Skip to main content
Erschienen in: Annals of Nuclear Medicine 6/2023

Open Access 11.04.2023 | Invited Review Article

J-ACCESS investigation and nuclear cardiology in Japan: implications for heart failure

verfasst von: Kenichi Nakajima, Tsunehiko Nishimura

Erschienen in: Annals of Nuclear Medicine | Ausgabe 6/2023

Abstract

While coronary heart disease remains a global cause of mortality, the prevalence of heart failure (HF) is increasing in developed countries including Japan. The continuously increasing aging population and the relatively low incidence of ischemic origins are features of the HF background in Japan. Information about nuclear cardiology practice and prognosis has accumulated, thanks to the multicenter prognostic J-ACCESS investigations (Series 1‒4) over two decades in Japan. Although the rate of hard cardiac events is lower in Japan than in the USA and Europe, similar predictors have been identified as causes of major adverse cardiac events. The highest proportion (50–75%) of major events among patients indicated for nuclear cardiology examinations in the J-ACCESS registries is severe HF requiring hospitalization. Therefore, the background and the possible reasons for the higher proportion of severe HF events in Japan require clarification. Combinations of age, myocardial perfusion defects, left ventricular dysfunction, and comorbid diabetes and chronic kidney disease are major predictors of cardiovascular events including severe HF. Although the Japanese Circulation Society has updated its clinical guidelines to incorporate non-invasive imaging modalities for diagnosing chronic coronary artery disease, the importance of risk-based approaches to optimal medical therapy and coronary revascularization is emphasized herein.
Hinweise
Dr. Nishimura: Principal J-ACCESS investigator.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CAD
Coronary artery disease
CAG
Coronary angiography
CCTA
Coronary computed tomography angiography
CKD
Chronic kidney disease
eGFR
Estimated glomerular filtration rate
FFR
Fractional flow reserve
HF
Heart failure
J-ACCESS
Japanese assessment of cardiac events and survival study by quantitative gated SPECT
JROAD
Japanese registry of all cardiac and vascular diseases
JROADHF
Japanese registry of acute decompensated heart failure
MPI
Myocardial perfusion imaging
OMT
Optimal medical therapy
PCI
Percutaneous coronary intervention
SPECT
Single-photon emission computed tomography
SSS
Summed stress scores

Coronary artery disease (CAD) and heart failure (HF) in Japan

Coronary artery disease (CAD) remains the leading cause of mortality and morbidity in developed countries, including Japan. The global prevalence of HF is increasing despite advances in pharmacological and non-pharmacological therapies, and early recognition and appropriate treatments are recognized as major health-related issues. The number of patients aged > 20 years with HF is 6.5 million in the USA, and > 1.2 million in Japan with HF are outpatients [1]. The Japanese Registry of All Cardiac and Vascular Diseases (JROAD) statistics generated by the Japan Circulation Society (https://​www.​j-circ.​or.​jp/​jittai_​chosa/​about/​report/​https://​www.​j-circ.​or.​jp/​jittai_​chosa/​about/​report/​, accessed on December 2022) indicate that ~ 0.3 million patients were diagnosed and hospitalized with HF in Japan during 2020 (Fig. 1). The prevalence of HF among persons aged ≥ 20 years in the USA was 2.1% (5.1 million) during 2010 [2], when the estimated prevalence in Japan was 1%. However, the population of people aged > 75 years is increasing and is predicted to reach 20% by 2025. In fact, statistics from the Japanese Registry of Acute Decompensated Heart Failure (JROADHF) show that the mean age of 13,238 patients at 128 hospitals was 78.0 ± 12.5 years, with those aged > 75 years accounting for 68.9%. During a median follow-up of 4.3 years, the respective rates of cardiovascular death and the re-hospitalization for HF were 7.1 and 21.1 per 100 person-years [3]. The relatively low incidence (26.6%) of ischemic etiology in this multicenter registry is characteristic of Japanese patients with HF, but the proportion of HF caused by ischemic heart disease has recently increased. In contrast, the proportion of ischemic etiology in the European Society of Cardiology HF long-term (ESC-HF-LT) registry is 56.5% [4, 5]. Thus, we anticipate a rapid increase in the numbers of patients with HF, which will also increase the burden on the Japanese healthcare system. Moreover, the social frailty of super-aged elderly and the increasing proportions of individuals with dementia are important targets in Japan [6]. The rate of pump-failure death is high in aged populations with HF. Moreover, HF with preserved ejection fraction (HFpEF) might have contributed to 16–50% of HF according to recent databases [1, 3, 7], and hypertension and ischemic heart disease are major underlying diseases in Japan. Strategies for avoiding sudden cardiac death could also be an important target in younger patients. The Chronic Heart Failure Analysis and Registry in the Tohoku District (CHART) studies 1 and 2 have identified westernized ischemic etiology and clinical characteristics in Japan as increased comorbidity and HF admissions [8].
An overview of imaging modality statistics in JROAD showed that the rate of coronary CT angiography (CCTA) evaluations has rapidly increased, whereas that of myocardial perfusion imaging (MPI) has gradually decreased over the past decade (Fig. 1). Coronary angiography (CAG) and elective percutaneous coronary interventions (PCI) have slightly decreased since 2018, which was partly due to changes in reimbursement policies that are discussed in the section entitled Guidelines for stable CAD updated by the Japanese Circulation Society (JCS) below.
With respect to nuclear cardiology practice, few multi-center registries in Japan include patients with CAD and HF, and the prospective prognostic study of Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT (J-ACCESS) 1‒4 are important databases for understanding the role of MPI [913]. Although J-ACCESS includes patients with definite or suspected CAD and investigations of HF outcomes were not intended, the most prevalent outcome was severe HF requiring hospitalization. Therefore, the incidence and the reasons for HF events in patients who underwent nuclear studies require clarification. This article reviews J-ACCESS investigations conducted since 2001 to the present, as well as recent Japanese trends in nuclear cardiology, and discusses possible roles of nuclear imaging with a focus on HF.

J-ACCESS and prognosis of ischemic heart disease in Japan

Epidemiological and race differences between Japan and the USA as well as European countries should be considered when evaluating prognoses associated with MPI. However, such a database was not available in Japan during the year 2000. We therefore created the first nationwide database that specifically focused on evaluations by quantitative myocardial perfusion single-photon emission computed tomography (SPECT), namely the Japanese Assessment of Cardiac Events and Survival Study by Quantitative Gated SPECT (J-ACCESS; QGS; Mount Sinai Medical Center, Los Angeles, CA, USA) [9]. Four series of J-ACCESS investigations over the next two decades focused on different types of targeted patients (Table 1, Fig. 2).
Table 1
Background and major events in J-ACCESS investigations
 
