0.08–41.62)
n Mycobacteria-positive samples, N total samples, PCR polymerase chain reaction, 65 kDa 65-Kilodalton mycobacteria antigen, IS6110 insertion sequence to identify Mycobacterium tuberculosis complex (MTBC), NTM non-tuberculous mycobacteria, NAAT nucleic acid amplification test, 16S rDNA ribosomal DNA common to all mycobacteria, rpoB RNA polymerase β-subunit gene, MALDI-IMS matrix-assisted laser desorption ionization as a mass spectrometry imaging, ESAT-6 6 kDa early secretory antigenic target produced by Mycobacterium tuberculosis, IS986 insertion sequence to identify MTBC, rRNA ribosomal RNA, IS1245/IS900/IS901/IS902 insertion sequence to identify Mycobacterium avium complex, MPB64 mycobacterial protein, mtp40 Specific primers of MTB species, RFLP restriction fragment length polymorphism DR direct repeat, groEL gene encoding 65 kDa antigen
Table 2
Case–control studies evaluating the role of P. acnes in sarcoidosis
First author/Year (Ref.)
Country
Molecular technique
Sarcoidosis
Controls
OR (95% CI)
n/N
n/N
Robinson, 2013 [24]
USA
PCR for bacterial 16S rDNA
7/30
1/30
8.83 (1.01–76.96)
Oswald-Richter, 2012 [25]
USA
MALDI-IMS for propionibacterial proteins
7/15
1/4
2.63 (0.22–31.35)
Yasuhara, 2005 [31]
Japan
PCR for 16S rRNA
2/6
0/6
7.22 (0.28–189.19)
Gazouli, 2002 [22]
Greece
PCR for 16S rRNA
0/46
0/20
-
Eish, 2002 [35]
Japan
PCR for 16S rRNA
93/108
25/86
15.13 (7.39–30.99)
Ishige, 1999 [38]
Japan
Quantitative PCR for 16S rRNA
12/15
3/15
16 (2.67–95.75)
Negi, 2012 [56]
Japan
Immunohistochemical methods (PAG and TIG antibodies) and western blot
149/196
0/79
500.43 (30.44–8226.20)
Yamada, 2002 [57]
Japan
Quantitative real-time PCR for 16S rRNA
8/9
2/9
28 (2.07–379.25)
Eishi, 1994 [58]
Japan
PCR for P. acnes DNA
36/39
12/29
17 (4.23–68.28)
Abe, 1984 [19]
Japan
Isolation of P acnes in culture
31/40
38/180
12.87 (5.65–29.34)
Hiramatsu, 2003 [59]
Japan
Nested PCR for 16S rRNA
21/30
7/30
7.67 (2.42–24.24)
16S rDNA ribosomal DNA, MALDI-IMS matrix-assisted laser desorption ionization as a mass spectrometry imaging, rRNA ribosomal RNA
Table 3
Selected studies on the association between HHV-8 and sarcoidosis
First author/Year (Ref.)
Country
Molecular technique
Patients
Controls
OR (95% CI)
n/N
n/N
Knoell, 2005 [60]
USA
PCR for HHV-8 DNA
0/8
0/8
-
Gazouli, 2002 [22]
Greece
PCR for HHV-8 DNA
0/46
0/20
-
Fredricks, 2002 [61]
USA
PCR for HHV-8 ORF 26 DNA
0/18
0/4
-
Maeda, 2000 [62]
Japan
Hemi-nested PCR for HHV-8 DNA
4/119
4/120
1.01 (0.25–4.13)
Sugaya, 1999 [63]
Japan
Nested PCR for HHV-8 ORF 26 DNA
0/12
1/1
0.01 (0.00–0.95)
Bélec, 1998 [64]
France
Nested PCR for HHV-8 ORF 25/26 DNA
0/14
2/17
0.21 (0.01–4.84)
Di Alberti, 1997 [40]
Italy
Nested PCR for HHV-8 ORF 26 DNA and Heminested PCR for HHV-8 ORF 25 DNA
38/39
6/113
677.67 (79.01–5812.52)
HHV-8 Human Herpesvirus 8, ORF 25/26 DNA insertion sequence to identify HHV-8
Table 4
Selected studies on the association between Borrelia species and sarcoidosis
First author/Year (Ref.)
Country
Molecular Technique
Sarcoidosis
Controls
OR (95% CI)
n/N
Type of microorganism
n/N
Type of microorganism
Derler, 2009 [4]
Austria
Focus-floating microscopy and Borrelia-specific PCR DNA
13/35
Borrelia sp.
1/61
Borrelia sp.
35.45 (4.38–287.16)
Ishihara, 1998 [65]
Japan
Dot-blot analysis (Dotblot Borrelia Kit)
15/46
Borrelia sp.
2/100
Borrelia sp.
23.71 (5.14–109.46)
Martens, 1997 [66]
Germany
Western blot for Borrelia burgdorferi
1/60
Borrelia burgdorferi
27/1000
Borrelia burdorferi
0.61 (0.08–4.57)
Lian, 1995 [67]
China
PCR for Borrelia burgdorferi DNA
6/49
Borrelia burgdorferi
2/28
Borrelia burgdorferi
1.81 (0.34–9.66)
Xu, 1996 [68]
China
In situ PCR for Borrelia burgdorferi DNA
0/23
-
0/23
-
-
Ishihara, 1996 [69]
Japan
Elisa and Dot-blot analysis for Borrelia sp.
1/38
Borrelia sp.
1/80
Borrelia sp.
2.14 (0.13–35.08)

Meta-analysis

Mycobacteria (Table 1)

Both Mycobacterium tuberculosis complex (MTBC) and nontuberculous mycobacteria (NTM) were investigated in most of the 36 relevant studies, although some used primers to detect only M. tuberculosis [26, 2833, 38, 39, 41, 42, 51, 52, 55], and others detected only nontuberculous mycobacteria [44, 50].
Figure 1 provides a forest plot for sarcoidosis and mycobacteria based on a total of 1034 sarcoidosis patients and 1054 controls. Of the 1034 sarcoidosis cases, 173 were positive for MTBC, and 58 were positive for NTM. It was not possible to identify the type of mycobacteria involved in 18 samples, while both types of mycobacteria DNA were present in one sample. In total, 250 sarcoidosis samples were positive for some form of mycobacteria DNA sequence for a positive signal rate of 24.2%. We found a significant association between sarcoidosis and mycobacteria with an OR of 6.8 (95% CI:3.73–12.39). A strong association was also found between sarcoidosis and NTM alone with an OR of 10.39 (95% CI:5.25–20.56), as well as for M. tuberculosis complex (OR 4.29; CI:2.60–7.08). There was moderate heterogeneity among studies (I2 test 52.1%; p = 0.001), although all but three studies estimated a risk above unity with significance in most cases.

P. acnes (Table 2)

The risk of sarcoidosis associated with P. acnes was provided by the study design (Fig. 2). The OR derived from 11 studies with 534 cases and 488 controls was 18.80 (95% CI:12.62–28.01), and there was low heterogeneity (I2 test 25.9%; p = 0.206). There was a positive signal rate of 68.54% for P. acnes (366 positive samples from 534 patients). When accounting for the source of biological samples studied, we found that nine of the 11 studies [19, 22, 24, 25, 35, 38, 5658] evaluated the presence of P. acnes in lymph node samples, of which seven evaluated this location exclusively [19, 24, 35, 38, 57, 58]. This could justify the low heterogeneity among studies, contrary to what was observed in the forest plot of mycobacteria, where the studied biological samples were more heterogeneous.

Borrelia and HHV-8 (Tables 3 and 4)

Of the six articles assessing the presence of Borrelia in sarcoidosis tissues, three used polymerase chain reaction (PCR) techniques for DNA amplification of B. burgdorferi [6668], whereas the other three did not specify which species of Borrelia were involved [4, 65, 69]. The pooled OR derived from these six studies with 251 cases and 1292 controls was 4.82, but this result did not reach statistical significance (95% CI:0.98–23.81). Statistical heterogeneity was moderate with an I2 of 70% and p = 0.01 Fig. 3 a).
Di Alberti et al [40] were the only ones to report a significant association between sarcoidosis and HHV-8 in comparison with controls. However, the remaining six studies refuted those results [22, 6064]. Overall, there was no significant association between sarcoidosis and HHV-8 (OR 1.47; CI:0.02–110.06), and there was high heterogeneity among studies (I2 test 92%; p = 0.000) (Fig. 3 b).

