Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2-3/2018

08.08.2018

Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells

verfasst von: Julian Gomez-Cambronero

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2-3/2018

Einloggen, um Zugang zu erhalten

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3′-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new “players” in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Literatur
1.
2.
Zurück zum Zitat Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65, 87–108. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65, 87–108.
3.
Zurück zum Zitat Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology, Biomarkers & Prevention: a Publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 19, 1893–1907.CrossRef Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology, Biomarkers & Prevention: a Publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 19, 1893–1907.CrossRef
4.
Zurück zum Zitat Kimbung, S., Loman, N., & Hedenfalk, I. (2015). Clinical and molecular complexity of breast cancer metastases. Seminars in Cancer Biology, 35, 85–95.PubMedCrossRef Kimbung, S., Loman, N., & Hedenfalk, I. (2015). Clinical and molecular complexity of breast cancer metastases. Seminars in Cancer Biology, 35, 85–95.PubMedCrossRef
5.
Zurück zum Zitat DeSantis, C. E., Fedewa, S. A., Goding Sauer, A., Kramer, J. L., Smith, R. A., & Jemal, A. (2016). Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA: a Cancer Journal for Clinicians, 66, 31–42. DeSantis, C. E., Fedewa, S. A., Goding Sauer, A., Kramer, J. L., Smith, R. A., & Jemal, A. (2016). Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA: a Cancer Journal for Clinicians, 66, 31–42.
6.
Zurück zum Zitat U.S. Cancer Statistics Working Group. (2015). United States Cancer Statistics: 1999–2012 incidence and mortality web-based report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. U.S. Cancer Statistics Working Group. (2015). United States Cancer Statistics: 1999–2012 incidence and mortality web-based report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute.
7.
Zurück zum Zitat Leone, J. P., & Leone, B. A. (2015). Breast cancer brain metastases: the last frontier. Experimental Hematology & Oncology, 4, 33.CrossRef Leone, J. P., & Leone, B. A. (2015). Breast cancer brain metastases: the last frontier. Experimental Hematology & Oncology, 4, 33.CrossRef
8.
Zurück zum Zitat Fan, J., Chen, D., Du, H., Shen, C., & Che, G. (2015). Prognostic factors for resection of isolated pulmonary metastases in breast cancer patients: a systematic review and meta-analysis. Journal of Thoracic Disease, 7, 1441–1451.PubMedPubMedCentral Fan, J., Chen, D., Du, H., Shen, C., & Che, G. (2015). Prognostic factors for resection of isolated pulmonary metastases in breast cancer patients: a systematic review and meta-analysis. Journal of Thoracic Disease, 7, 1441–1451.PubMedPubMedCentral
10.
Zurück zum Zitat Adhikary, S., & Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature Reviews. Molecular Cell Biology, 6, 635–645.PubMedCrossRef Adhikary, S., & Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature Reviews. Molecular Cell Biology, 6, 635–645.PubMedCrossRef
11.
Zurück zum Zitat Bredemeier, M., Kasimir-Bauer, S., Kolberg, H. C., Herold, T., Synoracki, S., Hauch, S., Edimiris, P., Bankfalvi, A., Tewes, M., Kimmig, R., & Aktas, B. (2017). Comparison of the PI3KCA pathway in circulating tumor cells and corresponding tumor tissue of patients with metastatic breast cancer. Molecular Medicine Reports, 15, 2957–2968.PubMedPubMedCentralCrossRef Bredemeier, M., Kasimir-Bauer, S., Kolberg, H. C., Herold, T., Synoracki, S., Hauch, S., Edimiris, P., Bankfalvi, A., Tewes, M., Kimmig, R., & Aktas, B. (2017). Comparison of the PI3KCA pathway in circulating tumor cells and corresponding tumor tissue of patients with metastatic breast cancer. Molecular Medicine Reports, 15, 2957–2968.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Hu, J., Banerjee, A., & Goss, D. J. (2005). Assembly of b/HLH/z proteins c-Myc, Max, and Mad1 with cognate DNA: importance of protein-protein and protein-DNA interactions. Biochemistry, 44, 11855–11863.PubMedPubMedCentralCrossRef Hu, J., Banerjee, A., & Goss, D. J. (2005). Assembly of b/HLH/z proteins c-Myc, Max, and Mad1 with cognate DNA: importance of protein-protein and protein-DNA interactions. Biochemistry, 44, 11855–11863.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Kim, D., Hong, A., Park, H. I., Shin, W. H., Yoo, L., Jeon, S. J., & Chung, K. C. (2017). Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. Journal of Cellular Physiology, 232, 3664–3676.PubMedCrossRef Kim, D., Hong, A., Park, H. I., Shin, W. H., Yoo, L., Jeon, S. J., & Chung, K. C. (2017). Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. Journal of Cellular Physiology, 232, 3664–3676.PubMedCrossRef
14.