J-ACCESS
J-ACCESS 2
J-ACCESS 3
J-ACCESS 4
Registered patients (n)
4629
513
549
494
Registered patients analyzed (n)
4031
485
529
298
Hospitals (n)
117
50
62
59
Disease
CAD
Type 2 diabetes
CKD
CAD before revascularization
Follow-up interval (years)
3
3
3
1
Age (years)
66 ± 11
67 ± 8
72 ± 11
70 ± 9
Summed stress score
8.7 ± 11.2
2.8 ± 4.6
1.9 ± 3.8
10.7 ± 6.1
LVEF (%)
62 ± 14
67 ± 10
62 ± 15
68 ± 11
Diabetes mellitus
29%
100%
42%
47%
eGFR (mL/min/1.73 m2)
67 ± 31 (n = 2395)
82 ± 28
29 ± 13
63 ± 17
Endpoint of major events
CD, NFMI, severe HF
Cardiovascular events
CD, NFMI, severe HF
CD, NFMI, severe HF
Major events (1 + 2 + 3)
189
17
60
4
Cardiac death (1) (sudden cardiac death included)
57 (1.4%)
5 (1.0%)
9 (1.7%)
0 (0.0%)
NFMI (2)
39 (1.0%)
9 (1.9%)
5 (0.9%)
1 (0.3%)
Severe HF (3)
93 (2.3%)
3 (0.6%)
46 (8.7%)
3 (1.0%)
Severe HF/major events
49.2%
17.6%
76.7%
75%
Other events
 
Cerebrovascular TIA (n = 17)
  
Data are shown as means ± standard deviation, and numbers with or without ratios (%)
CAD coronary artery disease, CD cardiac death, CKD chronic kidney disease, HF heart failure, NFMI non-fatal myocardial infarction, TIA transient ischemic attack
The J-ACCESS registered 4629 consecutive patients with confirmed or suspected CAD from 117 institutions in 2001. All patients underwent 99mTc-tetrofosmin stress-rest studies and quantitative perfusion defect scoring with summed stress/rest/difference scores (SSS/SRS/SDS) and quantitative left ventricular functional analysis [14]. The major events were cardiac death, non-fatal myocardial infarction (MI), and severe HF requiring hospitalization. These patients were followed up for 3 years during the J-ACCESS investigations 1‒3, when 175 (4.3%) patients developed major cardiac events, of which half were severe HF requiring hospitalization (Fig. 2A,B,C). Although the rate of major events was lower in Japan than in the USA between 1998 and 2003 [15, 16], the major predictors of events were similar among several multicenter studies. For example, normal myocardial perfusion SPECT with normal ventricular function indicated a good prognosis [17, 18]. Myocardial perfusion defects at stress and a lower left ventricular ejection fraction (LVEF) were major predictors of cardiac events. Having comorbid diabetes mellitus or chronic kidney disease (CKD) increased major event risk ~ twofold, which was less fatal but similar to findings in the USA [1921]. Perfusion abnormalities revealed by coronary angiography (CAG) had significant additive value over coronary stenosis for predicting cardiac events [22]. A propensity-score-matched analysis of early revascularization and medications revealed that such abnormalities were effective for patients with > 10% ischemia (Fig. 2E) [23]. While the study included a high proportion of serious HF events (49‒77%; J-ACCESS-1, 3 and 4), CKD, greater SSS, and higher end-systolic volume (ESV) or low LVEF were independent and additive predictors of refractory HF risk in patients with confirmed or suspected CAD [24].
The J-ACCESS 2 study investigated the prognosis of patients with type-2 diabetes and asymptomatic CAD [11]. Abnormal perfusion findings indicated myocardial ischemia and/or scar in 32% of 485 patients. Five (1.0%) of 485 patients developed fatal cardiovascular events, and severe HF and other events comprised mostly non-fatal acute coronary syndrome, new onset of stable angina pectoris, and cerebrovascular accidents in 9 (1.9%), 10 (2.1%), and 15 (3.1%) of these patients, respectively, during a 3-year follow-up. Multivariate analysis revealed that SSS ≥ 9, low eGFR, and currently smoking were significant variables, indicating that this group of patients needed active treatment strategies.
The J-ACCESS 3 prospective cohort study of CKD investigated predictions of cardiac events among patients with eGFR < 50 mL/min/1.73 m2 without definitive CAD [11]. The event-free survival rate was lower among patients with renal dysfunction and a higher SSS (Fig. 2D). A C-reactive protein value of ≥ 0.3 mg/dL independently predicted cardiac events, suggesting that this additional inflammatory parameter is important as a pathophysiological basis for developing cardiovascular events. The highest fraction of the events consisted of severe HF (77%), which confirmed the importance of therapeutic intervention for patients with CKD (Fig. 2F).
The J-ACCESS 4 study investigated patients with coronary revascularization [13]. Although cardiology guidelines describe myocardial ischemia as an indication for coronary revascularization in patients with chronic stable CAD, whether myocardial ischemia could be a target of coronary revascularization to reduce cardiac events was not verified in a Japanese population. When patients were classified into two groups with a threshold of 5% ischemic reduction, the prognosis of those with ≥ 5% improvement after revascularization was significantly better, and essentially agreed with the findings of a large cohort in the COURAGE study [25].
The J-ACCESS series revealed a lower prevalence of CAD and a better prognosis for Japanese patients than those in other developed countries. The hard cardiac event rate of Japanese patients was < 3% over 3 years, which was less than half that of patients in the USA [9, 10, 16].

J-ACCESS risk model for stratifying prognosis in patients with suspected CAD

Appropriate risk stratification is a major target of MPI studies because total risk to patients can be determined by comorbidities in addition to perfusion and function. We therefore proposed a risk chart or software based on statistical multivariable models derived from the J-ACCESS results. The risk model included the variables of age, SSS, LVEF, and diabetes in the initial model, then was revised by adding eGFR as a variable [26, 27]. The risk chart and Heart Risk View software (Nihon Medi Physics, Tokyo, Japan) have been incorporated into current clinical practice. The risk model calculates major event rates as ratios (%) per 3 years. This model was intended for application to patients with suspected CAD and a background similar to that in the J-ACCESS study [28]. We validated the model by comparing predicted and actual outcomes between a new patient cohort in the APPROACH study [29] and patients in J-ACCESS 3 [30]. The results showed that the risk model effectively stratified risk, whereas actual event rates were equally high across all risk groups among patients with eGFR < 15 mL/min/1.73 m2. The model was not intended simply to numerically report event rates. More importantly, risk stratification incorporating MPI and clinical variables allowed the classification of patients at low, intermediate, and high risk for cardiovascular events. This provided useful information upon which to base decisions regarding medications and other types of therapies such as coronary revascularization (Fig. 3).
Although risk can be evaluated by stress MPI, how prognostic indices can be applied in clinical practice is more important [31]. Even when degrees of ischemia are similar, event rates will be higher in patients with, than without comorbid diabetes, CKD and a reduced LVEF. This might have a practical value when considering invasive therapeutic strategies.
Table 2 shows multivariable logistic analyses recalculated to predict major cardiac events using the continuous variable of age, and the categorical variables of LVEF (< 35%, 35‒50%, > 50%), eGFR stage (G1, ≥ 90; G2, 60‒89; G3, 30‒59; G4, 15‒29; G5, < 15 mL/min/1.73 m2), diabetes (0, 1), and SSS grades (0, 1, 2, and 3: scores < 4; 4‒8; 9‒12 and > 12, respectively). This table was recalculated based on previous information [27] using the same categorical variables except for age. The model structure revealed how each variable affects major event outcomes. Combining moderate-to-high SSS, low eGFR, low LVEF, and diabetes synergistically doubled the calculated risk (Fig. 3). Figure 4 shows levels of risk for major cardiac events estimated by the model to understand the contribution of each factor. Since the model included severe HF as a major event, we created another risk model, namely cardiac death and non-fatal MI for estimating hard events. Diagnostic use of multivariable risk model incorporating SSS, left ventricular volume, diabetes, hypertension, and number of risk factors has also been proposed for the diagnosis of multivessel CAD and indications for stress-only imaging [32]. A combination of diabetes and CKD offers important predictors when considering the background of Japanese patients with HF, because the JROAD HF statistics revealed that 30.1% and 38.9% of patients, respectively, had comorbid diabetes and CKD [3].
Table 2
Multivariable analyses to predict major and hard cardiac events
Term
Estimate
SE
χ2
OR
Lower 95%
Upper 95%
p
Major cardiac events
 Intercept
− 9.979
0.96
108
    
