Skip to main content
Erschienen in: Brain Structure and Function 6/2023

Open Access 30.06.2023 | Original Article

Kisspeptin neuron projections to oxytocin neurons are not necessary for parturition in the mouse

verfasst von: Shalini S. Kumar, Gregory T. Bouwer, Meliame K. Jackson, Michael R. Perkinson, Fiona J. McDonald, Colin H. Brown, Rachael A. Augustine

Erschienen in: Brain Structure and Function | Ausgabe 6/2023

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Oxytocin is synthesized by hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) neurons and is released from the posterior pituitary gland to trigger uterine contractions during parturition. In rats, oxytocin neuron innervation by periventricular nucleus (PeN) kisspeptin neurons increases over pregnancy and intra-SON kisspeptin administration excites oxytocin neurons only in late pregnancy. To test the hypothesis that kisspeptin neurons excite oxytocin neurons to trigger uterine contractions during birth in C57/B6J mice, double-label immunohistochemistry for kisspeptin and oxytocin first confirmed that kisspeptin neurons project to the SON and PVN. Furthermore, kisspeptin fibers expressed synaptophysin and formed close appositions with oxytocin neurons in the mouse SON and PVN before and during pregnancy. Stereotaxic viral delivery of caspase-3 into the AVPV/PeN of Kiss-Cre mice before mating reduced kisspeptin expression in the AVPV, PeN, SON and PVN by > 90% but did not affect the duration of pregnancy or the timing of delivery of each pup during parturition. Therefore, it appears that AVPV/PeN kisspeptin neuron projections to oxytocin neurons are not necessary for parturition in the mouse.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Oxytocin is synthesized in magnocellular neurons of the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) and its release into the circulation from the posterior pituitary gland is increased during parturition to trigger uterine contractions (Brown 2016). While oxytocin is not essential for parturition (Nishimori et al. 1996) as oxytocin receptor knock-out mice still give birth, it is required for normal parturition because parturition is delayed and prolonged in rats by oxytocin receptor antagonism (Antonijevic et al. 1995). While increased oxytocin neuron activation during parturition is relayed via activation of brainstem noradrenergic afferents by cervical stretch receptors (Meddle et al. 2000; Douglas et al. 2001), central noradrenergic receptor activation is not sufficient to trigger parturition in late-pregnant rats (Lipschitz et al. 2004). Hence, it appears that other mechanisms must also contribute to oxytocin neuron activation during parturition.
Kisspeptin is the protein product of the Kiss1 gene and is the endogenous ligand for the kisspeptin receptor (Kiss1R, GPR54; Kotani et al. 2001). In rodents, kisspeptin neurons are found in three hypothalamic areas: the anteroventral periventricular nucleus (AVPV), periventricular nucleus (PeN) and arcuate nucleus (ARC; Clarkson et al. 2009; Herbison 2008), and project widely across the brain, including to the SON and PVN (Desroziers et al. 2010).
In rats, kisspeptin neuron projections to the SON originate from the PeN and kisspeptin fiber density around the SON is maximal in late pregnancy (Seymour et al. 2017; Augustine et al. 2018). While intravenous kisspeptin excites rat oxytocin neurons across pregnancy and lactation by activation of vagal afferents (Scott and Brown 2011, 2013), central kisspeptin excitation of rat oxytocin neurons emerges over pregnancy to a maximum in late pregnancy (Augustine et al. 2018), and is mediated by a local action within the SON (Abbasi et al. 2022b) that does not involve activation of the canonical kisspeptin signaling pathway in oxytocin neurons (Abbasi et al. 2022a). Hence, it appears that kisspeptin neurons specifically excite oxytocin neurons in late-pregnant rats. Therefore, to test the hypothesis that kisspeptin neuron projections to oxytocin neurons are necessary for normal parturition, we first moved to a C57/B6J mouse model to establish the neuroanatomy of kisspeptin projections to the mouse SON and PVN, and to investigate whether there was any plasticity in the system during pregnancy using immunohistochemistry. Second, adeno-associated virus (AAV) was injected into the AVPV/PeN of kisspeptin-internal ribosome entry site-Cre (Kiss-Cre) mice to trigger caspase-induced cell death in kisspeptin neurons, to cause a loss in kisspeptin fiber innervation to the SON/PVN and thereby prevent oxytocin neuron activation by kisspeptin in late pregnancy. AVPV/PeN kisspeptin neuron ablation resulted in near total loss of kisspeptin immunoreactivity in the SON and PVN but did not affect parturition, suggesting that these projections to oxytocin neurons are not necessary for parturition in mice.