Zurück zum Zitat McGee, S. R., Tibiche, C., Trifiro, M., & Wang, E. (2017). Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome. Genomics, Proteomics & Bioinformatics, 15, 121–129.CrossRef McGee, S. R., Tibiche, C., Trifiro, M., & Wang, E. (2017). Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome. Genomics, Proteomics & Bioinformatics, 15, 121–129.CrossRef
15.
Zurück zum Zitat Ren, J., Jin, F., Yu, Z., Zhao, L., Wang, L., Bai, X., Zhao, H., Yao, W., Mi, X., Wang, E., Olopade, O. I., & Wei, M. (2013). MYC overexpression and poor prognosis in sporadic breast cancer with BRCA1 deficiency. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 34, 3945–3958.CrossRef Ren, J., Jin, F., Yu, Z., Zhao, L., Wang, L., Bai, X., Zhao, H., Yao, W., Mi, X., Wang, E., Olopade, O. I., & Wei, M. (2013). MYC overexpression and poor prognosis in sporadic breast cancer with BRCA1 deficiency. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 34, 3945–3958.CrossRef
16.
Zurück zum Zitat Samimi, G., Bernardini, M. Q., Brody, L. C., Caga-Anan, C. F., Campbell, I. G., Chenevix-Trench, G., Couch, F. J., Dean, M., de Hullu, J. A., Domchek, S. M., Drapkin, R., Spencer Feigelson, H., Friedlander, M., Gaudet, M. M., Harmsen, M. G., Hurley, K., James, P. A., Kwon, J. S., Lacbawan, F., Lheureux, S., Mai, P. L., Mechanic, L. E., Minasian, L. M., Myers, E. R., Robson, M. E., Ramus, S. J., Rezende, L. F., Shaw, P. A., Slavin, T. P., Swisher, E. M., Takenaka, M., Bowtell, D. D., & Sherman, M. E. (2017). Traceback: a proposed framework to increase identification and genetic counseling of BRCA1 and BRCA2 mutation carriers through family-based outreach. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35, 2329–2337.CrossRef Samimi, G., Bernardini, M. Q., Brody, L. C., Caga-Anan, C. F., Campbell, I. G., Chenevix-Trench, G., Couch, F. J., Dean, M., de Hullu, J. A., Domchek, S. M., Drapkin, R., Spencer Feigelson, H., Friedlander, M., Gaudet, M. M., Harmsen, M. G., Hurley, K., James, P. A., Kwon, J. S., Lacbawan, F., Lheureux, S., Mai, P. L., Mechanic, L. E., Minasian, L. M., Myers, E. R., Robson, M. E., Ramus, S. J., Rezende, L. F., Shaw, P. A., Slavin, T. P., Swisher, E. M., Takenaka, M., Bowtell, D. D., & Sherman, M. E. (2017). Traceback: a proposed framework to increase identification and genetic counseling of BRCA1 and BRCA2 mutation carriers through family-based outreach. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35, 2329–2337.CrossRef
17.
Zurück zum Zitat Zacksenhaus, E., Liu, J. C., Jiang, Z., Yao, Y., Xia, L., Shrestha, M., & Ben-David, Y. (2017). Transcription factors in breast cancer—lessons from recent genomic analyses and therapeutic implications. Advances in Protein Chemistry and Structural Biology, 107, 223–273.PubMedCrossRef Zacksenhaus, E., Liu, J. C., Jiang, Z., Yao, Y., Xia, L., Shrestha, M., & Ben-David, Y. (2017). Transcription factors in breast cancer—lessons from recent genomic analyses and therapeutic implications. Advances in Protein Chemistry and Structural Biology, 107, 223–273.PubMedCrossRef
18.
Zurück zum Zitat Pulverer, B., Sommer, A., McArthur, G. A., Eisenman, R. N., & Luscher, B. (2000). Analysis of Myc/Max/Mad network members in adipogenesis: inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. Journal of Cellular Physiology, 183, 399–410.PubMedCrossRef Pulverer, B., Sommer, A., McArthur, G. A., Eisenman, R. N., & Luscher, B. (2000). Analysis of Myc/Max/Mad network members in adipogenesis: inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. Journal of Cellular Physiology, 183, 399–410.PubMedCrossRef
19.
Zurück zum Zitat Gomez-Cambronero, J. (2014). Phosphatidic acid, phospholipase D and tumorigenesis. Advances in Biological Regulation, 54, 197–206.PubMedCrossRef Gomez-Cambronero, J. (2014). Phosphatidic acid, phospholipase D and tumorigenesis. Advances in Biological Regulation, 54, 197–206.PubMedCrossRef
20.