 Diabetes (0, 1)
0.793
0.201
15.7
2.21
1.49
3.28
 < 0.0001
 eGFR stages 1‒5
0.465
0.114
16.5
1.59
1.27
1.98
 < 0.0001
 SSS grades 0‒3
0.272
0.089
9.3
1.31
1.10
1.56
0.0023
 EF grades (1‒3)
0.671
0.157
18.3
1.96
1.43
2.26
 < 0.0001
  > 50, 35‒50, < 35
 Age (years)
0.060
0.013
21.9
1.06
1.04
1.09
 < 0.0001
Hard cardiac events
 Intercept
− 9.606
1.329
52.2
    
 Diabetes (0,1)
0.733
0.286
6.6
2.08
1.19
3.66
0.0103
 eGFR Stages 1‒5
0.643
0.15
18.5
1.9
1.41
2.53
 < 0.0001
 SSS grades 0‒3
0.239
0.11
4.7
1.27
1.02
1.58
0.0297
 Age (years)
0.051
0.018
7.8
1.05
1.02
1.09
0.0053
Hard events: cardiac death, non-fatal myocardial infarction; major events: cardiac death, non-fatal myocardial infarction, and severe heart failure requiring hospitalization
eGFR estimated glomerular filtration rate, OR odds ratio, SE standard error, SSS summed stress score
The applicability of such a risk model requires careful consideration, as it is not universally applicable to diverse populations. The backgrounds of patients upon which to create the model, contemporary medications and interventions, comorbidities, healthcare systems, and many other factors affect predictive models. Our model was applicable to Japan, and an Italian prognostic study found its direct use limited [33]. However, the principal ideas including major variables, such as age, myocardial perfusion or extent of ischemia, LV function, and comorbid diabetes, and CKD fit Japanese patients might be acceptable choices of predictors in general.

Guidelines for stable CAD updated by the Japanese circulation society (JCS)

The ISCHEMIA trial highlighted the effectiveness of a contemporary optimal medical therapy (OMT) strategy including risk factor modification to prevent serious cardiac events [34, 35]. The COURAGE study also found that adding coronary revascularization to OMT did not necessarily result in a prognostic benefit, whereas patients with ≥ 5% reduction in myocardial ischemia had lower risk for death and myocardial infarction irrespective of treatment strategies [25]. These new perspectives also affected Japanese clinical practice, and the JCS suggested strategic algorithm [36], whereas the prevalence of CCTA evaluations has rapidly increased. The updated guidelines incorporated strategies starting from pre-test probability and a clinical likelihood of CAD to guide downstream non-invasive tests for stable CAD. Patients with intermediate-to-high pre-test probability can undergo further non-invasive imaging modalities, including CCTA and stress imaging. When both CCTA and stress imaging are available, CCTA is preferred to rule out CAD, whereas functional stress imaging is preferred as an initial screen of patients with a high pre-test probability or known history of CAD for risk assessment. The approaches of CCTA and stress imaging are typically summarized as rule-out and rule-in strategies, respectively. After post-test risk assessment, OMT is generally applied in the next step, and a decision to proceed with invasive coronary angiography will be reached for patients with uncontrolled angina despite OMT, high-risk CAD such as left main CAD or its equivalent, inconclusive non-invasive imaging tests, and HF with suspected CAD. Measurements of fractional flow reserve (FFR) are also important to determine indications of PCI aimed at reducing cardiovascular events.
The prospective, multicenter Japanese CVIT-DEFER registry that included 3,228 of 3,804 consecutive patients with angiographically moderate lesions of the coronary artery found frequent mismatches between angiographic stenosis and FFR, suggesting the clinical importance of physiological assessments to guide PCI [37]. Japanese reimbursement for elective PCI in patients with CAD was updated in 2018 to include a need for functionally proven ischemia, which slightly decreased the prevalence of CAG and elective PCI (Fig. 1). Considering the recent rapid increase in the numbers of patients undergoing CCTA in Japan, a CCTA-first strategy might prevail. Nonetheless, the increase in aged patients with multiple comorbidities and the recommendations for physiology-based PCI support the application of nuclear cardiology approaches. Not simply taking a dogmatic CT-first approach is an important viewpoint. The most appropriate test should be selected based on the findings of careful clinical evaluation to ensure the “right test for the right patient” [38]. The patient-first approach is the key to clinical practice in an era when multimodal imaging has become part of a widespread clinical workup.
Types of coronary revascularization, namely PCI and CABG, and medications have also become important topics. Ten-year data from the STICH studies have associated lower all-cause mortality with surgical revascularization compared with medical therapy [39]. The JROAD statistics (2021) revealed ~ 76,000 and ~ 172,000 emergency and elective PCIs, respectively, as well as ~ 9100 (on pump) and 7300 (off pump) coronary artery bypass surgeries (CABGs). The ratio of CABG to PCI was 6.6%. In contrast, trends in coronary revascularization in the USA revealed a CABG-to-PCI ratio of 39%, while the numbers of both PCIs and CABGs decreased between 2003 and 2016 [40]. A comparison of FFR-guided PCI and CABG in the FAME-3 investigation of three-vessel disease showed that PCI was not non-inferior to CABG with respect to the incidence of a composite of death, MI, stroke, or repeat revascularization at one year [41]. The CREDO-Kyoto PCI/CABG registry Cohort-3 (14,927 patients; follow-up, 5.7 years) assessed all-cause and cardiovascular death among patients with three-vessel disease [42]. That study associated PCI with a significantly higher risk for all-cause death than CABG, whereas risk for cardiovascular death among those treated by PCI did not exceed CABG in the real-world clinical era of drug-eluting stents in Japan. While stent technology and materials have improved, coronary artery patency might be prolonged with a less invasive approach such as CABG. The indications for CABG are therefore moving to more complex coronary lesions, reduced left ventricular function, and complications of diabetes and/or CKD.