Materials and methods

Ethical approval

All experimental procedures were approved by the University of Otago Animal Ethics Committee and were carried out in accordance with the New Zealand Animal Welfare Act (1999) and associated guidelines.

Animals

Female adult C57/B6J, Kiss-Cre+ and Kiss-Cre mice (de Croft et al. 2012) were group-housed in the University of Otago animal facility under controlled conditions (12 h light, 12 h dark cycle: lights on at 0600 h, 22 ± 1 °C) with free access to food and water. Mice had their estrous cycles monitored daily using vaginal cytology to examine the appearance of the epithelial cells. On proestrus, females were placed overnight in a cage with a male. Mating was considered to be successful when a vaginal plug was visualized on the following morning and this was recorded as day 1 of gestation (G1). For mice that gave birth, the day of birth was recorded as day 1 post-partum (PP1).

Kisspeptin and oxytocin fluorescent immunohistochemistry in the supraoptic and paraventricular nuclei

Mice were anesthetized with sodium pentobarbitone (10 mg kg−1, IP) and transcardially perfused with 25 ml of 4% paraformaldehyde (PFA). The brains were removed, post-fixed in 4% PFA for 1 h and then in 30% sucrose/0.1 M phosphate buffer for 24–48 h, and frozen. Three series of 30 µm coronal sections were cut on a freezing microtome. Fluorescent immunohistochemistry for kisspeptin and oxytocin in the SON/PVN involved incubating sections from non-pregnant (NP, no specific day of the estrous cycle), day 7 (G7), 14 (G14) and 19 pregnant (G19) and day 7 lactating (PP7) C57/B6J mice in a cocktail of polyclonal rabbit anti-kisspeptin-10 (1:25,000, AC 564, A. Caraty, INRA, France, RRID:AB_2622231; Franceschini et al. 2006) and monoclonal mouse anti-oxytocin antiserum (1:5000, MAB5296 Millipore, MA, USA, RRID:AB_2157626; Dabrowska et al. 2011) in incubation solution (Tris-buffered saline (TBS) containing 0.3% Triton X-100, 0.25% bovine serum and 2% normal goat serum) for 48 h at 4 °C on an orbital shaker. Sections were then incubated in a cocktail of Alexa Fluor goat anti-rabbit 568 (1:500, A11036, Molecular Probes, OR, USA) and Alexa Fluor goat anti-mouse 488 (1:500, A11029, Molecular Probes, OR, USA) in incubation solution for 90 min. Sections were mounted onto gelatin-coated slides and cover-slipped using Vectashield Hardset mounting medium (H-1400, Vector Laboratories, Burlingame, CA, USA).
Z-series stacks (one section per area per mouse) were captured at 0.5 µm intervals through the SON and PVN using a Nikon A1R multiphoton confocal microscope under a 40 × oil-immersion objective and three-dimensional images were reconstructed using Nikon NIS Elements AR imaging software (Nikon Instruments Inc. Melville, NY, USA). More specific areas were also scanned using boxes of fixed-size (106 μm × 26.5 μm) in the SON (above the optic chiasm, where oxytocin neuron cell bodies predominantly reside (Pirnik et al. 2004)) and PVN; one box medially next to the third ventricle (the parvocellular division of the PVN), and the other 150 µm more lateral to the third ventricle, to incorporate the magnocellular division of the PVN (− 0.82 mm posterior from Bregma, based on the cytoarchitecture as described previously (Biag et al. 2012)). The fraction of kisspeptin signal-containing voxels to total voxels in the region of interest was calculated using IMARIS Image Analysis Software 9.8 (Oxford Instruments, Zurich, Switzerland) and expressed as a percentage of the area counted. The regions of interest were also analyzed for close appositions between kisspeptin fibers and oxytocin neurons using the spot counter in IMARIS. A surface was applied to the oxytocin neurons and spots were created for the kisspeptin immuno-positive fibers. Close appositions were defined as any spot from kisspeptin fibers contacting the surface of an oxytocin cell body or proximal dendrite. The number of oxytocin neurons within each box were counted in each area (SON; 2.58 ± 0.41) and did not differ between box 1 and box 2 in the PVN (3.64 ± 0.43 and 4.88 ± 0.48, respectively). Kisspeptin fiber density and appositions did not differ between box 1 and box 2 either. Therefore, the results were averaged for presentation.