Zurück zum Zitat Wang, X., Xu, L., & Zheng, L. (1994). Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. The Journal of Biological Chemistry, 269, 20312–20317.PubMed Wang, X., Xu, L., & Zheng, L. (1994). Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. The Journal of Biological Chemistry, 269, 20312–20317.PubMed
21.
Zurück zum Zitat Speranza, F., Mahankali, M., Henkels, K. M., & Gomez-Cambronero, J. (2014). The molecular basis of leukocyte adhesion involving phosphatidic acid and phospholipase D. The Journal of Biological Chemistry, 289, 28885–28897.PubMedPubMedCentralCrossRef Speranza, F., Mahankali, M., Henkels, K. M., & Gomez-Cambronero, J. (2014). The molecular basis of leukocyte adhesion involving phosphatidic acid and phospholipase D. The Journal of Biological Chemistry, 289, 28885–28897.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Henkels, K. M., Boivin, G. P., Dudley, E. S., Berberich, S. J., & Gomez-Cambronero, J. (2013). Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene, 32, 5551–5562.PubMedPubMedCentralCrossRef Henkels, K. M., Boivin, G. P., Dudley, E. S., Berberich, S. J., & Gomez-Cambronero, J. (2013). Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene, 32, 5551–5562.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Meats, J. E., Steele, L., & Bowen, J. G. (1993). Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. Agents Actions, 39 Spec No, C14–C16.PubMedCrossRef Meats, J. E., Steele, L., & Bowen, J. G. (1993). Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. Agents Actions, 39 Spec No, C14–C16.PubMedCrossRef
24.
Zurück zum Zitat Joseph, T., Wooden, R., Bryant, A., Zhong, M., Lu, Z., & Foster, D. A. (2001). Transformation of cells overexpressing a tyrosine kinase by phospholipase D1 and D2. Biochemical and Biophysical Research Communications, 289, 1019–1024.PubMedCrossRef Joseph, T., Wooden, R., Bryant, A., Zhong, M., Lu, Z., & Foster, D. A. (2001). Transformation of cells overexpressing a tyrosine kinase by phospholipase D1 and D2. Biochemical and Biophysical Research Communications, 289, 1019–1024.PubMedCrossRef
25.
Zurück zum Zitat Park, J. B., Lee, C. S., Jang, J. H., Ghim, J., Kim, Y. J., You, S., Hwang, D., Suh, P. G., & Ryu, S. H. (2012). Phospholipase signalling networks in cancer. Nature Reviews. Cancer, 12, 782–792.PubMedCrossRef Park, J. B., Lee, C. S., Jang, J. H., Ghim, J., Kim, Y. J., You, S., Hwang, D., Suh, P. G., & Ryu, S. H. (2012). Phospholipase signalling networks in cancer. Nature Reviews. Cancer, 12, 782–792.PubMedCrossRef
26.
Zurück zum Zitat Foster, D. A., & Xu, L. (2003). Phospholipase D in cell proliferation and cancer. Molecular Cancer Research, 1, 789–800.PubMed Foster, D. A., & Xu, L. (2003). Phospholipase D in cell proliferation and cancer. Molecular Cancer Research, 1, 789–800.PubMed
27.
Zurück zum Zitat Gomez-Cambronero, J. (2014). Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. The Journal of Biological Chemistry, 289, 22557–22566.PubMedPubMedCentralCrossRef Gomez-Cambronero, J. (2014). Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. The Journal of Biological Chemistry, 289, 22557–22566.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Knoepp, S. M., Chahal, M. S., Xie, Y., Zhang, Z., Brauner, D. J., Hallman, M. A., Robinson, S. A., Han, S., Imai, M., Tomlinson, S., & Meier, K. E. (2008). Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Molecular Pharmacology, 74, 574–584.PubMedCrossRef Knoepp, S. M., Chahal, M. S., Xie, Y., Zhang, Z., Brauner, D. J., Hallman, M. A., Robinson, S. A., Han, S., Imai, M., Tomlinson, S., & Meier, K. E. (2008). Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Molecular Pharmacology, 74, 574–584.PubMedCrossRef
29.
Zurück zum Zitat Fite, K., & Gomez-Cambronero, J. (2016). Down-regulation of microRNAs (MiRs) 203, 887, 3619 and 182 prevents vimentin-triggered, phospholipase D (PLD)-mediated cancer cell invasion. The Journal of Biological Chemistry, 291, 719–730.PubMedCrossRef Fite, K., & Gomez-Cambronero, J. (2016). Down-regulation of microRNAs (MiRs) 203, 887, 3619 and 182 prevents vimentin-triggered, phospholipase D (PLD)-mediated cancer cell invasion. The Journal of Biological Chemistry, 291, 719–730.PubMedCrossRef
30.