Evaluation of publication bias

We performed funnel plots to evaluate publication bias (Fig. 4). The funnel plots of HHV-8 and mycobacteria showed evidence of publication bias (Fig. 4b and c), while the graphs regarding the presence of Borrelia and P. acnes are fairly symmetrical (Fig. 4a and d). Thus, no suggestion of publication bias is indicated in these cases.

Sensitivity and subgroup analysis

To verify the robustness of the results, as well as the potential sources of heterogeneity, subgroup and sensitivity analyses were performed (especially for mycobacteria).

Subgroup analysis

Concerning the studies of mycobacteria, we conducted subgroup meta-analysis by various study characteristics (Table 5). The pooled OR was calculated in subgroups of studies according to geographical area, publication year, type of study, and molecular technique used. There was a significant association between sarcoidosis and mycobacteria in all subgroups, except in three studies included in the subgroup of molecular techniques (BD ProbeTec and culture). The pooled OR was significantly higher with some covariates, however almost all of the ORs derived from these subgroup data were significantly above unity.
Table 5
Subgroup and sensitivity analysis of the association between sarcoidosis and mycobacteria
 
No. of studies
OR (95%CI)
P-value heterogeneity
I2 (%)
Subgroup analysis
 1 - Geographical region
 Europe
22
6.92 (3.05, 15.71)
0.004
53.8
 USA
7
18.21 (4.64, 71.53)
0.238
26.2
 Asia
7
4.09 (1.38, 12.12)
0.093
49.8
 2 - Publication year
   < 2000
20
6.63 (2.84, 15.51)
0.006
54.2
   > =2000
16
8.40 (3.31, 21.31)
0.012
53
 3 – Type of study
  Prospective
10
11.91 (4.94, 28.69)
0.743
0.0
  Retrospective
26
6.41 (3.14, 13.09)
0.001
57.1
 4 - Molecular technique
  PCR
29
7.04 (3.57, 13.89)
0.000
58.8
  Hybridization
2
37.81 (3.40, 420.43)
0.484
0.0
  Protein analysis
2
12.12 (1.44, 102.20)
0.408
0.0
  BD ProbeTec
2
2.09 (0.23, 19.10)
0.776
0.0
  Culture
1
0.52 (0.02, 11.13)
-
-
Sensitivity analysis
 1 - Biological samples
  Only lymph nodes
11
3.82 (1.53, 9.49)
0.384
4.0
  Only lung
5
2.93 (1.09, 7.86)
0.098
56.9
  Only skin
2
11.58 (0.06, 2016.91)
0.021
81.3
 2 – Incidence of tuberculosis
  Only countries with low burden of TB
33
4.33 (2.06, 9.10)
0.042
45.7
CI confidence interval, OR odds ratio, BD ProbeTec molecular detection based on strand displacement amplification (SDA) technology, TB tuberculosis
Through the subgroup analyses, it was noted that the variables that most influenced the results of heterogeneity were: a) the study type, being null the heterogeneity in the ten prospective studies, contrasting with the moderate heterogeneity in retrospective studies; b) the geographical location, verifying a low heterogeneity in studies conducted in the USA and Asia.

Sensitivity analysis

We also performed a sensitivity analysis to complement the subgroup analysis in order to better explain the heterogeneity between studies (Table 5).
Regarding sarcoidosis and mycobacteria, there was a strong and significant association (OR 4.33; CI:2.06–9.10) in subgroup analysis of geographic locations when we restricted to studies performed in countries with low burden of tuberculosis [24, 30, 35, 38, 40, 42, 4446, 49, 51, 53]. There was low heterogeneity among these studies (I2 test 45.7%; p = 0.042) (Table 5).
Another subgroup analysis compared the results according to the different biological samples used. Most of the studies included in our meta-analysis used biological samples from different locations, including the skin, lymph nodes, and lungs. However, when we restricted the analysis to include only studies that performed PCR on biological samples of the same type, the associations were also significant in both lung samples [30, 40, 45] (OR 2.93; CI:1.09–7.86; I2 = 56.9%) and lymph node samples [24, 35, 38, 40, 46] (OR 3.82; CI:1.53–9.49; I2 = 4%), but not skin biological specimens [37, 40] (OR 11.58; CI:0.06–2016.91; I2 = 81.3%). Once again, the heterogeneity among studies was low to moderate except in two studies performed on skin biopsies (Table 5).
In sensitivity analysis on studies of sarcoidosis and P. acnes, we found a significant association compared with the controls when we selected only studies performed outside Asia [22, 24, 25], with a pooled OR of 5.5 (95% CI:1.13–27.42) and no heterogeneity among studies.

Discussion

The present meta-analysis is the first to evaluate all infectious agents proposed to be associated with sarcoidosis and involving more than 6000 patients in several countries. The results point to an etiological link between P. acnes and sarcoidosis with a positive signal rate of 68.54%. Also, almost one quarter of sarcoidosis patients show the presence of mycobacteria within the lesions. The associations are fairly specific, since P. acnes (OR 18.80) and mycobacteria (OR 6.8) were significantly increased in sarcoidosis patients, while Borrelia (OR 4.82; CI:0.98–23.81) and HHV-8 (OR 1.47; CI:0.02–110.06) were not associated with sarcoidosis, contrary to previous investigations.
Three decades ago, Abe et al [19] reported that P. acnes was the only bacterium isolated in lymph node biopsy samples taken from sarcoidosis patients. Studies published in recent years have confirmed that P. acnes could be a possible infectious agent implicated in the pathogenesis of sarcoidosis [24, 56, 7476]. However, some studies suggest that P. acnes is not specific for sarcoidosis because it is a normal inhabitant of peripheral lung tissue and mediastinal lymph nodes, apart from the skin [77]. Despite this, the results of our meta-analysis show a significant quantitative difference in the presence of the P. acnes genome in sarcoidosis patients compared to control subjects. This suggests that this microorganism may be present abnormally or may proliferate ectopically in such sarcoid lesions.
However, it is important to note that most of the studies in our meta-analysis evaluating the role of P. acnes in sarcoidosis were by Japanese groups testing Japanese patients, while only very limited data exist for African American or Caucasian patients [22, 24, 25]. The results were conflicting in these three studies, but interestingly, the pooled OR was above unity and statistically significant (5.58; CI:1.13–27.42). Despite these surprising results, the ORs observed in studies with Japanese patients were far superior, and the results were more consistent and robust. Differences between these two groups may be due to the geographical, ethnic, or racial composition of the study population. Sarcoidosis in Japanese patients is characterized by a high rate of ocular, cutaneous, and cardiac involvement, while in Europe and the USA, this disease mainly affects the lungs.
In 2002, the first large, relevant study was published as a collaboration between several countries [35]. The results of this international study suggest an association between P. acnes and sarcoidosis in not only Japanese patients (positive signal rate of 89.2%), but also in Europeans (positive signal rate of 81.4%). However, more international corporative studies with quantitative PCR are needed to clarify the role of P. acnes in sarcoidosis and for better understanding of the phenotypic variability of this disease.
Recent years have witnessed substantial discussion among investigators about the role that mycobacteria may have in the pathogenesis of sarcoidosis, and the issue remains unsettled, if not controversial. With the emergence of new microbiological techniques, especially in the molecular biology area, several studies have been conducted in order to investigate this possible association more deeply.
In the present meta-analysis, we identified 36 studies assessing the presence of mycobacteria in a total of 1034 sarcoidosis patients and 1054 controls. The results suggest a strong association of sarcoidosis with NTM (OR 10.39; CI:5.25–20.56) and with MTBC (4.29; CI:2.60–7.08). However, to evaluate the possible relationship between mycobacteria and sarcoidosis, the current incidence of tuberculosis should be taken into account in general populations of the different countries where the studies of sarcoidosis were performed. In the sensitivity analyses, a significant association was also found (OR 4.33; CI:2.06–9.10) when we restricted the analysis to include only studies performed in countries with low prevalence of tuberculosis. This further confirms the robustness of the results and the relevance of this association worldwide.
Despite the heterogeneity of analyzed studies and the potential publication bias suggested by the mycobacteria funnel plots, most of the ORs derived from individual data were significantly above unity. Furthermore, sensitivity and subgroup analyses including only studies performed on lung samples or lymph nodes showed low heterogeneity. Therefore, it is important to account for the heterogeneity in sarcoidosis specimens (lung versus skin or lymph nodes). We found significant increased ORs in studies performed on lung or lymph node samples but not in skin specimens. Possible explanations for this include the following: 1) In the initial phase of the disease, systemic sarcoidosis primarily affects and spreads through the lymphatic system, following the lymphatic vessels to the hilar and mediastinal lymph nodes. 2) Lung and lymph node samples are obtained sterilely by endoscopy biopsies and thus avoid possible microorganism contamination, in contrast to skin biopsies. 3) The two studies performed on sarcoidosis skin samples were both retrospective [37, 40]. In such studies, there is a greater possibility of both contamination of the paraffin-embedded specimens and more DNA fragmentation. In contrast, several studies performed on lung and lymph node samples were prospective, and only fresh tissues were used. Additionally, when we conducted the subgroup analysis according to the type of study, it was found a low heterogeneity in the 10 prospective studies (I2 = 0%), contrasting with the moderate heterogeneity in retrospective studies (I2 = 57.1%).
The hypothesis that B. burgdorferi could be a possible causal infectious agent for sarcoidosis was first mentioned in 1989 in epidemiological studies [78]. Since then, several studies have been conducted using serological or molecular techniques in order to clarify the role of Borrelia in the pathogenesis of sarcoidosis. We identified six articles assessing the presence of Borrelia in sarcoidosis tissues using molecular techniques (251 cases and 1292 controls), and we did not find a significant association (OR 4.82; CI:0.98–23.81). On the other hand, the two studies that reported a significant association between Borrelia and sarcoidosis [4, 65] were both conducted in regions where Lyme disease is endemic, in contrast to the four other articles performed in non-endemic areas [6669], where the results did not reach statistical significance.
It is important to note that the frequency of exposure to Borrelia. spirochete is different between patients living in regions where the disease is endemic and those in regions where it is not. Thus, in countries with elevated B. burgdorferi prevalence, a protective immunity against this microorganism has to be assumed in the general population. T-helper lymphocyte activity to this microorganism might be a trigger for the development of sarcoidosis in endemic regions, which could explain the positive results in studies published in Austria and Japan [4, 65]. Apart from these two studies, the fact that significant positive PCR results could not be found argues against the hypothesis of a connection between B. burgdorferi infection and sarcoidosis. However, more studies are needed to clarify the possible association, especially in endemic areas.
There are several clinical implications of this study. Currently, immune suppression remains the primary treatment modality for sarcoidosis. Given our meta-analysis, it is worth exploring whether certain antibacterial or antimycobacterial drugs might alter the course of sarcoidosis. In the past, some clinical trials have been published with conflicting results using classical antituberculous drugs, such as isoniazid, amino-salicylic acid, and streptomycin [7982]. Recently, Drake et al [83] conducted a double-blind, placebo-controlled study to investigate the efficacy of oral antimycobacterial therapy (levofloxacin, ethambutol, azithromycin, and rifampin) in patients with cutaneous sarcoidosis. The results were promising, with significant reductions in cutaneous lesion size. The same authors also conducted an open-label investigation using the same therapy regimen in pulmonary sarcoidosis patients, and the results were again very interesting with significant improvements in forced vital capacity from baseline to completion of therapy [84].
Other antimicrobial agents such as minocycline and doxycycline have been shown to be quite effective in treating cutaneous sarcoidosis in some series [85, 86]. However, the exact mechanism of action of these drugs it is not fully understood [87].
Currently, other clinical trials are being done (NCT02024555 and NCT01245036) to clarify the role that antimicrobial agents might have in the treatment of sarcoidosis.
Several limitations in our study should be recognized. First, one of the main potential limitations relates to the variability and heterogeneity of the results analyzed. It is important to consider that the majority of these studies were assessed retrospectively and that data were obtained from different databases and hospitals. This could lead to different types of bias in the included studies and to variability in the results. Second, the risk of contamination or DNA fragmentation in PCR techniques can lead to false positive or false negative results. In addition, PCR does not discriminate between living and dead microorganisms. Third, the patients had varied clinical manifestations of sarcoidosis; moreover, the non-sarcoidosis controls were comprised of different types of subjects across the studies, which may cause misclassification bias and heterogeneity.