Kisspeptin and synaptophysin fluorescent immunohistochemistry in the supraoptic and paraventricular nuclei

Double-label fluorescent immunohistochemistry for kisspeptin and synaptophysin in the SON and PVN sections was carried out as described above, except sections were incubated in a cocktail of polyclonal rabbit anti-kisspeptin-10 (1:25,000, AC 564, A. Caraty, INRA, France, RRID:AB_2622231) and mouse anti-synaptophysin antiserum (1:1000, MAB368, Millipore, RRID:AB_94947; Yamanaka et al. 2011) for five nights at 4ºC. Z-series stacks were photographed through the SON and PVN at 1 µm intervals using a 60 × objective on a Nikon A1R confocal microscope and three-dimensional images were reconstructed using Nikon NIS Elements AR. The percentage of synaptophysin on kisspeptin fibers in the regions of interest were calculated as a percentage of co-localization using IMARIS. There was no remaining SON tissue from G7 mice to include in this part of the study.

Viral injections to ablate the anteroventral periventricular and periventricular nuclei kisspeptin neurons

Caspase-induced cell death was targeted to kisspeptin neurons in Kiss-Cre mice by stereotaxic injection into the APVP/PeN at least five days (range: 5–14 days) before mating. This timeline was chosen to allow full recovery from the effects of surgery before mating and because pilot experiments (data not shown) revealed that between two and four weeks was required for maximal kisspeptin neuron ablation. Kiss-Cre+ and Kiss-Cre mice were anesthetized with 4.5% isoflurane, placed in a stereotaxic apparatus and anesthesia was maintained at 2% isoflurane. Mice were given simultaneous bilateral injections (using 1 µL Hamilton syringes, Hamilton Company, NV, USA) of Cre-dependent caspase-3 delivered through the AAV5-flex-taCasp3-TEVp virus or AAV5-flex-C3-Tp (Vector Core, University of North Carolina; 1 µL/side of brain) system into the AVPV/PeN (0.7 mm anterior, 0.3 mm lateral and 5.7 mm ventral to bregma (Paxinos and Watson 2007)). The syringes were left in situ for 3 min before and 10 min after the injections. Mice were then allowed to recover for at least five days post injection. Estrous cycles were monitored daily from the day of injection. For those mice that displayed a first proestrus within the 5 days post injection recovery period, cycle length was determined by the number of days between the first two proestrous days following injection. Timed mating with a male occurred on the first proestrus, after the recovery period, to determine the duration of pregnancy in each mouse. Female mice were checked for the presence of a vaginal plug, which denoted day 1 of gestation. Mice were smeared for 14 days post-mating and pregnancy was confirmed by the presence of continual diestrous smears.

Video recording of mouse parturition

On G14, Kiss-Cre+ and Kiss-Cre mice were moved to a separate room dedicated to video recording for acclimatization to the new environment. Two cameras (Sony Chip Wired Bird Box Camera, Green Feathers, Bristol, UK) with infra-red night vision were installed on either side of each cage to record parturition. Cameras were connected to a desktop computer enabled with the software, iSpy 64-bit CCTV Recorder, which recorded continuously with tracked time and date. Dams were monitored continuously from G17 until PP4. The dams were randomized, coded and underwent blind analysis, with the experimenter being unaware of the groups. The precise timing of birth was determined from the video recording by the appearance and complete delivery of the first pup, and gestation length (days) was calculated. After analysis of all the data, the results were decoded, grouped, and expressed as mean ± SEM. Total parturition duration (min) was determined as the time between the complete delivery of the first pup to the complete delivery of the last pup. Mean time (min) of birth between each pup was determined as the time between the complete delivery of consecutive pups. Total number of live pups were counted at the end of parturition and each day thereafter. Four days post-partum (or 28 days post-caspase injection in mice that did not get pregnant), mice were anesthetized with sodium pentobarbitone (10 mg kg−1, IP), transcardially perfused and the brains removed, frozen and sliced on a freezing microtome, as described above.