Prediction of new-onset HF

While risk for major cardiac event rates were analyzed, further investigation focused more specifically on HF in a subset of the J-ACCESS database [24]. Among 3835 patients with confirmed or suspected CAD, 71 required aggressive medical treatment due to new-onset congestive HF symptoms for 3 years. Multivariable Cox hazard models revealed that CKD, the ESV index, and moderate to high SSS predicted refractory HF (Table 3). This combination of factors had the greatest prognostic value compared with single or combined variables. The reasons for the high event rate in CKD might be attributed to fluid retention, myocardial stiffness and endothelial dysfunction in arterioles, none of which is estimated by anatomical studies using invasive and coronary CT angiography. One of the major factors for predicting HF was SSS.
Table 3
Multivariable Cox proportional hazard model for new-onset heart failure events
Adapted from [24]
Variables
Wald χ2
HR
95% CI
p
Total patients (n = 3835)
 Chronic renal dysfunction*
22.4
6.23
2.92–13.28
 < 0.0001
 ESVI at rest (mL/m2)
18.3
1.02
1.01–1.03
 < 0.0001
 SSS (high vs. low)
16.1
3.01
1.76–5.18
 < 0.0001
Subset of patients excluding 276 who were treated by coronary revascularization
 Age (years)
31.5
1.11
1.07–1.15
 < 0.0001
 LVEF (%)
6.1
0.96
0.93–0.99
0.0133
 ESVI at rest (mL/m2)
5.4
1.02
1.00–1.03
0.0207
CI confidence interval, ESVI end systolic volume index (mL/m2), HR hazard ratio, LVEF left ventricular ejection fraction, SSS summed stress score.
*Serum creatinine 1.2 and 1.0 mg/mL for men for women, respectively, or estimated glomerular filtration rate < 60 mL/min/1.73 m2 at baseline
SSS, high > 8/80 (> 10% of left ventricle); low, 0–8 (≤ 10% of left ventricle)
The J-ACCESS studies did not select SDS as a major variable to predict events, probably due to relatively small ischemic lesions and a relatively small proportion of acute coronary syndrome after entry. In addition, patients with early coronary revascularization within the first 60 days were excluded from the analysis of prognosis because the choice of revascularization might have been influenced by SPECT diagnoses at the time. The ESV was also a reasonable variable showing that dilated left ventricular volume and a low LVEF could predict HF events.
One-third to half of patients with HF has a background of HFpEF. However, HFpEF was not investigated using variables such as diastolic dysfunction determined by gated SPECT and/or echocardiography in the J-ACCESS study. The mean LVEF was higher and the prevalence of HF with reduced EF was lower in the JROADHF, than in other registries, while higher mortality rates in that registry suggested a relatively higher prevalence of HFpEF partly due to the more advanced age of the patients [3, 4]. A recent meta-analysis has associated diabetes with new-onset HF especially in young populations and recurrent HF particularly in women or individuals with HFpEF [43]. The contributions of risk factors, such as sex, aging, hypertension, and diabetes to systolic and diastolic functions, and actual prognostic impact require further evaluation of Japanese patients with HF.

Roles of 123I-labeled radiopharmaceuticals in CAD and HF

The situation in Japan regarding the use of 123I-labeled radiopharmaceuticals, such as 123I-beta-methyliodophenylpentadecanoic acid (BMIPP) and 123I-metaiodobenzylguanidine (MIBG), for patients with CAD and HF is unique. These 123I-labeled radiopharmaceutical tracers are included in 20% of nuclear cardiology studies, and they have been available since the 1990s [44]. Current JCS clinical guidelines for Diagnosis of Chronic Coronary Heart Diseases were issued by the JCS in Japanese and English during 2018 and 2021, respectively [45]. They recommend BMIPP imaging for myocardial ischemia and risk/prognosis (Classes I‒IIa). Myocardial sympathetic imaging is also recognized in the prognostic evaluation of HF and ventricular tachyarrhythmias. A Japanese pooled 123I-MIBG database has verified powerful prognostic values for patients with chronic HF [46, 47]. Defect scores for 123I-BMIPP indicate possible risk stratification in patients with acute and chronic HF [48, 49]. Since these 123I radiopharmaceuticals have not been approved outside Japan, their clinical role might have been universally underestimated. However, HF has been investigated in patients by innervation imaging using 123I-MIBG for research purposes in the USA and Europe [50]. The possibility of optimizing patient selection for evaluation using expensive cardiac devices to determine lethal cardiac arrhythmias has also been investigated. The effectiveness of MIBG indices for predicting arrhythmic and overall mortality risk and the possible integration of the clinical variables into the prediction model require further investigation and refinement for clinical practice [51, 52]. Simultaneous assessment of myocardial perfusion and innervation in patients with HF using contemporary semiconductor cadmium–zinc–telluride (CZT) detectors might also become an option with reduced radiation exposure [53]. Large-scale studies are mandatory to support the clinical application of 123I tracers as a useful adjunct to acquiring perfusion images of patients with CAD and HF.

Limitations

The J-ACCESS studies conducted between 2001 and 2014 have several limitations. The most recent advances in technology and quantitation, such as integrated attenuation and scatter correction, and CZT detectors that allow reduced administered doses were not included. Treatment strategies for CAD and HF have been updated during the past two decades although appropriate contemporary strategies were applied during all J-ACCESS studies. The results cannot be applied to patients with valvular heart disease, and dilated, hypertrophic, and secondary cardiomyopathies, as they were excluded from the multicenter registry. Patients with severe HF were also not included at the timing of registration, although we discussed new-onset of HF retrospectively in this article. Moreover, recent advances in imaging technology and analytics, such as radiomics and artificial intelligence, or machine learning might offer novel strategies in cardiology, neurology, and oncology [52, 5457]. Although a new patient cohort has not been included in the J-ACCESS registry, the application of artificial intelligence to quantify perfusion defects and/or ischemia is under investigation using current image databases.

Conclusions

The J-ACCESS investigations (series 1‒4) established a nationwide prognostic database of Japanese patients from 2001 to the present. An overview of current trends in HF indicated that a high proportion of HF among major cardiac events in J-ACCESS might be associated with increasing numbers of elderly persons, a high fraction of HFpEF, and a higher frequency of non-ischemic etiology in Japanese patients with HF. The predictors of major adverse events including hospitalization for severe HF are age, baseline left ventricular function, myocardial perfusion defects, and comorbid diabetes and CKD. Thus, comprehensive risk-based approaches using appropriate multicenter databases are required for groups of patients with CAD and HF. While changes in strategic algorithms now include non-invasive imaging cardiology guidelines and clinical practice in Japan, approaches to risk assessment require updating, and medical care should be appropriately personalized for patients.

Acknowledgements

The authors appreciate Norma Foster for editorial assistance.