Conclusion

The present meta-analysis, involving more than 6000 patients from various countries worldwide, suggests a significant association between sarcoidosis and some infectious agents, taking into account the marked difference in the percentage of microbial DNA-positive samples in sarcoidosis patients versus controls, especially mycobacteria (OR 6.8) and P. acnes (OR 18.80). Furthermore, our study also suggests caution regarding a putative association between sarcoidosis and B. burgdorferi.
What seems clear is that more than one infectious agent might be implicated in the pathogenesis of sarcoidosis; probably the patient’s geographical location might dictate which microorganisms are more involved.
More studies and clinical trials are needed to extend this evidence to a more global level.

Acknowledgements

We thank Miguel Angel Descalzo, responsible for the research unit of the Spanish Academy of Dermatology and Venereology (AEDV), for his assistance with statistical analysis and Rubina Alves, M.D., for reviewing an earlier version of the manuscript.

Funding

None.

Availability of data and materials

We declare that the data supporting the conclusions of this article are fully described in the article.

Authors’ contribution

TE and VGP contributed equally to the study. TE, GA and VGP conceived the study and designed the systematic review and meta-analysis. TE, GA and VGP contributed to the data extraction, performed the analysis and interpreted the results. TE and VGP wrote the first draft; TE, GA and VGP contributed to the revision of the final report. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Since this study was a literature review and meta-analysis of previously reported studies, ethical approval or additional consent from participants was not required.