Kisspeptin immunohistochemistry in the anteroventral periventricular, periventricular, supraoptic, paraventricular and the arcuate nuclei of Kiss-cre± mice

Free-floating chromogen immunohistochemistry for kisspeptin was undertaken as previously reported (Clarkson and Herbison 2006; Hellier et al. 2018) to evaluate and confirm the presence or absence of kisspeptin immunoreactivity in the AVPV/PeN after caspase-3 ablation in Kiss-Cre mice. Sections were incubated in polyclonal rabbit anti-kisspeptin-10 antibody (1:25,000; AC 564, A. Caraty, INRA, France, RRID:AB_2622231; Franceschini et al. 2006) for 48 h at 4 °C. Sections were then incubated in biotinylated goat anti-rabbit IgG (1:200; ZA0520, Vector Laboratories, Burlingame, CA, USA) for 90 min at room temperature, followed by incubation in Vectastain Elite ABC (Vector Laboratories, Burlingame, CA, USA). Sections were incubated in 3,3’-diaminobenzidine (DAB Peroxidase (HRP) Substrate Kit, Vector Laboratories) with nickel enhancement that resulted in a black precipitate and then mounted onto gelatin-coated slides and cover-slipped with Fluoromount-G™ mounting medium (00-4958-02, Invitrogen, USA).
To determine whether the number of kisspeptin-positive neurons in the AVPV/PeN differed between the Kiss-Cre+ pregnant and non-pregnant mice and Kiss-Cre groups, sections were visualized under an Olympus BX61 light microscope and photographed at 10 × objective using QImaging Micropublisher 5.0 RTV camera (QImaging, Canada). Numbers of kisspeptin-positive soma were counted in three sections per mouse and the mean value for each group calculated. Data were analyzed as mean number of kisspeptin neurons ± SEM.

Kisspeptin fluorescent immunohistochemistry in the supraoptic, paraventricular and arcuate nuclei

Single-label fluorescent immunohistochemistry for kisspeptin in the SON, PVN and ARC sections was carried out as previously described (Seymour et al. 2017). Briefly, every second or third section from the SON, PVN or ARC of each mouse brain was immunolabeled with anti-kisspeptin-10 antibody (1:25,000; AC 564, A. Caraty, INRA, France, RRID:AB_2622231; Franceschini et al. 2006) and secondary antibody Alexa Fluor goat anti-rabbit 568 (1:500, A11036, Molecular Probes, USA), respectively.
To determine whether the density of kisspeptin-positive fibers differed between the Kiss-Cre+ pregnant and non-pregnant mice and Kiss-Cre groups, images from the SON, PVN and ARC were acquired using an inverted confocal microscope (Nikon A1R Inverted Confocal Laser Scanning Microscope, Nikon Instruments Inc, Tokyo, Japan) in Z-series stacks. A Z-series of 15–17 stacks was captured using excitation at 488 nm and 561 nm, 20 × objective, a pinhole of 4 µm and a slice interval of 1.65 µm at dimensions 1024 μm × 1024 μm. Fiber density was measured as previously described (Patisaul et al. 2008). Using Image J (NIH), a sub stack of images was created to control for section thickness throughout the samples. Images were then binarized to a threshold to allow best signal-to-noise ratio and skeletonized to make the fibers one pixel thick for fiber thickness normalization. The voxel counter plugin (NIH) was then used to count the number of voxels. The fraction of signal-containing voxels to total voxels in each region was calculated, and the mean value for each group was calculated. Data were analyzed as mean fiber density in % ± SEM of three sections per mouse.

Statistical analysis

All data were analyzed using GraphPad Prism (Version 8.00). Values are expressed as mean ± SEM unless stated otherwise. Two-tailed unpaired Student’s t-tests were used to compare between two groups and one-way ANOVA was used to compare between three or more groups where n ≥ 5; where the F-ratio was significant, all-pairwise Dunnett’s post hoc tests were applied. Where n < 5, non-parametric Mann–Whitney tests were used to compare between two groups and Kruskal–Wallis ANOVA on ranks was used to compare between three or more groups; where the ANOVA on ranks was significant, all-pairwise Dunn’s post hoc tests were applied. P ≤ 0.05 was considered significant.

Results

Kisspeptin neurons project to the supraoptic and paraventricular nuclei

Kisspeptin-positive fibers were observed among oxytocin-positive neurons throughout the rostral extent of the SON in NP, G7, G14, G19 and PP7 C57/B6J mice (Fig. 1B–F) and PVN (Fig. 2B–F). Some fibers were also evident in the perinuclear zone (PNZ), surrounding the SON, in all groups (Fig. 1B–F). Kisspeptin fibers bundled around oxytocin fibers and cell bodies in the SON (Fig. 1G) and PVN (Fig. 2G, H). The volume fraction of kisspeptin labeling was similar in the SON of all groups (Fig. 1H; F4,34 = 0.69, P = 0.60, one-way ANOVA). In the PVN, the volume fraction of kisspeptin labeling was different between groups (Fig. 2I, F4,51 = 4.68, P = 0.003, one-way ANOVA), with higher expression in G7 mice than in NP mice (P = 0.02, NP vs G7, Dunnett’s post hoc test).