Declarations

Conflict of interest

K. Nakajima collaborates in research projects with PDRadiopharma, Inc, Tokyo, Japan, Siemens Healthcare Japan/USA, and Spectrum Dynamics Medical (Israel) and belongs to an endowed department partly funded by Nihon MediPhyiscs, Co. Ltd., Tokyo Japan, PDRadiopharma, Inc., Tokyo, Japan, and Siemens Healthcare Japan, Tokyo, Japan.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Okura Y, Ramadan MM, Ohno Y, Mitsuma W, Tanaka K, Ito M, et al. Impending epidemic: future projection of heart failure in Japan to the year 2055. Circ J. 2008;72:489–91.PubMedCrossRef Okura Y, Ramadan MM, Ohno Y, Mitsuma W, Tanaka K, Ito M, et al. Impending epidemic: future projection of heart failure in Japan to the year 2055. Circ J. 2008;72:489–91.PubMedCrossRef
2.
Zurück zum Zitat Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American heart association. Circulation. 2014;129:e28–292.PubMed Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American heart association. Circulation. 2014;129:e28–292.PubMed
3.
Zurück zum Zitat Ide T, Kaku H, Matsushima S, Tohyama T, Enzan N, Funakoshi K, et al. Clinical characteristics and outcomes of hospitalized patients with heart failure from the large-scale japanese registry of acute decompensated heart failure (JROADHF). Circ J. 2021;85:1438–50.PubMedCrossRef Ide T, Kaku H, Matsushima S, Tohyama T, Enzan N, Funakoshi K, et al. Clinical characteristics and outcomes of hospitalized patients with heart failure from the large-scale japanese registry of acute decompensated heart failure (JROADHF). Circ J. 2021;85:1438–50.PubMedCrossRef
4.
Zurück zum Zitat Chioncel O, Mebazaa A, Harjola VP, Coats AJ, Piepoli MF, Crespo-Leiro MG, et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC heart failure long-term registry. Eur J Heart Fail. 2017;19:1242–54.PubMedCrossRef Chioncel O, Mebazaa A, Harjola VP, Coats AJ, Piepoli MF, Crespo-Leiro MG, et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC heart failure long-term registry. Eur J Heart Fail. 2017;19:1242–54.PubMedCrossRef
5.
Zurück zum Zitat Crespo-Leiro MG, Anker SD, Maggioni AP, Coats AJ, Filippatos G, Ruschitzka F, et al. European society of cardiology heart failure long-term registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur J Heart Fail. 2016;18:613–25.PubMedCrossRef Crespo-Leiro MG, Anker SD, Maggioni AP, Coats AJ, Filippatos G, Ruschitzka F, et al. European society of cardiology heart failure long-term registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur J Heart Fail. 2016;18:613–25.PubMedCrossRef
6.
Zurück zum Zitat Takabayashi K, Ikuta A, Okazaki Y, Ogami M, Iwatsu K, Matsumura K, et al. Clinical characteristics and social frailty of super-elderly patients with heart failure- the Kitakawachi clinical background and outcome of heart failure registry. Circ J. 2016;81:69–76.PubMedCrossRef Takabayashi K, Ikuta A, Okazaki Y, Ogami M, Iwatsu K, Matsumura K, et al. Clinical characteristics and social frailty of super-elderly patients with heart failure- the Kitakawachi clinical background and outcome of heart failure registry. Circ J. 2016;81:69–76.PubMedCrossRef
7.
Zurück zum Zitat Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola VP, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC heart failure long-term registry. Eur J Heart Fail. 2017;19:1574–85.PubMedCrossRef Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola VP, et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC heart failure long-term registry. Eur J Heart Fail. 2017;19:1574–85.PubMedCrossRef
8.
Zurück zum Zitat Shiba N, Nochioka K, Miura M, Kohno H, Shimokawa H. Investigators C-. Trend of westernization of etiology and clinical characteristics of heart failure patients in Japan–first report from the CHART-2 study. Circ J. 2011;75:823–33.PubMedCrossRef Shiba N, Nochioka K, Miura M, Kohno H, Shimokawa H. Investigators C-. Trend of westernization of etiology and clinical characteristics of heart failure patients in Japan–first report from the CHART-2 study. Circ J. 2011;75:823–33.PubMedCrossRef
9.
Zurück zum Zitat Nishimura T, Nakajima K, Kusuoka H, Yamashina A, Nishimura S. Prognostic study of risk stratification among Japanese patients with ischemic heart disease using gated myocardial perfusion SPECT: J-ACCESS study. Eur J Nucl Med Mol Imaging. 2008;35:319–28.PubMedCrossRef Nishimura T, Nakajima K, Kusuoka H, Yamashina A, Nishimura S. Prognostic study of risk stratification among Japanese patients with ischemic heart disease using gated myocardial perfusion SPECT: J-ACCESS study. Eur J Nucl Med Mol Imaging. 2008;35:319–28.PubMedCrossRef
10.
Zurück zum Zitat Nakajima K, Nishimura T. Cardiovascular events in Japan. Lessons from the J-ACCESS multicenter prognostic study using myocardial perfusion imaging. Circ J. 2012;76:1313–21.PubMedCrossRef Nakajima K, Nishimura T. Cardiovascular events in Japan. Lessons from the J-ACCESS multicenter prognostic study using myocardial perfusion imaging. Circ J. 2012;76:1313–21.PubMedCrossRef
11.
Zurück zum Zitat Yamasaki Y, Nakajima K, Kusuoka H, Izumi T, Kashiwagi A, Kawamori R, et al. Prognostic value of gated myocardial perfusion imaging for asymptomatic patients with type 2 diabetes: the J-ACCESS 2 investigation. Diabetes Care. 2010;33:2320–6.PubMedPubMedCentralCrossRef Yamasaki Y, Nakajima K, Kusuoka H, Izumi T, Kashiwagi A, Kawamori R, et al. Prognostic value of gated myocardial perfusion imaging for asymptomatic patients with type 2 diabetes: the J-ACCESS 2 investigation. Diabetes Care. 2010;33:2320–6.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Nakamura S, Kawano Y, Nakajima K, Hase H, Joki N, Hatta T, et al. Prognostic study of cardiac events in Japanese patients with chronic kidney disease using ECG-gated myocardial perfusion imaging: final 3-year report of the J-ACCESS 3 study. J Nucl Cardiol. 2019;26:431–40.PubMedCrossRef Nakamura S, Kawano Y, Nakajima K, Hase H, Joki N, Hatta T, et al. Prognostic study of cardiac events in Japanese patients with chronic kidney disease using ECG-gated myocardial perfusion imaging: final 3-year report of the J-ACCESS 3 study. J Nucl Cardiol. 2019;26:431–40.PubMedCrossRef
13.