Prior presentation

This data has not been published elsewhere.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Haimovic A, Sanchez M, Judson MA, Prystowsky S. Sarcoidosis: a comprehensive review and update for the dermatologist: part I. Cutaneous disease. J Am Acad Dermatol. 2012;66(5):699–718.CrossRefPubMed Haimovic A, Sanchez M, Judson MA, Prystowsky S. Sarcoidosis: a comprehensive review and update for the dermatologist: part I. Cutaneous disease. J Am Acad Dermatol. 2012;66(5):699–718.CrossRefPubMed
2.
Zurück zum Zitat Newman LS, Rose CS, Bresnitz EA, Rossman MD, Barnard J, Frederick M, Terrin ML, Weinberger SE, Moller DR, McLennan G, Hunninghake G, DePalo L, Baughman RP, Iannuzzi MC, Judson MA, Knatterud GL, Thompson BW, Teirstein AS, Yeager Jr H, Johns CJ, Rabin DL, Rybicki BA, Cherniack R, ACCESS Research Group. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med. 2004;170(12):1324–30.CrossRefPubMed Newman LS, Rose CS, Bresnitz EA, Rossman MD, Barnard J, Frederick M, Terrin ML, Weinberger SE, Moller DR, McLennan G, Hunninghake G, DePalo L, Baughman RP, Iannuzzi MC, Judson MA, Knatterud GL, Thompson BW, Teirstein AS, Yeager Jr H, Johns CJ, Rabin DL, Rybicki BA, Cherniack R, ACCESS Research Group. A case control etiologic study of sarcoidosis: environmental and occupational risk factors. Am J Respir Crit Care Med. 2004;170(12):1324–30.CrossRefPubMed
3.
Zurück zum Zitat Svendsen CB, Milman N, Nielsen HW, Krogfelt KA, Larsen KR. A prospective study evaluating the presence of Rickettsia in Danish patients with sarcoidosis. Scand J Infect Dis. 2009;41(10):745–52.CrossRefPubMed Svendsen CB, Milman N, Nielsen HW, Krogfelt KA, Larsen KR. A prospective study evaluating the presence of Rickettsia in Danish patients with sarcoidosis. Scand J Infect Dis. 2009;41(10):745–52.CrossRefPubMed
4.
Zurück zum Zitat Derler AM, Eisendle K, Baltaci M, Obermoser G, Zelger B. High prevalence of ‘Borrelia-like’ organisms in skin biopsies of sarcoidosis patients from Western Austria. J Cutan Pathol. 2009;36(12):1262–8.CrossRefPubMed Derler AM, Eisendle K, Baltaci M, Obermoser G, Zelger B. High prevalence of ‘Borrelia-like’ organisms in skin biopsies of sarcoidosis patients from Western Austria. J Cutan Pathol. 2009;36(12):1262–8.CrossRefPubMed
5.
Zurück zum Zitat Planck A, Eklund A, Grunewald J, Vene S. No serological evidence of Rickettsia Helvetica infection in Scandinavian sarcoidosis patients. Eur Respir J. 2004;24(5):811–3.CrossRefPubMed Planck A, Eklund A, Grunewald J, Vene S. No serological evidence of Rickettsia Helvetica infection in Scandinavian sarcoidosis patients. Eur Respir J. 2004;24(5):811–3.CrossRefPubMed
6.
Zurück zum Zitat Lebbé C, Agbalika F, Flageul B, Pellet C, Rybojad M, Cordoliani F, Farge D, Vignon-Pennamen MD, Sheldon J, Morel P, Calvo F, Schulz TF. No evidence for a role of human herpesvirus type 8 in sarcoidosis: molecular and serological analysis. Br J Dermatol. 1999;141(3):492–6.CrossRefPubMed Lebbé C, Agbalika F, Flageul B, Pellet C, Rybojad M, Cordoliani F, Farge D, Vignon-Pennamen MD, Sheldon J, Morel P, Calvo F, Schulz TF. No evidence for a role of human herpesvirus type 8 in sarcoidosis: molecular and serological analysis. Br J Dermatol. 1999;141(3):492–6.CrossRefPubMed
7.
Zurück zum Zitat Mills GD, Allen RK, Timms P. Chlamydia pneumoniae DNA is not detectable within sarcoidosis tissue. Pathology. 1998;30(3):295–8.CrossRefPubMed Mills GD, Allen RK, Timms P. Chlamydia pneumoniae DNA is not detectable within sarcoidosis tissue. Pathology. 1998;30(3):295–8.CrossRefPubMed
8.
Zurück zum Zitat Blasi F, Rizzato G, Gambacorta M, Cosentini R, Raccanelli R, Tarsia P, Arosio C, Savini E, Cantoni C, Fagetti L, Allegra L. Failure to detect the presence of Chlamydia pneumoniae in sarcoid pathology specimens. Eur Respir J. 1997;10(11):2609–11.CrossRefPubMed Blasi F, Rizzato G, Gambacorta M, Cosentini R, Raccanelli R, Tarsia P, Arosio C, Savini E, Cantoni C, Fagetti L, Allegra L. Failure to detect the presence of Chlamydia pneumoniae in sarcoid pathology specimens. Eur Respir J. 1997;10(11):2609–11.CrossRefPubMed
9.
Zurück zum Zitat Biberfeld P, Petrén AL, Eklund A, Lindemalm C, Barkhem T, Ekman M, Ablashi D, Salahuddin Z. Human herpesvirus-6 (HHV-6, HBLV) in sarcoidosis and lymphoproliferative disorders. J Virol Methods. 1988;21(1–4):49–59.CrossRefPubMed Biberfeld P, Petrén AL, Eklund A, Lindemalm C, Barkhem T, Ekman M, Ablashi D, Salahuddin Z. Human herpesvirus-6 (HHV-6, HBLV) in sarcoidosis and lymphoproliferative disorders. J Virol Methods. 1988;21(1–4):49–59.CrossRefPubMed
10.
Zurück zum Zitat Moravvej H, Vesal P, Abolhasani E, Nahidi S, Mahboudi F. Comorbidity of leishmania major with cutaneous sarcoidosis. Indian J Dermatol. 2014;59(3):316.CrossRefPubMedPubMedCentral Moravvej H, Vesal P, Abolhasani E, Nahidi S, Mahboudi F. Comorbidity of leishmania major with cutaneous sarcoidosis. Indian J Dermatol. 2014;59(3):316.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Suchankova M, Paulovicova E, Paulovicova L, Majer I, Tedlova E, Novosadova H, Tibenska E, Tedla M, Bucova M. Increased antifungal antibodies in bronchoalveolar lavage fluid and serum in pulmonary sarcoidosis. Scand J Immunol. 2015;81(4):259–64.CrossRefPubMed Suchankova M, Paulovicova E, Paulovicova L, Majer I, Tedlova E, Novosadova H, Tibenska E, Tedla M, Bucova M. Increased antifungal antibodies in bronchoalveolar lavage fluid and serum in pulmonary sarcoidosis. Scand J Immunol. 2015;81(4):259–64.CrossRefPubMed
12.
Zurück zum Zitat Gupta D, Agarwal R, Aggarwal AN, Jindal SK. Molecular evidence for the role of mycobacteria in sarcoidosis: a meta-analysis. Eur Respir J. 2007;30(3):508–16.CrossRefPubMed Gupta D, Agarwal R, Aggarwal AN, Jindal SK. Molecular evidence for the role of mycobacteria in sarcoidosis: a meta-analysis. Eur Respir J. 2007;30(3):508–16.CrossRefPubMed
13.
Zurück zum Zitat Zhou Y, Hu Y, Li H. Role of Propionibacterium Acnes in Sarcoidosis: A Meta-analysis. Sarcoidosis Vasc Diffuse Lung Dis. 2013;30(4):262–7.PubMed Zhou Y, Hu Y, Li H. Role of Propionibacterium Acnes in Sarcoidosis: A Meta-analysis. Sarcoidosis Vasc Diffuse Lung Dis. 2013;30(4):262–7.PubMed
14.
15.
Zurück zum Zitat DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.CrossRefPubMed DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.CrossRefPubMed
16.
Zurück zum Zitat Greenland S. Variance estimators for attributable fraction estimates consistent in both large strata and sparse data. Stat Med. 1987;6(6):701–8.CrossRefPubMed Greenland S. Variance estimators for attributable fraction estimates consistent in both large strata and sparse data. Stat Med. 1987;6(6):701–8.CrossRefPubMed
18.
Zurück zum Zitat Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.PubMed Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst. 1959;22(4):719–48.PubMed
19.
Zurück zum Zitat Abe C, Iwai K, Mikami R, Hosoda Y. Frequent isolation of Propionibacterium acnes from sarcoidosis lymph nodes. Zentralbl Bakteriol Mikrobiol Hyg A. 1984;256(4):541–7.PubMed Abe C, Iwai K, Mikami R, Hosoda Y. Frequent isolation of Propionibacterium acnes from sarcoidosis lymph nodes. Zentralbl Bakteriol Mikrobiol Hyg A. 1984;256(4):541–7.PubMed
20.