Kisspeptin forms appositions with oxytocin neurons in the supraoptic and paraventricular nuclei

Kisspeptin fibers made few appositions with oxytocin neurons in the SON (Fig. 3A, B) and PVN of (Fig. 3E–F) C57/B6J mice. There were a similar number of appositions with oxytocin cell bodies (H(2) = 7.96, P = 0.09) and proximal dendrites (H(2) = 6.10, P = 0.10) in the SON in NP, G7, G14, G19 and PP7 mice (Fig. 3C, D). While there was a difference in the number of appositions with oxytocin cell bodies in the PVN (Fig. 3G, F4,48 = 4.04, P = 0.007), there was no difference between NP and any of the other groups, rather the difference was between G7 and G14 compared to G19 (Dunnett’s post hoc tests). There was a higher number of appositions on the proximal dendrites of oxytocin neurons in the PVN of G14 mice than in NP mice (Fig. 3H, F4,44 = 3.46, P = 0.015, one-way ANOVA, P = 0.007, Dunnett’s post hoc test).

Synaptophysin expression in kisspeptin fibers in the supraoptic and paraventricular nuclei

There was a similar level of synaptophysin co-localization in kisspeptin fibers in both the SON (H(2) = 2.58, P = 0.29) and PVN (F2,14 = 0.17, P = 0.84) in NP, G19 and PP7 C57/B6J mice (Fig. 4).

Caspase-3 ablation of the anteroventral periventricular and periventricular nuclei kisspeptin neurons

Bilateral injections of Caspase-3 effectively ablated kisspeptin cell bodies in the AVPV/PeN in Kiss-Cre+ female mice but not Kiss-Cre female mice (Fig. 5A–C). Fourteen Kiss-Cre+ mice had successful ablation of kisspeptin neurons on both sides of the AVPV/PeN. There was a difference in the number of kisspeptin neurons in the AVPV/PeN (Fig. 5D) between the groups (F2,17 = 39.37, P = 0.039, one-way ANOVA). The mean maximal number of kisspeptin neurons per section in Kiss-Cre mice on PP4 was higher than in Kiss-Cre+ PP4 mice (P < 0.001, Dunnetts post hoc test) and in Kiss-Cre+ NP mice (P < 0.001, Dunnetts post hoc test).

Kisspeptin fiber density in the supraoptic, paraventricular and arcuate nuclei

Kisspeptin-positive fibers were observed in the SON, PVN and ARC in all groups of Kiss-Cre± mice but a marked reduction was seen in both groups of Kiss-Cre+ mice after kisspeptin cell ablation in the AVPV/PeN. In the SON (Fig. 5E–G) the mean density of kisspeptin fibers (%) was different between the groups (H(2) = 7.19, P = 0.02) with Kiss-Cre+ PP4 mice having less compared to Kiss-Cre PP4 mice (P = 0.04, Dunn’s post hoc test). There were also less kisspeptin fibers in the Kiss-Cre+ NP mice than in the Kiss-Cre PP4 mice (P = 0.02, Dunn’s post hoc test, Fig. 5H).
The fiber density (%) in the PVN (Fig. 5I–K) was different between the groups (H(2) = 9.82, P = 0.003) with less fibers in the Kiss-Cre+ PP4 mice than in Kiss-Cre mice (P = 0.01, Dunn’s post hoc test). There were also less kisspeptin fibers in the Kiss-Cre+ NP mice than in the Kiss-Cre PP4 mice (P = 0.01, Dunn’s post hoc test, Fig. 5L).
In the ARC (Fig. 5M–P) the mean density of kisspeptin fibers (%) was not different between the groups (H(2), P = 0.24, Fig. 5P).

Anteroventral periventricular and periventricular nuclei kisspeptin neurons are not necessary for parturition