Zurück zum Zitat Nanasato M, Matsumoto N, Nakajima K, Chikamori T, Moroi M, Takehana K, et al. Prognostic impact of reducing myocardial ischemia identified using ECG-gated myocardial perfusion SPECT in Japanese patients with coronary artery disease: J-ACCESS 4 study. Int J Cardiol. 2018;267:202–7.PubMedCrossRef Nanasato M, Matsumoto N, Nakajima K, Chikamori T, Moroi M, Takehana K, et al. Prognostic impact of reducing myocardial ischemia identified using ECG-gated myocardial perfusion SPECT in Japanese patients with coronary artery disease: J-ACCESS 4 study. Int J Cardiol. 2018;267:202–7.PubMedCrossRef
14.
Zurück zum Zitat Nakajima K, Kusuoka H, Nishimura S, Yamashina A, Nishimura T. Normal limits of ejection fraction and volumes determined by gated SPECT in clinically normal patients without cardiac events: a study based on the J-ACCESS database. Eur J Nucl Med Mol Imaging. 2007;34:1088–96.PubMedCrossRef Nakajima K, Kusuoka H, Nishimura S, Yamashina A, Nishimura T. Normal limits of ejection fraction and volumes determined by gated SPECT in clinically normal patients without cardiac events: a study based on the J-ACCESS database. Eur J Nucl Med Mol Imaging. 2007;34:1088–96.PubMedCrossRef
15.
Zurück zum Zitat Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–43.PubMedCrossRef Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–43.PubMedCrossRef
16.
Zurück zum Zitat Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.PubMedCrossRef Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.PubMedCrossRef
17.
Zurück zum Zitat Bateman T. Clinical relevance of a normal myocardial perfusion scintigraphic study. J Nucl Cardiol. 1998;4:172–3.CrossRef Bateman T. Clinical relevance of a normal myocardial perfusion scintigraphic study. J Nucl Cardiol. 1998;4:172–3.CrossRef
18.
Zurück zum Zitat Matsuo S, Nakajima K, Horie M, Nakae I, Nishimura T. Prognostic value of normal stress myocardial perfusion imaging in Japanese population. Circ J. 2008;72:611–7.PubMedCrossRef Matsuo S, Nakajima K, Horie M, Nakae I, Nishimura T. Prognostic value of normal stress myocardial perfusion imaging in Japanese population. Circ J. 2008;72:611–7.PubMedCrossRef
19.
Zurück zum Zitat Hatta T, Nishimura S, Nishimura T. Prognostic risk stratification of myocardial ischaemia evaluated by gated myocardial perfusion SPECT in patients with chronic kidney disease. Eur J Nucl Med Mol Imaging. 2009;36:1835–41.PubMedCrossRef Hatta T, Nishimura S, Nishimura T. Prognostic risk stratification of myocardial ischaemia evaluated by gated myocardial perfusion SPECT in patients with chronic kidney disease. Eur J Nucl Med Mol Imaging. 2009;36:1835–41.PubMedCrossRef
20.
Zurück zum Zitat Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.PubMedCrossRef Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.PubMedCrossRef
21.
Zurück zum Zitat Hakeem A, Bhatti S, Dillie KS, Cook JR, Samad Z, Roth-Cline MD, et al. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death. Circulation. 2008;118:2540–9.PubMedCrossRef Hakeem A, Bhatti S, Dillie KS, Cook JR, Samad Z, Roth-Cline MD, et al. Predictive value of myocardial perfusion single-photon emission computed tomography and the impact of renal function on cardiac death. Circulation. 2008;118:2540–9.PubMedCrossRef
22.
Zurück zum Zitat Momose M, Babazono T, Kondo C, Kobayashi H, Nakajima T, Kusakabe K. Prognostic significance of stress myocardial ECG-gated perfusion imaging in asymptomatic patients with diabetic chronic kidney disease on initiation of haemodialysis. Eur J Nucl Med Mol Imaging. 2009;36:1315–21.PubMedCrossRef Momose M, Babazono T, Kondo C, Kobayashi H, Nakajima T, Kusakabe K. Prognostic significance of stress myocardial ECG-gated perfusion imaging in asymptomatic patients with diabetic chronic kidney disease on initiation of haemodialysis. Eur J Nucl Med Mol Imaging. 2009;36:1315–21.PubMedCrossRef
23.
Zurück zum Zitat Moroi M, Yamashina A, Tsukamoto K, Nishimura T. Coronary revascularization does not decrease cardiac events in patients with stable ischemic heart disease but might do in those who showed moderate to severe ischemia. Int J Cardiol. 2012;158:246–52.PubMedCrossRef Moroi M, Yamashina A, Tsukamoto K, Nishimura T. Coronary revascularization does not decrease cardiac events in patients with stable ischemic heart disease but might do in those who showed moderate to severe ischemia. Int J Cardiol. 2012;158:246–52.PubMedCrossRef
24.
Zurück zum Zitat Nakata T, Hashimoto A, Wakabayashi T, Kusuoka H, Nishimura T. Prediction of new-onset refractory congestive heart failure using stress/rest gated perfusion SPECT imaging in patients with known or suspected coronary artery disease: sub-analysis of the J-ACCESS study. J Am Coll Cardiol Cardiovasc Imaging. 2009;2:1393–400.CrossRef Nakata T, Hashimoto A, Wakabayashi T, Kusuoka H, Nishimura T. Prediction of new-onset refractory congestive heart failure using stress/rest gated perfusion SPECT imaging in patients with known or suspected coronary artery disease: sub-analysis of the J-ACCESS study. J Am Coll Cardiol Cardiovasc Imaging. 2009;2:1393–400.CrossRef
25.
Zurück zum Zitat Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283–91.PubMedCrossRef Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283–91.PubMedCrossRef
26.
Zurück zum Zitat Nakajima K, Nishimura T. Prognostic table for predicting major cardiac events based on J-ACCESS investigation. Ann Nucl Med. 2008;22:891–7.PubMedCrossRef Nakajima K, Nishimura T. Prognostic table for predicting major cardiac events based on J-ACCESS investigation. Ann Nucl Med. 2008;22:891–7.PubMedCrossRef
27.
Zurück zum Zitat Nakajima K, Matsuo S, Okuyama C, Hatta T, Tsukamoto K, Nishimura S, et al. Cardiac event risk in Japanese subjects estimated using gated myocardial perfusion imaging, in conjunction with diabetes mellitus and chronic kidney disease. Circ J. 2012;76:168–75.PubMedCrossRef Nakajima K, Matsuo S, Okuyama C, Hatta T, Tsukamoto K, Nishimura S, et al. Cardiac event risk in Japanese subjects estimated using gated myocardial perfusion imaging, in conjunction with diabetes mellitus and chronic kidney disease. Circ J. 2012;76:168–75.PubMedCrossRef
28.
Zurück zum Zitat Sakatani T, Nakajima K, Nishimura T. Cardiovascular event risk estimated by myocardial perfusion SPECT combined with clinical data. J Cardiol. 2022;80:64–71.PubMedCrossRef Sakatani T, Nakajima K, Nishimura T. Cardiovascular event risk estimated by myocardial perfusion SPECT combined with clinical data. J Cardiol. 2022;80:64–71.PubMedCrossRef
29.