Zurück zum Zitat Hofland RW, Thijsen SF, Bouwman J, van der Wel M, Bossink AW. Sarcoidosis and Purified Protein Derivative reactivity. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(2):142–8.PubMed Hofland RW, Thijsen SF, Bouwman J, van der Wel M, Bossink AW. Sarcoidosis and Purified Protein Derivative reactivity. Sarcoidosis Vasc Diffuse Lung Dis. 2014;31(2):142–8.PubMed
21.
Zurück zum Zitat Drake WP, Pei Z, Pride DT, Collins RD, Cover TL, Blaser MJ. Molecular analysis of sarcoidosis tissues for mycobacterium species DNA. Emerg Infect Dis. 2002;8(11):1334–41.CrossRefPubMedPubMedCentral Drake WP, Pei Z, Pride DT, Collins RD, Cover TL, Blaser MJ. Molecular analysis of sarcoidosis tissues for mycobacterium species DNA. Emerg Infect Dis. 2002;8(11):1334–41.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Gazouli M, Ikonomopoulos J, Trigidou R, Foteinou M, Kittas C, Gorgoulis V. Assessment of mycobacterial, propionibacterial, and human herpesvirus 8 DNA in tissues of Greek patients with sarcoidosis. J Clin Microbiol. 2002;40(8):3060–3.CrossRefPubMedPubMedCentral Gazouli M, Ikonomopoulos J, Trigidou R, Foteinou M, Kittas C, Gorgoulis V. Assessment of mycobacterial, propionibacterial, and human herpesvirus 8 DNA in tissues of Greek patients with sarcoidosis. J Clin Microbiol. 2002;40(8):3060–3.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Bocart D, Lecossier D, De Lassence A, Valeyre D, Battesti JP, Hance AJ. A search for mycobacterial DNA in granulomatous tissues from patients with sarcoidosis using the polymerase chain reaction. Am Rev Respir Dis. 1992;145(5):1142–8.CrossRefPubMed Bocart D, Lecossier D, De Lassence A, Valeyre D, Battesti JP, Hance AJ. A search for mycobacterial DNA in granulomatous tissues from patients with sarcoidosis using the polymerase chain reaction. Am Rev Respir Dis. 1992;145(5):1142–8.CrossRefPubMed
24.
Zurück zum Zitat Robinson LA, Smith P, Sengupta DJ, Prentice JL, Sandin RL. Molecular analysis of sarcoidosis lymph nodes for microorganisms: a case–control study with clinical correlates. BMJ Open. 2013;3(12):e004065.CrossRefPubMedPubMedCentral Robinson LA, Smith P, Sengupta DJ, Prentice JL, Sandin RL. Molecular analysis of sarcoidosis lymph nodes for microorganisms: a case–control study with clinical correlates. BMJ Open. 2013;3(12):e004065.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Oswald-Richter KA, Beachboard DC, Seeley EH, Abraham S, Shepherd BE, Jenkins CA, Culver DA, Caprioli RM, Drake WP. Dual analysis for mycobacteria and propionibacteria in sarcoidosis BAL. J Clin Immunol. 2012;32(5):1129–40.CrossRefPubMedPubMedCentral Oswald-Richter KA, Beachboard DC, Seeley EH, Abraham S, Shepherd BE, Jenkins CA, Culver DA, Caprioli RM, Drake WP. Dual analysis for mycobacteria and propionibacteria in sarcoidosis BAL. J Clin Immunol. 2012;32(5):1129–40.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Svendsen CB, Milman N, Rasmussen EM, Thomsen VØ, Andersen CB, Krogfelt KA. The continuing search for Mycobacterium tuberculosis involvement in sarcoidosis: a study on archival biopsy specimens. Clin Respir J. 2011;5(2):99–104.CrossRefPubMed Svendsen CB, Milman N, Rasmussen EM, Thomsen VØ, Andersen CB, Krogfelt KA. The continuing search for Mycobacterium tuberculosis involvement in sarcoidosis: a study on archival biopsy specimens. Clin Respir J. 2011;5(2):99–104.CrossRefPubMed
27.
Zurück zum Zitat Mootha VK, Agarwal R, Aggarwal AN, Gupta D, Ahmed J, Verma I, Bal A. The Sarcoid-Tuberculosis link: evidence from a high TB prevalence country. J Infect. 2010;60(6):501–3.CrossRefPubMed Mootha VK, Agarwal R, Aggarwal AN, Gupta D, Ahmed J, Verma I, Bal A. The Sarcoid-Tuberculosis link: evidence from a high TB prevalence country. J Infect. 2010;60(6):501–3.CrossRefPubMed
28.
Zurück zum Zitat Zhou Y, Li HP, Li QH, Zheng H, Zhang RX, Chen G, Baughman RP. Differentiation of sarcoidosis from tuberculosis using real-time PCR assay for the detection and quantification of Mycobacterium tuberculosis. Sarcoidosis Vasc Diffuse Lung Dis. 2008;25(2):93–9.PubMed Zhou Y, Li HP, Li QH, Zheng H, Zhang RX, Chen G, Baughman RP. Differentiation of sarcoidosis from tuberculosis using real-time PCR assay for the detection and quantification of Mycobacterium tuberculosis. Sarcoidosis Vasc Diffuse Lung Dis. 2008;25(2):93–9.PubMed
29.
Zurück zum Zitat Dubaniewicz A, Dubaniewicz-Wybieralska M, Sternau A, Zwolska Z, Izycka-Swieszewska E, Augustynowicz-Kopec E, Skokowski J, Singh M, Zimnoch L. Mycobacterium tuberculosis complex and mycobacterial heat shock proteins in lymph node tissue from patients with pulmonary sarcoidosis. J Clin Microbiol. 2006;44(9):3448–51.CrossRefPubMedPubMedCentral Dubaniewicz A, Dubaniewicz-Wybieralska M, Sternau A, Zwolska Z, Izycka-Swieszewska E, Augustynowicz-Kopec E, Skokowski J, Singh M, Zimnoch L. Mycobacterium tuberculosis complex and mycobacterial heat shock proteins in lymph node tissue from patients with pulmonary sarcoidosis. J Clin Microbiol. 2006;44(9):3448–51.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Fité E, Fernández-Figueras MT, Prats R, Vaquero M, Morera J. High prevalence of Mycobacterium tuberculosis DNA in biopsies from sarcoidosis patients from Catalonia, Spain. Respiration. 2006;73(1):20–6.CrossRefPubMed Fité E, Fernández-Figueras MT, Prats R, Vaquero M, Morera J. High prevalence of Mycobacterium tuberculosis DNA in biopsies from sarcoidosis patients from Catalonia, Spain. Respiration. 2006;73(1):20–6.CrossRefPubMed
31.
Zurück zum Zitat Yasuhara T, Tada R, Nakano Y, Tei M, Mochida C, Kamei M, Kinoshita S. The presence of Propionibacterium spp. in the vitreous fluid of uveitis patients with sarcoidosis. Acta Ophthalmol Scand. 2005;83(3):364–9.CrossRefPubMed Yasuhara T, Tada R, Nakano Y, Tei M, Mochida C, Kamei M, Kinoshita S. The presence of Propionibacterium spp. in the vitreous fluid of uveitis patients with sarcoidosis. Acta Ophthalmol Scand. 2005;83(3):364–9.CrossRefPubMed
32.
Zurück zum Zitat Song Z, Marzilli L, Greenlee BM, Chen ES, Silver RF, Askin FB, Teirstein AS, Zhang Y, Cotter RJ, Moller DR. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J Exp Med. 2005;201(5):755–67.CrossRefPubMedPubMedCentral Song Z, Marzilli L, Greenlee BM, Chen ES, Silver RF, Askin FB, Teirstein AS, Zhang Y, Cotter RJ, Moller DR. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J Exp Med. 2005;201(5):755–67.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Marcoval J, Benítez MA, Alcaide F, Mañá J. Absence of ribosomal RNA of Mycobacterium tuberculosis complex in sarcoidosis. Arch Dermatol. 2005;141(1):57–9.CrossRefPubMed Marcoval J, Benítez MA, Alcaide F, Mañá J. Absence of ribosomal RNA of Mycobacterium tuberculosis complex in sarcoidosis. Arch Dermatol. 2005;141(1):57–9.CrossRefPubMed
34.
Zurück zum Zitat Lee JY, Chao SC, Yang MH, Yan JJ. Sarcoidosis in Taiwan: clinical characteristics and atypical mycobacteria. J Formos Med Assoc. 2002;101(11):749–55.PubMed Lee JY, Chao SC, Yang MH, Yan JJ. Sarcoidosis in Taiwan: clinical characteristics and atypical mycobacteria. J Formos Med Assoc. 2002;101(11):749–55.PubMed
35.