Ablation of the AVPV/PeN kisspeptin neurons in female Kiss-Cre+ mice disrupted the estrous cycle. Kiss-Cre+ mice had longer estrous cycles (Fig. 6A, P = 0.003, Student’s t-test) and less days in proestrus compared with Kiss-Cre mice (Fig. 6B, P = 0.003, Student’s t-test). Kiss-Cre+ mice that fell pregnant spent longer in proestrus than Kiss-Cre+ mice that did not fall pregnant (Fig. 6D–E). There was a large proportion of Kiss-Cre+ females (nine out of 14) that failed to get pregnant after bilateral injection with AAV5-flex-C3-Tp, while only one female (one out of ten) Kiss-Cre failed to get pregnant after the stereotaxic injection (Fig. 6F, P < 0.01, Chi-square test). Hence, the ablation of the AVPV/PeN kisspeptin neurons in female Kiss-Cre+ mice also reduced their ability to get pregnant. There was no difference in the duration of gestation between Kiss-Cre+ and Kiss-Cre females (Fig. 6G, P = 0.8, Student’s t-test). There was no difference in the duration of parturition (min) between Kiss-Cre+ and Kiss-Cre dams (Fig. 6H, P = 0.8, Student’s t-test). There was also no difference in the time between delivery of each pup between the two groups (Fig. 6I, P = 0.87, Student’s t-test). There was no difference in the mean litter size on PP1 between Kiss-Cre+ and Kiss-Cre dams (Fig. 6J, P = 0.55, Student’s t-test). Caspase-3 ablation of AVPV/PeN kisspeptin neurons did not affect the number of pups surviving in each Kiss-Cre+ litter when compared to Kiss-Cre litters (Fig. 6K). No difference was observed in the percent of pup survival between Kiss-Cre+ mice, and Kiss-Cre mice (Fig. 6L, P = 0.9, Student’s t-test). One Kiss-Cre+ dam lost all its pups after PP2 (0% survival), whereas no Kiss-Cre dams lost more than 50% of pups post-partum. The mean weight of pups born to the Kiss-Cre+ mice was higher on PP4 than the pups born to Kiss-Cre mice (Fig. 6M, P = 0.04, Mann–Whitney test).

Discussion

Here, kisspeptin neurons have been shown to form close appositions with SON and PVN oxytocin neurons in non-pregnant mice and across pregnancy. Furthermore, kisspeptin fibers co-expressed synaptophysin in the SON and PVN, suggesting that kisspeptin might be locally released to excite oxytocin neurons in the mouse, as it is in the rat (Abbasi et al. 2022b). However, AVPV/PeN kisspeptin neuron ablation did not affect parturition in the mouse despite near total loss of kisspeptin fibers in the SON and PVN.
PVN (but not SON) kisspeptin fiber density was higher in early pregnancy than in late pregnancy, as was the number of kisspeptin fiber close appositions with PVN (but not SON) oxytocin neuron somata. Synaptophysin expression in SON and PVN kisspeptin fibers was similar between non-pregnant and pregnant mice. Whether synaptophysin expression is synaptic, or interactions between these neurons are mediated via volume transmission, as is the case for gonadotrophin-releasing hormone neurons (Liu et al. 2021) remains to be determined.
Ablating AVPV and PeN kisspeptin neurons with caspase almost entirely deleted kisspeptin fibers in the SON and PVN of Kiss-Cre+ mice. We cannot exclude the possibility that the ARC kisspeptin population projects to the AVPV/PeN and/or the SON/PVN (Pineda et al. 2016; Stincic et al. 2021), but our findings suggest that ARC kisspeptin innervation of the SON/PVN is likely negligible.
While there is plasticity in the kisspeptin projections to oxytocin neurons, this plasticity does not appear to be important for parturition because ablation of the projection did not affect parturition. Consistent with the well-characterized involvement of AVPV/PeN kisspeptin neurons in fertility (Clarkson et al. 2008), only five of 14 Kiss-Cre+ mice fell pregnant after mating. Estrous cycle length increased and the time Kiss-Cre+ mice spent in proestrus decreased, suggesting kisspeptin ablation disrupts the normal estrous cyclicity in mice. A large proportion of Kiss-Cre+ mice were acyclic and showed no or only