Zurück zum Zitat Frondorf, K., Henkels, K. M., Frohman, M. A., & Gomez-Cambronero, J. (2010). Phosphatidic acid (PA) is a leukocyte chemoattractant that acts through S6 kinase signaling. The Journal of Biological Chemistry, 285, 15837–15847.PubMedPubMedCentralCrossRef Frondorf, K., Henkels, K. M., Frohman, M. A., & Gomez-Cambronero, J. (2010). Phosphatidic acid (PA) is a leukocyte chemoattractant that acts through S6 kinase signaling. The Journal of Biological Chemistry, 285, 15837–15847.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Mahankali, M., Peng, H. J., Cox, D., & Gomez-Cambronero, J. (2011). The mechanism of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and Rac2 association. Cellular Signalling, 23, 1291–1298.PubMedPubMedCentralCrossRef Mahankali, M., Peng, H. J., Cox, D., & Gomez-Cambronero, J. (2011). The mechanism of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and Rac2 association. Cellular Signalling, 23, 1291–1298.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Hatton, N., Lintz, E., Mahankali, M., Henkels, K. M., & Gomez-Cambronero, J. (2015). Phosphatidic acid increases epidermal growth factor receptor expression by stabilizing mRNA decay and by inhibiting lysosomal and proteasomal degradation of the internalized receptor. Molecular and Cellular Biology, 35, 3131–3144.PubMedPubMedCentral Hatton, N., Lintz, E., Mahankali, M., Henkels, K. M., & Gomez-Cambronero, J. (2015). Phosphatidic acid increases epidermal growth factor receptor expression by stabilizing mRNA decay and by inhibiting lysosomal and proteasomal degradation of the internalized receptor. Molecular and Cellular Biology, 35, 3131–3144.PubMedPubMedCentral
33.
Zurück zum Zitat Mahankali, M., Farkaly, T., Bedi, S., Hostetler, H. A., & Gomez-Cambronero, J. (2015). Phosphatidic acid (PA) can displace PPARalpha/LXRalpha binding to the EGFR promoter causing its transrepression in luminal cancer cells. Scientific Reports, 5, 15379.PubMedPubMedCentralCrossRef Mahankali, M., Farkaly, T., Bedi, S., Hostetler, H. A., & Gomez-Cambronero, J. (2015). Phosphatidic acid (PA) can displace PPARalpha/LXRalpha binding to the EGFR promoter causing its transrepression in luminal cancer cells. Scientific Reports, 5, 15379.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Henkels, K., Taylor, T. E., Ganesan, R., Wilkins, B. A., Fite, K., & Gomez-Cambronero, J. (2016). A phosphatidic acid (PA) conveyor system of continuous intracellular transport from cell membrane to nucleus maintains EGF receptor homeostasis. Oncotarget Accepted, in press. Henkels, K., Taylor, T. E., Ganesan, R., Wilkins, B. A., Fite, K., & Gomez-Cambronero, J. (2016). A phosphatidic acid (PA) conveyor system of continuous intracellular transport from cell membrane to nucleus maintains EGF receptor homeostasis. Oncotarget Accepted, in press.
35.
Zurück zum Zitat Mahankali, M., Henkels, K. M., Speranza, F., & Gomez-Cambronero, J. (2015). A non-mitotic role for aurora kinase A as a direct activator of cell migration upon interaction with PLD, FAK and Src. Journal of Cell Science, 128, 516–526.PubMedPubMedCentralCrossRef Mahankali, M., Henkels, K. M., Speranza, F., & Gomez-Cambronero, J. (2015). A non-mitotic role for aurora kinase A as a direct activator of cell migration upon interaction with PLD, FAK and Src. Journal of Cell Science, 128, 516–526.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Lee, C. S., Bae, Y. S., Lee, S. D., Suh, P. G., & Ryu, S. H. (2001). ATP-induced mitogenesis is modulated by phospholipase D2 through extracellular signal regulated protein kinase dephosphorylation in rat pheochromocytoma PC12 cells. Neuroscience Letters, 313, 117–120.PubMedCrossRef Lee, C. S., Bae, Y. S., Lee, S. D., Suh, P. G., & Ryu, S. H. (2001). ATP-induced mitogenesis is modulated by phospholipase D2 through extracellular signal regulated protein kinase dephosphorylation in rat pheochromocytoma PC12 cells. Neuroscience Letters, 313, 117–120.PubMedCrossRef
37.
Zurück zum Zitat Kang, D. W., Lee, J. Y., Oh, D. H., Park, S. Y., Woo, T. M., Kim, M. K., Park, M. H., Jang, Y. H., & Min do, S. (2009). Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells. Experimental & Molecular Medicine, 41, 678–685.CrossRef Kang, D. W., Lee, J. Y., Oh, D. H., Park, S. Y., Woo, T. M., Kim, M. K., Park, M. H., Jang, Y. H., & Min do, S. (2009). Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells. Experimental & Molecular Medicine, 41, 678–685.CrossRef
38.