Zurück zum Zitat Eishi Y, Suga M, Ishige I, Kobayashi D, Yamada T, Takemura T, Takizawa T, Koike M, Kudoh S, Costabel U, Guzman J, Rizzato G, Gambacorta M, du Bois R, Nicholson AG, Sharma OP, Ando M. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol. 2002;40(1):198–204.CrossRefPubMedPubMedCentral Eishi Y, Suga M, Ishige I, Kobayashi D, Yamada T, Takemura T, Takizawa T, Koike M, Kudoh S, Costabel U, Guzman J, Rizzato G, Gambacorta M, du Bois R, Nicholson AG, Sharma OP, Ando M. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J Clin Microbiol. 2002;40(1):198–204.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Klemen H, Husain AN, Cagle PT, Garrity ER, Popper HH. Mycobacterial DNA in recurrent sarcoidosis in the transplanted lung--a PCR-based study on four cases. Virchows Arch. 2000;436(4):365–9.CrossRefPubMed Klemen H, Husain AN, Cagle PT, Garrity ER, Popper HH. Mycobacterial DNA in recurrent sarcoidosis in the transplanted lung--a PCR-based study on four cases. Virchows Arch. 2000;436(4):365–9.CrossRefPubMed
37.
Zurück zum Zitat Li N, Bajoghli A, Kubba A, Bhawan J. Identification of mycobacterial DNA in cutaneous lesions of sarcoidosis. J Cutan Pathol. 1999;26(6):271–8.CrossRefPubMed Li N, Bajoghli A, Kubba A, Bhawan J. Identification of mycobacterial DNA in cutaneous lesions of sarcoidosis. J Cutan Pathol. 1999;26(6):271–8.CrossRefPubMed
38.
Zurück zum Zitat Ishige I, Usui Y, Takemura T, Eishi Y. Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet. 1999;354(9173):120–3.CrossRefPubMed Ishige I, Usui Y, Takemura T, Eishi Y. Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet. 1999;354(9173):120–3.CrossRefPubMed
40.
Zurück zum Zitat Di Alberti L, Piattelli A, Artese L, Favia G, Patel S, Saunders N, Porter SR, Scully CM, Ngui SL, Teo CG. Human herpesvirus 8 variants in sarcoid tissues. Lancet. 1997;350(9092):1655–61.CrossRefPubMed Di Alberti L, Piattelli A, Artese L, Favia G, Patel S, Saunders N, Porter SR, Scully CM, Ngui SL, Teo CG. Human herpesvirus 8 variants in sarcoid tissues. Lancet. 1997;350(9092):1655–61.CrossRefPubMed
41.
Zurück zum Zitat Vokurka M, Lecossier D, du Bois RM, Wallaert B, Kambouchner M, Tazi A, Hance AJ. Absence of DNA from mycobacteria of the M. tuberculosis complex in sarcoidosis. Am J Respir Crit Care Med. 1997;156(3 Pt 1):1000–3.CrossRefPubMed Vokurka M, Lecossier D, du Bois RM, Wallaert B, Kambouchner M, Tazi A, Hance AJ. Absence of DNA from mycobacteria of the M. tuberculosis complex in sarcoidosis. Am J Respir Crit Care Med. 1997;156(3 Pt 1):1000–3.CrossRefPubMed
42.
Zurück zum Zitat Ozçelik U, Ozkara HA, Göçmen A, Akçören Z, Kocagöz T, Kiper N, Göğüs S, Cağlar M, Kale G, Kotiloğlu E. Detection of Mycobacterium tuberculosis DNA in tissue samples of children with sarcoidosis. Pediatr Pulmonol. 1997;24(2):122–4.CrossRefPubMed Ozçelik U, Ozkara HA, Göçmen A, Akçören Z, Kocagöz T, Kiper N, Göğüs S, Cağlar M, Kale G, Kotiloğlu E. Detection of Mycobacterium tuberculosis DNA in tissue samples of children with sarcoidosis. Pediatr Pulmonol. 1997;24(2):122–4.CrossRefPubMed
43.
Zurück zum Zitat Popper HH, Klemen H, Hoefler G, Winter E. Presence of mycobacterial DNA in sarcoidosis. Hum Pathol. 1997;28(7):796–800.CrossRefPubMed Popper HH, Klemen H, Hoefler G, Winter E. Presence of mycobacterial DNA in sarcoidosis. Hum Pathol. 1997;28(7):796–800.CrossRefPubMed
44.
Zurück zum Zitat el-Zaatari FA, Naser SA, Markesich DC, Kalter DC, Engstand L, Graham DY. Identification of Mycobacterium avium complex in sarcoidosis. J Clin Microbiol. 1996;34(9):2240–5.PubMedPubMedCentral el-Zaatari FA, Naser SA, Markesich DC, Kalter DC, Engstand L, Graham DY. Identification of Mycobacterium avium complex in sarcoidosis. J Clin Microbiol. 1996;34(9):2240–5.PubMedPubMedCentral
45.
46.
Zurück zum Zitat Thakker B, Black M, Foulis AK. Mycobacterial nucleic acids in sarcoid lesions. Lancet. 1992;339(8808):1537.CrossRefPubMed Thakker B, Black M, Foulis AK. Mycobacterial nucleic acids in sarcoid lesions. Lancet. 1992;339(8808):1537.CrossRefPubMed
47.
Zurück zum Zitat Gerdes J, Richter E, Rüsch-Gerdes S, Greinert V, Galle J, Schlaak M, Flad HD, Magnussen H. Mycobacterial nucleic acids in sarcoid lesions. Lancet. 1992;339(8808):1536–7.CrossRefPubMed Gerdes J, Richter E, Rüsch-Gerdes S, Greinert V, Galle J, Schlaak M, Flad HD, Magnussen H. Mycobacterial nucleic acids in sarcoid lesions. Lancet. 1992;339(8808):1536–7.CrossRefPubMed
48.
Zurück zum Zitat Mitchell IC, Turk JL, Mitchell DN. Detection of mycobacterial rRNA in sarcoidosis with liquid-phase hybridisation. Lancet. 1992;339(8800):1015–7.CrossRefPubMed Mitchell IC, Turk JL, Mitchell DN. Detection of mycobacterial rRNA in sarcoidosis with liquid-phase hybridisation. Lancet. 1992;339(8800):1015–7.CrossRefPubMed
49.
Zurück zum Zitat Saboor SA, Johnson NM, McFadden J. Detection of mycobacterial DNA in sarcoidosis and tuberculosis with polymerase chain reaction. Lancet. 1992;339(8800):1012–5.CrossRefPubMed Saboor SA, Johnson NM, McFadden J. Detection of mycobacterial DNA in sarcoidosis and tuberculosis with polymerase chain reaction. Lancet. 1992;339(8800):1012–5.CrossRefPubMed
50.
Zurück zum Zitat Lisby G, Milman N, Jacobsen GK. Search for Mycobacterium paratuberculosis DNA in tissue from patients with sarcoidosis by enzymatic gene amplification. APMIS. 1993;101(11):876–8.CrossRefPubMed Lisby G, Milman N, Jacobsen GK. Search for Mycobacterium paratuberculosis DNA in tissue from patients with sarcoidosis by enzymatic gene amplification. APMIS. 1993;101(11):876–8.CrossRefPubMed
51.
Zurück zum Zitat Grosser M, Luther T, Müller J, Schuppler M, Bickhardt J, Matthiessen W, Müller M. Detection of M. tuberculosis DNA in sarcoidosis: correlation with T-cell response. Lab Invest. 1999;79(7):775–84.PubMed Grosser M, Luther T, Müller J, Schuppler M, Bickhardt J, Matthiessen W, Müller M. Detection of M. tuberculosis DNA in sarcoidosis: correlation with T-cell response. Lab Invest. 1999;79(7):775–84.PubMed
52.
Zurück zum Zitat Vago L, Barberis M, Gori A, Scarpellini P, Sala E, Nebuloni M, Bonetto S, Cannone M, Marchetti G, Franzetti F, Costanzi G. Nested polymerase chain reaction for Mycobacterium tuberculosis IS6110 sequence on formalin-fixed paraffin-embedded tissues with granulomatous diseases for rapid diagnosis of tuberculosis. Am J Clin Pathol. 1998;109(4):411–5.CrossRefPubMed Vago L, Barberis M, Gori A, Scarpellini P, Sala E, Nebuloni M, Bonetto S, Cannone M, Marchetti G, Franzetti F, Costanzi G. Nested polymerase chain reaction for Mycobacterium tuberculosis IS6110 sequence on formalin-fixed paraffin-embedded tissues with granulomatous diseases for rapid diagnosis of tuberculosis. Am J Clin Pathol. 1998;109(4):411–5.CrossRefPubMed
53.
Zurück zum Zitat Richter E, Greinert U, Kirsten D, Rüsch-Gerdes S, Schlüter C, Duchrow M, Galle J, Magnussen H, Schlaak M, Flad HD, Gerdes J. Assessment of mycobacterial DNA in cells and tissues of mycobacterial and sarcoid lesions. Am J Respir Crit Care Med. 1996;153(1):375–80.CrossRefPubMed Richter E, Greinert U, Kirsten D, Rüsch-Gerdes S, Schlüter C, Duchrow M, Galle J, Magnussen H, Schlaak M, Flad HD, Gerdes J. Assessment of mycobacterial DNA in cells and tissues of mycobacterial and sarcoid lesions. Am J Respir Crit Care Med. 1996;153(1):375–80.CrossRefPubMed
54.
Zurück zum Zitat Ghossein RA, Ross DG, Salomon RN, Rabson AR. A search for mycobacterial DNA in sarcoidosis using the polymerase chain reaction. Am J Clin Pathol. 1994;101(6):733–7.CrossRefPubMed Ghossein RA, Ross DG, Salomon RN, Rabson AR. A search for mycobacterial DNA in sarcoidosis using the polymerase chain reaction. Am J Clin Pathol. 1994;101(6):733–7.CrossRefPubMed
55.