one proestrous smear in the 28 days post-surgery, demonstrating that some AVPV/PeN kisspeptin neurons are necessary for the induction of proestrus and ovulation (Hu et al. 2015; Clarkson et al 2008; Piet et al. 2018). Kiss-Cre+ mice that fell pregnant spent longer in proestrous than Kiss-cre+ mice that did not fall pregnant. Presumably, sufficient ablation of AVPV/PeN kisspeptin neurons occurred in these mice to reduce fertility in less than two weeks, while functional ablation of AVPV/PeN kisspeptin neurons took longer in Kiss-Cre+ mice that fell pregnant. A similar impact on estrous cyclicity and fertility was seen in adult mice with complete kisspeptin neuron ablation (Mayer and Boehm 2011) although this did not discriminate between the AVPV/PeN and ARC subpopulations of kisspeptin cells.
Nevertheless, the numbers of AVPV/PeN kisspeptin neurons in Kiss-Cre+ mice four days after delivery was indistinguishable from that in Kiss-Cre+ mice that did not fall pregnant and was < 10% that of Kiss-Cre mice, suggesting that all Kiss-Cre+ mice were eventually impacted to the same degree. While it is impossible to exclude the possibility that the remaining kisspeptin projections to oxytocin neurons are sufficient to maintain normal parturition, it seems unlikely that so few kisspeptin neurons could sufficiently excite thousands of oxytocin neurons to trigger uterine contractions when reduced to similar numbers that cannot sustain fertility. Hence, the most likely explanation is that endogenous kisspeptin activation of oxytocin neurons may not be necessary to trigger uterine contractions in the mouse.
While ablation of AVPV/PeN kisspeptin neurons did not affect parturition, it is possible that the plasticity in the AVPV/PeN kisspeptin neuron projections to oxytocin neurons is involved in other aspects of pregnancy and mothering. Disruption of central oxytocin signaling impairs maternal behavior (Sanson and Bosch 2022). However, no interventions were made to directly investigate whether AVPV/PeN kisspeptin neuron ablation impacted maternal behavior because kisspeptin is involved in stress responses (McCosh et al. 2019). Nevertheless, there was no impact of AVPV/PeN kisspeptin neuron ablation on pup survival, and qualitative evaluation of video recordings did not suggest any obvious impairment in maternal behavior. If anything, lactation was enhanced in the dams with kisspeptin neuron ablation because their pups weighed more on day 4 of lactation than the pups from Kiss-Cre mice. Therefore, the function of the AVPV/PeN kisspeptin neuron projections to oxytocin neurons remains to be determined.
Kisspeptin projections to oxytocin neurons were investigated in mice because observations from rats suggested that this afferent input might be important for parturition. While there were broad similarities between species, there were also some differences. AVPV/PeN kisspeptin neuron projections were principally to the SON (and PVN) in mice but rat PeN kisspeptin neuron projections are principally to the PNZ surrounding the SON (Seymour et al. 2017). The PNZ is a rich source of glutamatergic and GABAergic innervation of the SON and PVN that relay information from many other brain areas (Brown et al. 2013). Kisspeptin was evident in the AVPV and PeN of non-pregnant mice as has been previously reported (Gottsch et al. 2004; Clarkson and Herbison 2006; Kauffman et al. 2007) but are almost absent from the AVPV and PeN of non-pregnant rats (Seymour et al. 2017). It remains to be determined whether species differences extend to the functional impact of AVPV and PeN kisspeptin neurons on parturition and, if so, which species is the better model for human pregnancy.
Taken together, our results suggest that there is plasticity in the AVPV/PeN projection to oxytocin neurons over pregnancy in mice, but this plasticity does not appear to be important for parturition, and its functional significance remains to be determined.