Zurück zum Zitat Min, D. S., Kwon, T. K., Park, W. S., Chang, J. S., Park, S. K., Ahn, B. H., Ryoo, Z. Y., Lee, Y. H., Lee, Y. S., Rhie, D. J., Yoon, S. H., Hahn, S. J., Kim, M. S., & Jo, Y. H. (2001). Neoplastic transformation and tumorigenesis associated with overexpression of phospholipase D isozymes in cultured murine fibroblasts. Carcinogenesis, 22, 1641–1647.PubMedCrossRef Min, D. S., Kwon, T. K., Park, W. S., Chang, J. S., Park, S. K., Ahn, B. H., Ryoo, Z. Y., Lee, Y. H., Lee, Y. S., Rhie, D. J., Yoon, S. H., Hahn, S. J., Kim, M. S., & Jo, Y. H. (2001). Neoplastic transformation and tumorigenesis associated with overexpression of phospholipase D isozymes in cultured murine fibroblasts. Carcinogenesis, 22, 1641–1647.PubMedCrossRef
39.
Zurück zum Zitat Burkhardt, U., Beyer, S., & Klein, J. (2015). Role of phospholipases D1 and 2 in astroglial proliferation: effects of specific inhibitors and genetic deletion. European Journal of Pharmacology, 761, 398–404.PubMedCrossRef Burkhardt, U., Beyer, S., & Klein, J. (2015). Role of phospholipases D1 and 2 in astroglial proliferation: effects of specific inhibitors and genetic deletion. European Journal of Pharmacology, 761, 398–404.PubMedCrossRef
40.
Zurück zum Zitat Burkhardt, U., Wojcik, B., Zimmermann, M., & Klein, J. (2013). Phospholipase D is a target for inhibition of astroglial proliferation by ethanol. Neuropharmacology, 79C, 1–9. Burkhardt, U., Wojcik, B., Zimmermann, M., & Klein, J. (2013). Phospholipase D is a target for inhibition of astroglial proliferation by ethanol. Neuropharmacology, 79C, 1–9.
41.
Zurück zum Zitat Chen, Q., Hongu, T., Sato, T., Zhang, Y., Ali, W., Cavallo, J. A., van der Velden, A., Tian, H., Di Paolo, G., Nieswandt, B., Kanaho, Y., & Frohman, M. A. (2012). Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Science Signaling, 5, ra79.PubMedPubMedCentral Chen, Q., Hongu, T., Sato, T., Zhang, Y., Ali, W., Cavallo, J. A., van der Velden, A., Tian, H., Di Paolo, G., Nieswandt, B., Kanaho, Y., & Frohman, M. A. (2012). Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Science Signaling, 5, ra79.PubMedPubMedCentral
42.
Zurück zum Zitat Kantonen, S., Hatton, N., Mahankali, M., Henkels, K. M., Park, H., Cox, D., & Gomez-Cambronero, J. (2011). A novel phospholipase D2-Grb2-WASp heterotrimer regulates leukocyte phagocytosis in a two-step mechanism. Molecular and Cellular Biology, 31, 4524–4537.PubMedPubMedCentralCrossRef Kantonen, S., Hatton, N., Mahankali, M., Henkels, K. M., Park, H., Cox, D., & Gomez-Cambronero, J. (2011). A novel phospholipase D2-Grb2-WASp heterotrimer regulates leukocyte phagocytosis in a two-step mechanism. Molecular and Cellular Biology, 31, 4524–4537.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Knapek, K., Frondorf, K., Post, J., Short, S., Cox, D., & Gomez-Cambronero, J. (2010). The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Molecular and Cellular Biology, 30, 4492–4506.PubMedPubMedCentralCrossRef Knapek, K., Frondorf, K., Post, J., Short, S., Cox, D., & Gomez-Cambronero, J. (2010). The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Molecular and Cellular Biology, 30, 4492–4506.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Yamada, Y., Hamajima, N., Kato, T., Iwata, H., Yamamura, Y., Shinoda, M., Suyama, M., Mitsudomi, T., Tajima, K., Kusakabe, S., Yoshida, H., Banno, Y., Akao, Y., Tanaka, M., & Nozawa, Y. (2003). Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. Journal of Molecular Medicine, 81, 126–131.PubMedCrossRef Yamada, Y., Hamajima, N., Kato, T., Iwata, H., Yamamura, Y., Shinoda, M., Suyama, M., Mitsudomi, T., Tajima, K., Kusakabe, S., Yoshida, H., Banno, Y., Akao, Y., Tanaka, M., & Nozawa, Y. (2003). Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. Journal of Molecular Medicine, 81, 126–131.PubMedCrossRef
45.