Zurück zum Zitat Aburadani I, Usuda K, Sumiya H, Sakagami S, Kiyokawa H, Matsuo S, et al. Ability of the prognostic model of J-ACCESS study to predict cardiac events in a clinical setting: the APPROACH study. J Cardiol. 2018;72:81–6.PubMedCrossRef Aburadani I, Usuda K, Sumiya H, Sakagami S, Kiyokawa H, Matsuo S, et al. Ability of the prognostic model of J-ACCESS study to predict cardiac events in a clinical setting: the APPROACH study. J Cardiol. 2018;72:81–6.PubMedCrossRef
30.
Zurück zum Zitat Nakajima K, Nakamura S, Hase H, Takeishi Y, Nishimura S, Kawano Y, et al. Risk stratification based on J-ACCESS risk models with myocardial perfusion imaging: risk versus outcomes of patients with chronic kidney disease. J Nucl Cardiol. 2018;27:41–50.PubMedPubMedCentralCrossRef Nakajima K, Nakamura S, Hase H, Takeishi Y, Nishimura S, Kawano Y, et al. Risk stratification based on J-ACCESS risk models with myocardial perfusion imaging: risk versus outcomes of patients with chronic kidney disease. J Nucl Cardiol. 2018;27:41–50.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Patriki D, Giannopoulos AA. Cardiovascular risk prediction models with myocardial perfusion imaging in chronic kidney disease: ACCESSing digits or focusing on the patient? J Nucl Cardiol. 2020;27:51–2.PubMedCrossRef Patriki D, Giannopoulos AA. Cardiovascular risk prediction models with myocardial perfusion imaging in chronic kidney disease: ACCESSing digits or focusing on the patient? J Nucl Cardiol. 2020;27:51–2.PubMedCrossRef
32.
Zurück zum Zitat Kunita Y, Nakajima K, Nakata T, Kudo T, Kinuya S. Prediction of multivessel coronary artery disease and candidates for stress-only imaging using multivariable models with myocardial perfusion imaging. Ann Nucl Med. 2022;36:674–83.PubMedPubMedCentralCrossRef Kunita Y, Nakajima K, Nakata T, Kudo T, Kinuya S. Prediction of multivessel coronary artery disease and candidates for stress-only imaging using multivariable models with myocardial perfusion imaging. Ann Nucl Med. 2022;36:674–83.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382:1395–407.PubMedPubMedCentralCrossRef Maron DJ, Hochman JS, Reynolds HR, Bangalore S, O’Brien SM, Boden WE, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020;382:1395–407.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Spertus JA, Jones PG, Maron DJ, O’Brien SM, Reynolds HR, Rosenberg Y, et al. Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med. 2020;382:1408–19.PubMedPubMedCentralCrossRef Spertus JA, Jones PG, Maron DJ, O’Brien SM, Reynolds HR, Rosenberg Y, et al. Health-status outcomes with invasive or conservative care in coronary disease. N Engl J Med. 2020;382:1408–19.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Nakano S, Kohsaka S, Chikamori T, Fukushima K, Kobayashi Y, Kozuma K, et al. JCS 2022 guideline focused update on diagnosis and treatment in patients with stable coronary artery disease. Circ J. 2022;86:882–915.PubMedCrossRef Nakano S, Kohsaka S, Chikamori T, Fukushima K, Kobayashi Y, Kozuma K, et al. JCS 2022 guideline focused update on diagnosis and treatment in patients with stable coronary artery disease. Circ J. 2022;86:882–915.PubMedCrossRef
37.
Zurück zum Zitat Nakamura M, Yamagishi M, Ueno T, Hara K, Ishiwata S, Itoh T, et al. Prevalence of visual-functional mismatch regarding coronary artery stenosis in the CVIT-DEFER registry. Cardiovasc Interv Ther. 2014;29:300–8.PubMedCrossRef Nakamura M, Yamagishi M, Ueno T, Hara K, Ishiwata S, Itoh T, et al. Prevalence of visual-functional mismatch regarding coronary artery stenosis in the CVIT-DEFER registry. Cardiovasc Interv Ther. 2014;29:300–8.PubMedCrossRef
38.
Zurück zum Zitat Hulten EA, Malhotra S, Tandon S. Patient first versus computed tomography first strategy in testing for stable coronary artery disease: dispelling the prevailing myths and biases. J Nucl Cardiol. 2021;28:735–40.PubMedCrossRef Hulten EA, Malhotra S, Tandon S. Patient first versus computed tomography first strategy in testing for stable coronary artery disease: dispelling the prevailing myths and biases. J Nucl Cardiol. 2021;28:735–40.PubMedCrossRef
39.
Zurück zum Zitat Petrie MC, Jhund PS, She L, Adlbrecht C, Doenst T, Panza JA, et al. Ten-year outcomes after coronary artery bypass grafting according to age in patients with heart failure and left ventricular systolic dysfunction: an analysis of the extended follow-up of the STICH trial (surgical treatment for ischemic heart failure). Circulation. 2016;134:1314–24.PubMedPubMedCentralCrossRef Petrie MC, Jhund PS, She L, Adlbrecht C, Doenst T, Panza JA, et al. Ten-year outcomes after coronary artery bypass grafting according to age in patients with heart failure and left ventricular systolic dysfunction: an analysis of the extended follow-up of the STICH trial (surgical treatment for ischemic heart failure). Circulation. 2016;134:1314–24.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Alkhouli M, Alqahtani F, Kalra A, Gafoor S, Alhajji M, Alreshidan M, et al. Trends in characteristics and outcomes of patients undergoing coronary revascularization in the United States, 2003–2016. JAMA Netw Open. 2020;3: e1921326.PubMedCrossRef Alkhouli M, Alqahtani F, Kalra A, Gafoor S, Alhajji M, Alreshidan M, et al. Trends in characteristics and outcomes of patients undergoing coronary revascularization in the United States, 2003–2016. JAMA Netw Open. 2020;3: e1921326.PubMedCrossRef
41.
Zurück zum Zitat Fearon WF, Zimmermann FM, De Bruyne B, Piroth Z, van Straten AHM, Szekely L, et al. Fractional flow reserve-guided PCI as compared with coronary bypass surgery. N Engl J Med. 2022;386:128–37.PubMedCrossRef Fearon WF, Zimmermann FM, De Bruyne B, Piroth Z, van Straten AHM, Szekely L, et al. Fractional flow reserve-guided PCI as compared with coronary bypass surgery. N Engl J Med. 2022;386:128–37.PubMedCrossRef
42.
Zurück zum Zitat Matsumura-Nakano Y, Shiomi H, Morimoto T, Yamaji K, Ehara N, Sakamoto H, et al. Comparison of outcomes of percutaneous coronary intervention versus coronary artery bypass grafting among patients with three-vessel coronary artery disease in the new-generation drug-eluting stents era (from CREDO-Kyoto PCI/CABG registry cohort-3). Am J Cardiol. 2021;145:25–36.PubMedCrossRef Matsumura-Nakano Y, Shiomi H, Morimoto T, Yamaji K, Ehara N, Sakamoto H, et al. Comparison of outcomes of percutaneous coronary intervention versus coronary artery bypass grafting among patients with three-vessel coronary artery disease in the new-generation drug-eluting stents era (from CREDO-Kyoto PCI/CABG registry cohort-3). Am J Cardiol. 2021;145:25–36.PubMedCrossRef