Acknowledgements

The authors thank the staff of the University of Otago Biomedical Research Facilities for their support of the research, and Dr Ulrich Boehm, University of Saarland School of Medicine for gifting the Kiss-Cre+ mice that founded the colony used in the study.

Declarations

Conflict of interest

The authors have no conflicts of interest.

Ethics approval

All experimental procedures were approved by the University of Otago Animal Ethics Committee (AUP 32/17) and were carried out in accordance with the New Zealand Animal Welfare Act (1999) and associated guidelines.
Not applicable.
The authors give consent for publication.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Antonijevic IA, Douglas AJ, Dye S, Bicknell RJ, Leng G, Russell JA (1995) Oxytocin antagonists delay the initiation of parturition and prolong its active phase in rats. J Endocrinol 145(1):97–103CrossRefPubMed Antonijevic IA, Douglas AJ, Dye S, Bicknell RJ, Leng G, Russell JA (1995) Oxytocin antagonists delay the initiation of parturition and prolong its active phase in rats. J Endocrinol 145(1):97–103CrossRefPubMed
Zurück zum Zitat Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147(12):5817–5825CrossRefPubMed Clarkson J, Herbison AE (2006) Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147(12):5817–5825CrossRefPubMed
Zurück zum Zitat Douglas A, Scullion S, Antonijevic I, Brown D, Russell J, Leng G (2001) Uterine contractile activity stimulates supraoptic neurons in term pregnant rats via a noradrenergic pathway. Endocrinology 142(2):633–644CrossRefPubMed Douglas A, Scullion S, Antonijevic I, Brown D, Russell J, Leng G (2001) Uterine contractile activity stimulates supraoptic neurons in term pregnant rats via a noradrenergic pathway. Endocrinology 142(2):633–644CrossRefPubMed
Zurück zum Zitat Herbison AE (2008) Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res Rev 57(2):277–287CrossRefPubMed Herbison AE (2008) Estrogen positive feedback to gonadotropin-releasing hormone (GnRH) neurons in the rodent: the case for the rostral periventricular area of the third ventricle (RP3V). Brain Res Rev 57(2):277–287CrossRefPubMed
Zurück zum Zitat Hu MH, Li XF, McCausland B, Li SY, Gresham R, Kinsey-Jones JS, Gardiner JV, Sam AH, Bloom SR, Poston L, Lightman SL, Murphy KG, O’Byrne KT (2015) Relative importance of the arcuate and anteroventral periventricular kisspeptin neurons in control of puberty and reproductive function in female rats. Endocrinology 156(7):2619–2631. https://doi.org/10.1210/en.2014-1655CrossRefPubMedPubMedCentral Hu MH, Li XF, McCausland B, Li SY, Gresham R, Kinsey-Jones JS, Gardiner JV, Sam AH, Bloom SR, Poston L, Lightman SL, Murphy KG, O’Byrne KT (2015) Relative importance of the arcuate and anteroventral periventricular kisspeptin neurons in control of puberty and reproductive function in female rats. Endocrinology 156(7):2619–2631. https://​doi.​org/​10.​1210/​en.​2014-1655CrossRefPubMedPubMedCentral
Zurück zum Zitat Kauffman AS, Clifton DK, Steiner RA (2007) Emerging ideas about kisspeptin-GPR54 signaling in the neuroendocrine regulation of reproduction. Trends Neurosci 30(10):504–511CrossRefPubMed Kauffman AS, Clifton DK, Steiner RA (2007) Emerging ideas about kisspeptin-GPR54 signaling in the neuroendocrine regulation of reproduction. Trends Neurosci 30(10):504–511CrossRefPubMed
Zurück zum Zitat Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636CrossRefPubMed Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brezillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636CrossRefPubMed
Zurück zum Zitat Lipschitz DL, Crowley WR, Bealer SL (2004) Differential sensitivity of intranuclear and systemic oxytocin release to central noradrenergic receptor stimulation during mid- and late gestation in rats. Am J Physiol Endocrinol Metab 287:E523-528CrossRefPubMed Lipschitz DL, Crowley WR, Bealer SL (2004) Differential sensitivity of intranuclear and systemic oxytocin release to central noradrenergic receptor stimulation during mid- and late gestation in rats. Am J Physiol Endocrinol Metab 287:E523-528CrossRefPubMed
Zurück zum Zitat Meddle SL, Leng G, Selvarajah JR, Bicknell RJ, Russell JA (2000) Direct pathways to the supraoptic nucleus from the brainstem and the main olfactory bulb are activated at parturition in the rat. Neuroscience 101(4):1013–1021CrossRefPubMed Meddle SL, Leng G, Selvarajah JR, Bicknell RJ, Russell JA (2000) Direct pathways to the supraoptic nucleus from the brainstem and the main olfactory bulb are activated at parturition in the rat. Neuroscience 101(4):1013–1021CrossRefPubMed
Zurück zum Zitat Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM (1996) Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 93(21):11699–11704CrossRefPubMedPubMedCentral Nishimori K, Young LJ, Guo Q, Wang Z, Insel TR, Matzuk MM (1996) Oxytocin is required for nursing but is not essential for parturition or reproductive behavior. Proc Natl Acad Sci USA 93(21):11699–11704CrossRefPubMedPubMedCentral
Zurück zum Zitat Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, Amsterdam Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, Amsterdam
Zurück zum Zitat Pirnik Z, Mravec B, Kiss A (2004) Fos protein expression in mouse hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei upon osmotic stimulus: colocalization with vasopressin, oxytocin, and tyrosine hydroxylase. NeurochemInt 45(5):597CrossRef Pirnik Z, Mravec B, Kiss A (2004) Fos protein expression in mouse hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei upon osmotic stimulus: colocalization with vasopressin, oxytocin, and tyrosine hydroxylase. NeurochemInt 45(5):597CrossRef
Metadaten
Titel
Kisspeptin neuron projections to oxytocin neurons are not necessary for parturition in the mouse
verfasst von
Shalini S. Kumar
Gregory T. Bouwer
Meliame K. Jackson
Michael R. Perkinson
Fiona J. McDonald
Colin H. Brown
Rachael A. Augustine
Publikationsdatum
30.06.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2023
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-023-02670-7

Weitere Artikel der Ausgabe 6/2023

Brain Structure and Function 6/2023 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Vierten reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.