Zurück zum Zitat Zhao, Y., Ehara, H., Akao, Y., Shamoto, M., Nakagawa, Y., Banno, Y., Deguchi, T., Ohishi, N., Yagi, K., & Nozawa, Y. (2000). Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochemical and Biophysical Research Communications, 278, 140–143.PubMedCrossRef Zhao, Y., Ehara, H., Akao, Y., Shamoto, M., Nakagawa, Y., Banno, Y., Deguchi, T., Ohishi, N., Yagi, K., & Nozawa, Y. (2000). Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochemical and Biophysical Research Communications, 278, 140–143.PubMedCrossRef
46.
Zurück zum Zitat Cho, J. H., Hong, S. K., Kim, E. Y., Park, S. Y., Park, C. H., Kim, J. M., Kwon, O. J., Kwon, S. J., Lee, K. S., & Han, J. S. (2008). Overexpression of phospholipase D suppresses taxotere-induced cell death in stomach cancer cells. Biochimica et Biophysica Acta, 1783, 912–923.PubMedCrossRef Cho, J. H., Hong, S. K., Kim, E. Y., Park, S. Y., Park, C. H., Kim, J. M., Kwon, O. J., Kwon, S. J., Lee, K. S., & Han, J. S. (2008). Overexpression of phospholipase D suppresses taxotere-induced cell death in stomach cancer cells. Biochimica et Biophysica Acta, 1783, 912–923.PubMedCrossRef
47.
Zurück zum Zitat Riebeling, C., Muller, C., & Geilen, C. C. (2003). Expression and regulation of phospholipase D isoenzymes in human melanoma cells and primary melanocytes. Melanoma Research, 13, 555–562.PubMedCrossRef Riebeling, C., Muller, C., & Geilen, C. C. (2003). Expression and regulation of phospholipase D isoenzymes in human melanoma cells and primary melanocytes. Melanoma Research, 13, 555–562.PubMedCrossRef
48.
Zurück zum Zitat Chen, Y., Zheng, Y., & Foster, D. A. (2003). Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene, 22, 3937–3942.PubMedCrossRef Chen, Y., Zheng, Y., & Foster, D. A. (2003). Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene, 22, 3937–3942.PubMedCrossRef
49.
Zurück zum Zitat Noh, D. Y., Ahn, S. J., Lee, R. A., Park, I. A., Kim, J. H., Suh, P. G., Ryu, S. H., Lee, K. H., & Han, J. S. (2000). Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Letters, 161, 207–214.PubMedCrossRef Noh, D. Y., Ahn, S. J., Lee, R. A., Park, I. A., Kim, J. H., Suh, P. G., Ryu, S. H., Lee, K. H., & Han, J. S. (2000). Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Letters, 161, 207–214.PubMedCrossRef
50.
Zurück zum Zitat Sanematsu, F., Nishikimi, A., Watanabe, M., Hongu, T., Tanaka, Y., Kanaho, Y., Cote, J. F., & Fukui, Y. (2013). Phosphatidic acid-dependent recruitment and function of the Rac activator DOCK1 during dorsal ruffle formation. The Journal of Biological Chemistry. Sanematsu, F., Nishikimi, A., Watanabe, M., Hongu, T., Tanaka, Y., Kanaho, Y., Cote, J. F., & Fukui, Y. (2013). Phosphatidic acid-dependent recruitment and function of the Rac activator DOCK1 during dorsal ruffle formation. The Journal of Biological Chemistry.
51.
Zurück zum Zitat Nishikimi, A., Fukuhara, H., Su, W., Hongu, T., Takasuga, S., Mihara, H., Cao, Q., Sanematsu, F., Kanai, M., Hasegawa, H., Tanaka, Y., Shibasaki, M., Kanaho, Y., Sasaki, T., Frohman, M. A., & Fukui, Y. (2009). Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science, 324, 384–387.PubMedPubMedCentralCrossRef Nishikimi, A., Fukuhara, H., Su, W., Hongu, T., Takasuga, S., Mihara, H., Cao, Q., Sanematsu, F., Kanai, M., Hasegawa, H., Tanaka, Y., Shibasaki, M., Kanaho, Y., Sasaki, T., Frohman, M. A., & Fukui, Y. (2009). Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science, 324, 384–387.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Henkels, K. M., Peng, H. J., Frondorf, K., & Gomez-Cambronero, J. (2010). A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation. Molecular and Cellular Biology, 30, 2251–2263.PubMedPubMedCentralCrossRef Henkels, K. M., Peng, H. J., Frondorf, K., & Gomez-Cambronero, J. (2010). A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation. Molecular and Cellular Biology, 30, 2251–2263.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Henkels, K. M., Short, S., Peng, H. J., Di Fulvio, M., & Gomez-Cambronero, J. (2009). PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation. Biochemical and Biophysical Research Communications, 389, 224–228.PubMedPubMedCentralCrossRef Henkels, K. M., Short, S., Peng, H. J., Di Fulvio, M., & Gomez-Cambronero, J. (2009). PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation. Biochemical and Biophysical Research Communications, 389, 224–228.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Di Fulvio, M., Frondorf, K., & Gomez-Cambronero, J. (2008). Mutation of Y179 on phospholipase D2 (PLD2) upregulates DNA synthesis in a PI3K-and Akt-dependent manner. Cellular Signalling, 20, 176–185.PubMedCrossRef Di Fulvio, M., Frondorf, K., & Gomez-Cambronero, J. (2008). Mutation of Y179 on phospholipase D2 (PLD2) upregulates DNA synthesis in a PI3K-and Akt-dependent manner. Cellular Signalling, 20, 176–185.PubMedCrossRef
55.