Zurück zum Zitat Cannone M, Vago L, Porini G, Bonetto S, Cassi C, Bramerio M, Rizzato G, Barberis MC. Detection of mycobacterium tuberculosis DNA using nested polymerase chain reaction in lymph nodes with sarcoidosis, fixed in formalin and embedded in paraffin. Pathologica. 1997;89(5):512–6.PubMed Cannone M, Vago L, Porini G, Bonetto S, Cassi C, Bramerio M, Rizzato G, Barberis MC. Detection of mycobacterium tuberculosis DNA using nested polymerase chain reaction in lymph nodes with sarcoidosis, fixed in formalin and embedded in paraffin. Pathologica. 1997;89(5):512–6.PubMed
56.
Zurück zum Zitat Negi M, Takemura T, Guzman J, Uchida K, Furukawa A, Suzuki Y, Iida T, Ishige I, Minami J, Yamada T, Kawachi H, Costabel U, Eishi Y. Localization of Propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod Pathol. 2012;25(9):1284–97.CrossRefPubMedPubMedCentral Negi M, Takemura T, Guzman J, Uchida K, Furukawa A, Suzuki Y, Iida T, Ishige I, Minami J, Yamada T, Kawachi H, Costabel U, Eishi Y. Localization of Propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod Pathol. 2012;25(9):1284–97.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Yamada T, Eishi Y, Ikeda S, Ishige I, Suzuki T, Takemura T, Takizawa T, Koike M. In situ localization of Propionibacterium acnes DNA in lymph nodes from sarcoidosis patients by signal amplification with catalysed reporter deposition. J Pathol. 2002;198(4):541–7.CrossRefPubMed Yamada T, Eishi Y, Ikeda S, Ishige I, Suzuki T, Takemura T, Takizawa T, Koike M. In situ localization of Propionibacterium acnes DNA in lymph nodes from sarcoidosis patients by signal amplification with catalysed reporter deposition. J Pathol. 2002;198(4):541–7.CrossRefPubMed
58.
Zurück zum Zitat Eishi Y. Seeking a causative agent of sarcoidosis. Nihon Rinsho. 1994;52(6):1486–91.PubMed Eishi Y. Seeking a causative agent of sarcoidosis. Nihon Rinsho. 1994;52(6):1486–91.PubMed
59.
Zurück zum Zitat Hiramatsu J, Kataoka M, Nakata Y, Okazaki K, Tada S, Tanimoto M, Eishi Y. Propionibacterium acnes DNA detected in bronchoalveolar lavage cells from patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2003;20(3):197–203.PubMed Hiramatsu J, Kataoka M, Nakata Y, Okazaki K, Tada S, Tanimoto M, Eishi Y. Propionibacterium acnes DNA detected in bronchoalveolar lavage cells from patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2003;20(3):197–203.PubMed
60.
Zurück zum Zitat Knoell KA, Hendrix Jr JD, Stoler MH, Patterson JW, Montes CM. Absence of human herpesvirus 8 in sarcoidosis and crohn disease granulomas. Arch Dermatol. 2005;141(7):909–10.CrossRefPubMed Knoell KA, Hendrix Jr JD, Stoler MH, Patterson JW, Montes CM. Absence of human herpesvirus 8 in sarcoidosis and crohn disease granulomas. Arch Dermatol. 2005;141(7):909–10.CrossRefPubMed
61.
Zurück zum Zitat Fredricks DN, Martin TM, Edwards AO, Rosenbaum JT, Relman DA. Human herpesvirus 8 and sarcoidosis. Clin Infect Dis. 2002;34(4):559–60.CrossRefPubMed Fredricks DN, Martin TM, Edwards AO, Rosenbaum JT, Relman DA. Human herpesvirus 8 and sarcoidosis. Clin Infect Dis. 2002;34(4):559–60.CrossRefPubMed
62.
Zurück zum Zitat Maeda H, Niimi T, Sato S, Kawaguchi H, Sugiura Y, Mori S, Ueda R. Human herpesvirus 8 is not associated with sarcoidosis in Japanese patients. Chest. 2000;118(4):923–7.CrossRefPubMed Maeda H, Niimi T, Sato S, Kawaguchi H, Sugiura Y, Mori S, Ueda R. Human herpesvirus 8 is not associated with sarcoidosis in Japanese patients. Chest. 2000;118(4):923–7.CrossRefPubMed
63.
Zurück zum Zitat Sugaya M, Nakamura K, Takahiro W, Tamaki K. Human herpesvirus type 8 is not detected in cutaneous lesions of sarcoidosis. Br J Dermatol. 1999;141(4):769.CrossRefPubMed Sugaya M, Nakamura K, Takahiro W, Tamaki K. Human herpesvirus type 8 is not detected in cutaneous lesions of sarcoidosis. Br J Dermatol. 1999;141(4):769.CrossRefPubMed
64.
Zurück zum Zitat Bélec L, Mohamed AS, Lechapt-Zalcman E, Authier FJ, Lange F, Gherardi RK. Lack of HHV-8 DNA sequences in sarcoid tissues of French patients. Chest. 1998;114(3):948–9.CrossRefPubMed Bélec L, Mohamed AS, Lechapt-Zalcman E, Authier FJ, Lange F, Gherardi RK. Lack of HHV-8 DNA sequences in sarcoid tissues of French patients. Chest. 1998;114(3):948–9.CrossRefPubMed
65.
Zurück zum Zitat Ishihara M, Ohno S, Ono H, Isogai E, Kimura K, Isogai H, Aoki K, Ishida T, Suzuki K, Kotake S, Hiraga Y. Seroprevalence of anti-Borrelia antibodies among patients with confirmed sarcoidosis in a region of Japan where Lyme borreliosis is endemic. Graefes Arch Clin Exp Ophthalmol. 1998;236(4):280–4.CrossRefPubMed Ishihara M, Ohno S, Ono H, Isogai E, Kimura K, Isogai H, Aoki K, Ishida T, Suzuki K, Kotake S, Hiraga Y. Seroprevalence of anti-Borrelia antibodies among patients with confirmed sarcoidosis in a region of Japan where Lyme borreliosis is endemic. Graefes Arch Clin Exp Ophthalmol. 1998;236(4):280–4.CrossRefPubMed
66.
Zurück zum Zitat Martens H, Zöllner B, Zissel G, Burdon D, Schlaak M, Müller-Quernheim J. Anti-Borrelia burgdorferi immunoglobulin seroprevalence in pulmonary sarcoidosis: a negative report. Eur Respir J. 1997;10(6):1356–8.CrossRefPubMed Martens H, Zöllner B, Zissel G, Burdon D, Schlaak M, Müller-Quernheim J. Anti-Borrelia burgdorferi immunoglobulin seroprevalence in pulmonary sarcoidosis: a negative report. Eur Respir J. 1997;10(6):1356–8.CrossRefPubMed
67.
Zurück zum Zitat Lian W, Luo W. Borrelia burgdorferi DNA in biological samples from patients with sarcoidosis using the polymerase chain reaction technique. Chin Med Sci J. 1995;10(2):93–5.PubMed Lian W, Luo W. Borrelia burgdorferi DNA in biological samples from patients with sarcoidosis using the polymerase chain reaction technique. Chin Med Sci J. 1995;10(2):93–5.PubMed
68.
Zurück zum Zitat Xu Z, Ma D, Luo W, Zhu Y. Detection of Borrelia burgdorferi DNA in granulomatous tissues from patients with sarcoidosis using polymerase chain reaction in situ technique. Chin Med Sci J. 1996;11(4):220–3.PubMed Xu Z, Ma D, Luo W, Zhu Y. Detection of Borrelia burgdorferi DNA in granulomatous tissues from patients with sarcoidosis using polymerase chain reaction in situ technique. Chin Med Sci J. 1996;11(4):220–3.PubMed
69.
Zurück zum Zitat Ishihara M, Ishida T, Isogai E, Kimura K, Oritsu M, Matsui Y, Isogai H, Ohno S. Detection of antibodies to Borrelia species among patients with confirmed sarcoidosis in a region where Lyme disease is nonendemic. Graefes Arch Clin Exp Ophthalmol. 1996;234(12):770–3.CrossRefPubMed Ishihara M, Ishida T, Isogai E, Kimura K, Oritsu M, Matsui Y, Isogai H, Ohno S. Detection of antibodies to Borrelia species among patients with confirmed sarcoidosis in a region where Lyme disease is nonendemic. Graefes Arch Clin Exp Ophthalmol. 1996;234(12):770–3.CrossRefPubMed
70.
Zurück zum Zitat Nilsson K, Påhlson C, Lukinius A, Eriksson L, Nilsson L, Lindquist O. Presence of Rickettsia helvetica in granulomatous tissue from patients with sarcoidosis. J Infect Dis. 2002;185(8):1128–38.CrossRefPubMed Nilsson K, Påhlson C, Lukinius A, Eriksson L, Nilsson L, Lindquist O. Presence of Rickettsia helvetica in granulomatous tissue from patients with sarcoidosis. J Infect Dis. 2002;185(8):1128–38.CrossRefPubMed
71.
Zurück zum Zitat Svendsen CB, Milman N, Andersen CB, Rasmussen EM, Thomsen VØ, Krogfelt KA. Is sarcoidosis a rickettsiosis? An archival study. Scand J Infect Dis. 2011;43(5):349–53.CrossRefPubMed Svendsen CB, Milman N, Andersen CB, Rasmussen EM, Thomsen VØ, Krogfelt KA. Is sarcoidosis a rickettsiosis? An archival study. Scand J Infect Dis. 2011;43(5):349–53.CrossRefPubMed