43.
Zurück zum Zitat Kodama S, Fujihara K, Horikawa C, Sato T, Iwanaga M, Yamada T, et al. Diabetes mellitus and risk of new-onset and recurrent heart failure: a systematic review and meta-analysis. ESC Heart Fail. 2020;7:2146–74.PubMedPubMedCentralCrossRef Kodama S, Fujihara K, Horikawa C, Sato T, Iwanaga M, Yamada T, et al. Diabetes mellitus and risk of new-onset and recurrent heart failure: a systematic review and meta-analysis. ESC Heart Fail. 2020;7:2146–74.PubMedPubMedCentralCrossRef
44.
45.
Zurück zum Zitat Yamagishi M, Tamaki N, Akasaka T, Ikeda T, Ueshima K, Uemura S, et al. JCS 2018 guideline on diagnosis of chronic coronary heart diseases. Circ J. 2021;85:402–572.PubMedCrossRef Yamagishi M, Tamaki N, Akasaka T, Ikeda T, Ueshima K, Uemura S, et al. JCS 2018 guideline on diagnosis of chronic coronary heart diseases. Circ J. 2021;85:402–572.PubMedCrossRef
46.
Zurück zum Zitat Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of 123I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6:772–84.PubMedCrossRef Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S, et al. A pooled analysis of multicenter cohort studies of 123I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 2013;6:772–84.PubMedCrossRef
47.
Zurück zum Zitat Nakajima K, Nakata T, Doi T, Tada H, Maruyama K. Machine learning-based risk model using 123I-metaiodobenzylguanidine to differentially predict modes of cardiac death in heart failure. J Nucl Cardiol. 2022;29:190–201.PubMedCrossRef Nakajima K, Nakata T, Doi T, Tada H, Maruyama K. Machine learning-based risk model using 123I-metaiodobenzylguanidine to differentially predict modes of cardiac death in heart failure. J Nucl Cardiol. 2022;29:190–201.PubMedCrossRef
48.
Zurück zum Zitat Hashimoto H, Nakanishi R, Mizumura S, Hashimoto Y, Okamura Y, Kiuchi S, et al. Prognostic value of 123I-BMIPP SPECT in patients with nonischemic heart failure with preserved ejection fraction. J Nucl Med. 2018;59:259–65.PubMedCrossRef Hashimoto H, Nakanishi R, Mizumura S, Hashimoto Y, Okamura Y, Kiuchi S, et al. Prognostic value of 123I-BMIPP SPECT in patients with nonischemic heart failure with preserved ejection fraction. J Nucl Med. 2018;59:259–65.PubMedCrossRef
49.
Zurück zum Zitat Sasaki R, Mitani I, Usui T, Kitamura Y, Yoshii Y, Ishikawa T, et al. Clinical value of iodine-123 beta-methyliodophenyl pentadecanoic acid (BMIPP) myocardial single photon emission computed tomography for predicting cardiac death among patients with chronic heart failure. Circ J. 2003;67:918–24.PubMedCrossRef Sasaki R, Mitani I, Usui T, Kitamura Y, Yoshii Y, Ishikawa T, et al. Clinical value of iodine-123 beta-methyliodophenyl pentadecanoic acid (BMIPP) myocardial single photon emission computed tomography for predicting cardiac death among patients with chronic heart failure. Circ J. 2003;67:918–24.PubMedCrossRef
51.
Zurück zum Zitat Bencivenga L, Komici K, Paolillo S, Nappi C, Gargiulo P, Assante R, et al. Cardiac sympathetic innervation and mortality risk scores in patients with heart failure. Eur J Clin Invest. 2023;53:e13948.PubMedCrossRef Bencivenga L, Komici K, Paolillo S, Nappi C, Gargiulo P, Assante R, et al. Cardiac sympathetic innervation and mortality risk scores in patients with heart failure. Eur J Clin Invest. 2023;53:e13948.PubMedCrossRef
52.
Zurück zum Zitat Nakajima K, Nakata T, Doi T, Kadokami T, Matsuo S, Konno T, et al. Validation of 2-year 123I-meta-iodobenzylguanidine-based cardiac mortality risk model in chronic heart failure. Eur Heart J Cardiovasc Imaging. 2018;19:749–56.PubMedPubMedCentralCrossRef Nakajima K, Nakata T, Doi T, Kadokami T, Matsuo S, Konno T, et al. Validation of 2-year 123I-meta-iodobenzylguanidine-based cardiac mortality risk model in chronic heart failure. Eur Heart J Cardiovasc Imaging. 2018;19:749–56.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Assante R, D’Antonio A, Mannarino T, Nappi C, Gaudieri V, Zampella E, et al. Simultaneous assessment of myocardial perfusion and adrenergic innervation in patients with heart failure by low-dose dual-isotope CZT SPECT imaging. J Nucl Cardiol. 2022;29:3341–51.PubMedPubMedCentralCrossRef Assante R, D’Antonio A, Mannarino T, Nappi C, Gaudieri V, Zampella E, et al. Simultaneous assessment of myocardial perfusion and adrenergic innervation in patients with heart failure by low-dose dual-isotope CZT SPECT imaging. J Nucl Cardiol. 2022;29:3341–51.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Otaki Y, Miller RJH, Slomka PJ. The application of artificial intelligence in nuclear cardiology. Ann Nucl Med. 2022;36:111–22.PubMedCrossRef Otaki Y, Miller RJH, Slomka PJ. The application of artificial intelligence in nuclear cardiology. Ann Nucl Med. 2022;36:111–22.PubMedCrossRef
55.
Zurück zum Zitat Nakajima K, Okuda K, Watanabe S, Matsuo S, Kinuya S, Toth K, et al. Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Ann Nucl Med. 2018;32:303–10.PubMedPubMedCentralCrossRef Nakajima K, Okuda K, Watanabe S, Matsuo S, Kinuya S, Toth K, et al. Artificial neural network retrained to detect myocardial ischemia using a Japanese multicenter database. Ann Nucl Med. 2018;32:303–10.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Minoshima S, Cross D. Application of artificial intelligence in brain molecular imaging. Ann Nucl Med. 2022;36:103–10.PubMedCrossRef Minoshima S, Cross D. Application of artificial intelligence in brain molecular imaging. Ann Nucl Med. 2022;36:103–10.PubMedCrossRef
57.
Zurück zum Zitat Hirata K, Sugimori H, Fujima N, Toyonaga T, Kudo K. Artificial intelligence for nuclear medicine in oncology. Ann Nucl Med. 2022;36:123–32.PubMedCrossRef Hirata K, Sugimori H, Fujima N, Toyonaga T, Kudo K. Artificial intelligence for nuclear medicine in oncology. Ann Nucl Med. 2022;36:123–32.PubMedCrossRef
Metadaten
Titel
J-ACCESS investigation and nuclear cardiology in Japan: implications for heart failure
verfasst von
Kenichi Nakajima
Tsunehiko Nishimura
Publikationsdatum
11.04.2023
Verlag
Springer Nature Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 6/2023
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-023-01836-x

Weitere Artikel der Ausgabe 6/2023

Annals of Nuclear Medicine 6/2023 Zur Ausgabe