Zurück zum Zitat Garcia-Teijido, P., Cabal, M. L., Fernandez, I. P., & Perez, Y. F. (2016). Tumor-infiltrating lymphocytes in triple negative breast cancer: the future of immune targeting. Clinical Medicine Insights. Oncology, 10, 31–39.PubMedPubMedCentral Garcia-Teijido, P., Cabal, M. L., Fernandez, I. P., & Perez, Y. F. (2016). Tumor-infiltrating lymphocytes in triple negative breast cancer: the future of immune targeting. Clinical Medicine Insights. Oncology, 10, 31–39.PubMedPubMedCentral
56.
Zurück zum Zitat Brady, N. J., Chuntova, P., & Schwertfeger, K. L. (2016). Macrophages: regulators of the inflammatory microenvironment during mammary gland development and breast cancer. Mediators of Inflammation, 2016, 4549676.PubMedPubMedCentralCrossRef Brady, N. J., Chuntova, P., & Schwertfeger, K. L. (2016). Macrophages: regulators of the inflammatory microenvironment during mammary gland development and breast cancer. Mediators of Inflammation, 2016, 4549676.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Buchsbaum, R. J., & Oh, S. Y. (2016). Breast cancer-associated fibroblasts: where we are and where we need to go. Cancers, 8. Buchsbaum, R. J., & Oh, S. Y. (2016). Breast cancer-associated fibroblasts: where we are and where we need to go. Cancers, 8.
58.
59.
Zurück zum Zitat Kim, I. S., & Zhang, X. H. (2016). One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer Metastasis Reviews, 35, 601–629.PubMedPubMedCentralCrossRef Kim, I. S., & Zhang, X. H. (2016). One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer Metastasis Reviews, 35, 601–629.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. Journal of Leukocyte Biology, 57, 747–751.PubMedCrossRef Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. Journal of Leukocyte Biology, 57, 747–751.PubMedCrossRef
61.
Zurück zum Zitat Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196, 254–265.PubMedCrossRef Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196, 254–265.PubMedCrossRef
62.
Zurück zum Zitat DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., Gallagher, W. M., Wadhwani, N., Keil, S. D., Junaid, S. A., Rugo, H. S., Hwang, E. S., Jirstrom, K., West, B. L., & Coussens, L. M. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67.PubMedPubMedCentralCrossRef DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., Gallagher, W. M., Wadhwani, N., Keil, S. D., Junaid, S. A., Rugo, H. S., Hwang, E. S., Jirstrom, K., West, B. L., & Coussens, L. M. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Beck, A. H., Espinosa, I., Edris, B., Li, R., Montgomery, K., Zhu, S., Varma, S., Marinelli, R. J., van de Rijn, M., & West, R. B. (2009). The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 15, 778–787.CrossRef Beck, A. H., Espinosa, I., Edris, B., Li, R., Montgomery, K., Zhu, S., Varma, S., Marinelli, R. J., van de Rijn, M., & West, R. B. (2009). The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 15, 778–787.CrossRef
64.
Zurück zum Zitat Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., Au, A., Baehner, F., Chen, Y., Malaka, D. O., Lin, A., Adeyanju, O. O., Li, S., Gong, C., McGrath, M., Olopade, O. I., & Esserman, L. J. (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Research and Treatment, 128, 703–711.PubMedCrossRef Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., Au, A., Baehner, F., Chen, Y., Malaka, D. O., Lin, A., Adeyanju, O. O., Li, S., Gong, C., McGrath, M., Olopade, O. I., & Esserman, L. J. (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Research and Treatment, 128, 703–711.PubMedCrossRef
65.