72.
Zurück zum Zitat Puolakkainen M, Campbell LA, Kuo CC, Leinonen M, Grönhagen-Riska C, Saikku P. Serological response to Chlamydia pneumoniae in patients with sarcoidosis. J Infect. 1996;33(3):199–205.CrossRefPubMed Puolakkainen M, Campbell LA, Kuo CC, Leinonen M, Grönhagen-Riska C, Saikku P. Serological response to Chlamydia pneumoniae in patients with sarcoidosis. J Infect. 1996;33(3):199–205.CrossRefPubMed
73.
Zurück zum Zitat Lyons DJ, Sinclair A, Smith HG, Mitchell DN, Dalgleish AG. Search for a retroviral cause for sarcoidosis: no evidence from peripheral blood studies. Eur Respir J. 1991;4(4):445–9.PubMed Lyons DJ, Sinclair A, Smith HG, Mitchell DN, Dalgleish AG. Search for a retroviral cause for sarcoidosis: no evidence from peripheral blood studies. Eur Respir J. 1991;4(4):445–9.PubMed
74.
Zurück zum Zitat Schupp JC, Tchaptchet S, Lützen N, Engelhard P, Müller-Quernheim J, Freudenberg MA, Prasse A. Immune response to Propionibacterium acnes in patients with sarcoidosis--in vivo and in vitro. BMC Pulm Med. 2015;15:75.CrossRefPubMedPubMedCentral Schupp JC, Tchaptchet S, Lützen N, Engelhard P, Müller-Quernheim J, Freudenberg MA, Prasse A. Immune response to Propionibacterium acnes in patients with sarcoidosis--in vivo and in vitro. BMC Pulm Med. 2015;15:75.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Zhou Y, Wei YR, Zhang Y, Du SS, Baughman RP, Li HP. Real-time quantitative reverse transcription-polymerase chain reaction to detect propionibacterial ribosomal RNA in the lymph nodes of Chinese patients with sarcoidosis. Clin Exp Immunol. 2015;181(3):511–7.CrossRefPubMedPubMedCentral Zhou Y, Wei YR, Zhang Y, Du SS, Baughman RP, Li HP. Real-time quantitative reverse transcription-polymerase chain reaction to detect propionibacterial ribosomal RNA in the lymph nodes of Chinese patients with sarcoidosis. Clin Exp Immunol. 2015;181(3):511–7.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Yorozu P, Furukawa A, Uchida K, Akashi T, Kakegawa T, Ogawa T, Minami J, Suzuki Y, Awano N, Furusawa H, Miyazaki Y, Inase N, Eishi Y. Propionibacterium acnes catalase induces increased Th1 immune response in sarcoidosis patients. Respir Investig. 2015;53(4):161–9.CrossRefPubMed Yorozu P, Furukawa A, Uchida K, Akashi T, Kakegawa T, Ogawa T, Minami J, Suzuki Y, Awano N, Furusawa H, Miyazaki Y, Inase N, Eishi Y. Propionibacterium acnes catalase induces increased Th1 immune response in sarcoidosis patients. Respir Investig. 2015;53(4):161–9.CrossRefPubMed
77.
Zurück zum Zitat Ishige I, Eishi Y, Takemura T, Kobayashi I, Nakata K, Tanaka I, Nagaoka S, Iwai K, Watanabe K, Takizawa T, Koike M. Propionibacterium acnes is the most common bacterium commensal in peripheral lung tissue and mediastinal lymph nodes from subjects without sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2005;22(1):33–42.PubMed Ishige I, Eishi Y, Takemura T, Kobayashi I, Nakata K, Tanaka I, Nagaoka S, Iwai K, Watanabe K, Takizawa T, Koike M. Propionibacterium acnes is the most common bacterium commensal in peripheral lung tissue and mediastinal lymph nodes from subjects without sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2005;22(1):33–42.PubMed
78.
Zurück zum Zitat Jacob F. Could Borrelia burgdorferi be a causal agent of sarcoidosis? Med Hypotheses. 1989;30(4):241–3.CrossRefPubMed Jacob F. Could Borrelia burgdorferi be a causal agent of sarcoidosis? Med Hypotheses. 1989;30(4):241–3.CrossRefPubMed
79.
Zurück zum Zitat Edelson E. Isoniazid in the treatment of sarcoidosis; a preliminary report. J Invest Dermatol. 1953;21(2):71–4.CrossRefPubMed Edelson E. Isoniazid in the treatment of sarcoidosis; a preliminary report. J Invest Dermatol. 1953;21(2):71–4.CrossRefPubMed
80.
Zurück zum Zitat Israel HL, Sones M, Harrell D. Ineffectiveness of isoniazid and iproniazid in therapy of sarcoidosis. Am Rev Tuberc. 1953;67(5):671–3.PubMed Israel HL, Sones M, Harrell D. Ineffectiveness of isoniazid and iproniazid in therapy of sarcoidosis. Am Rev Tuberc. 1953;67(5):671–3.PubMed
81.
Zurück zum Zitat Holsinger RE, Dalton JE. Isoniazid therapy in cutaneous tuberculosis and sarcoidosis. J Am Med Assoc. 1954;154(6):475–81.CrossRefPubMed Holsinger RE, Dalton JE. Isoniazid therapy in cutaneous tuberculosis and sarcoidosis. J Am Med Assoc. 1954;154(6):475–81.CrossRefPubMed
82.
Zurück zum Zitat Chatterjee SC, Ghosh JC. Sarcoidosis treated with antituberculous drugs. J Indian Med Assoc. 1957;29(2):61–3.PubMed Chatterjee SC, Ghosh JC. Sarcoidosis treated with antituberculous drugs. J Indian Med Assoc. 1957;29(2):61–3.PubMed
83.
Zurück zum Zitat Drake WP, Oswald-Richter K, Richmond BW, Isom J, Burke VE, Algood H, Braun N, Taylor T, Pandit KV, Aboud C, Yu C, Kaminski N, Boyd AS, King LE. Oral antimycobacterial therapy in chronic cutaneous sarcoidosis: a randomized, single-masked, placebo-controlled study. JAMA Dermatol. 2013;149(9):1040–9.CrossRefPubMedPubMedCentral Drake WP, Oswald-Richter K, Richmond BW, Isom J, Burke VE, Algood H, Braun N, Taylor T, Pandit KV, Aboud C, Yu C, Kaminski N, Boyd AS, King LE. Oral antimycobacterial therapy in chronic cutaneous sarcoidosis: a randomized, single-masked, placebo-controlled study. JAMA Dermatol. 2013;149(9):1040–9.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Drake WP, Richmond BW, Oswald-Richter K, Yu C, Isom JM, Worrell JA, Shipley GR. Effects of broad-spectrum antimycobacterial therapy on chronic pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2013;30(3):201–11.PubMedPubMedCentral Drake WP, Richmond BW, Oswald-Richter K, Yu C, Isom JM, Worrell JA, Shipley GR. Effects of broad-spectrum antimycobacterial therapy on chronic pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2013;30(3):201–11.PubMedPubMedCentral
85.
Zurück zum Zitat Sheu J, Saavedra AP, Mostaghimi A. Rapid response of tattoo-associated cutaneous sarcoidosis to minocycline: case report and review of the literature. Dermatol Online J. 2014;20(8):6. Sheu J, Saavedra AP, Mostaghimi A. Rapid response of tattoo-associated cutaneous sarcoidosis to minocycline: case report and review of the literature. Dermatol Online J. 2014;20(8):6.
86.
Zurück zum Zitat Steen T, English JC. Oral minocycline in treatment of cutaneous sarcoidosis. JAMA Dermatol. 2013;149(6):758–60.CrossRefPubMed Steen T, English JC. Oral minocycline in treatment of cutaneous sarcoidosis. JAMA Dermatol. 2013;149(6):758–60.CrossRefPubMed
87.
Zurück zum Zitat Miyazaki E, Ando M, Fukami T, Nureki S, Eishi Y, Kumamoto T. Minocycline for the treatment of sarcoidosis: is the mechanism of action immunomodulating or antimicrobial effect? Clin Rheumatol. 2008;27(9):1195–7.CrossRefPubMed Miyazaki E, Ando M, Fukami T, Nureki S, Eishi Y, Kumamoto T. Minocycline for the treatment of sarcoidosis: is the mechanism of action immunomodulating or antimicrobial effect? Clin Rheumatol. 2008;27(9):1195–7.CrossRefPubMed
Metadaten
Titel
Is there any association between Sarcoidosis and infectious agents?: a systematic review and meta-analysis
verfasst von
Tiago Esteves
Gloria Aparicio
Vicente Garcia-Patos
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2016
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-016-0332-z

Weitere Artikel der Ausgabe 1/2016

BMC Pulmonary Medicine 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.