Zurück zum Zitat Sharma, M., Beck, A. H., Webster, J. A., Espinosa, I., Montgomery, K., Varma, S., van de Rijn, M., Jensen, K. C., & West, R. B. (2010). Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Research and Treatment, 123, 397–404.PubMedCrossRef Sharma, M., Beck, A. H., Webster, J. A., Espinosa, I., Montgomery, K., Varma, S., van de Rijn, M., Jensen, K. C., & West, R. B. (2010). Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Research and Treatment, 123, 397–404.PubMedCrossRef
66.
Zurück zum Zitat Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266.PubMedCrossRef Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266.PubMedCrossRef
67.
Zurück zum Zitat De Palma, M., & Lewis, C. E. (2013). Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell, 23, 277–286.PubMedCrossRef De Palma, M., & Lewis, C. E. (2013). Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell, 23, 277–286.PubMedCrossRef
69.
Zurück zum Zitat Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Research, 67, 5064–5066.PubMedCrossRef Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Research, 67, 5064–5066.PubMedCrossRef
70.
Zurück zum Zitat Lin, E. Y., Li, J. F., Bricard, G., Wang, W., Deng, Y., Sellers, R., Porcelli, S. A., & Pollard, J. W. (2007). Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Molecular Oncology, 1, 288–302.PubMedPubMedCentralCrossRef Lin, E. Y., Li, J. F., Bricard, G., Wang, W., Deng, Y., Sellers, R., Porcelli, S. A., & Pollard, J. W. (2007). Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Molecular Oncology, 1, 288–302.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., & Coussens, L. M. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.PubMedPubMedCentralCrossRef DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., & Coussens, L. M. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., Graf, T., Pollard, J. W., Segall, J., & Condeelis, J. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64, 7022–7029.PubMedCrossRef Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., Graf, T., Pollard, J. W., Segall, J., & Condeelis, J. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64, 7022–7029.PubMedCrossRef
73.
Zurück zum Zitat Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., Huang, D., Wu, W., Lin, L., Huang, W., Zhang, J., Cui, X., Zheng, F., Li, H., Yao, H., Su, F., & Song, E. (2014). A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 25, 605–620.PubMedCrossRef Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., Huang, D., Wu, W., Lin, L., Huang, W., Zhang, J., Cui, X., Zheng, F., Li, H., Yao, H., Su, F., & Song, E. (2014). A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 25, 605–620.PubMedCrossRef
74.
Zurück zum Zitat Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184, 702–712.CrossRef Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184, 702–712.CrossRef
75.
Zurück zum Zitat Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., Liu, Y., Huang, J. D., & Song, E. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 10, 117.PubMedPubMedCentralCrossRef Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., Liu, Y., Huang, J. D., & Song, E. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 10, 117.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., Kaiser, E. A., Snyder, L. A., & Pollard, J. W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475, 222–225.PubMedPubMedCentralCrossRef Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., Kaiser, E. A., Snyder, L. A., & Pollard, J. W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475, 222–225.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., Lang, R. A., & Pollard, J. W. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 4, e6562.PubMedPubMedCentralCrossRef Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., Lang, R. A., & Pollard, J. W. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 4, e6562.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Gratchev, A., Kzhyshkowska, J., Kannookadan, S., Ochsenreiter, M., Popova, A., Yu, X., Mamidi, S., Stonehouse-Usselmann, E., Muller-Molinet, I., Gooi, L., & Goerdt, S. (2008). Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. Journal of Immunology, 180, 6553–6565.CrossRef Gratchev, A., Kzhyshkowska, J., Kannookadan, S., Ochsenreiter, M., Popova, A., Yu, X., Mamidi, S., Stonehouse-Usselmann, E., Muller-Molinet, I., Gooi, L., & Goerdt, S. (2008). Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. Journal of Immunology, 180, 6553–6565.CrossRef
80.
Zurück zum Zitat Hu, X., Chung, A. Y., Wu, I., Foldi, J., Chen, J., Ji, J. D., Tateya, T., Kang, Y. J., Han, J., Gessler, M., Kageyama, R., & Ivashkiv, L. B. (2008). Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity, 29, 691–703.PubMedPubMedCentralCrossRef Hu, X., Chung, A. Y., Wu, I., Foldi, J., Chen, J., Ji, J. D., Tateya, T., Kang, Y. J., Han, J., Gessler, M., Kageyama, R., & Ivashkiv, L. B. (2008). Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity, 29, 691–703.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Ravasi, T., Wells, C., Forest, A., Underhill, D. M., Wainwright, B. J., Aderem, A., Grimmond, S., & Hume, D. A. (2002). Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. Journal of Immunology, 168, 44–50.CrossRef Ravasi, T., Wells, C., Forest, A., Underhill, D. M., Wainwright, B. J., Aderem, A., Grimmond, S., & Hume, D. A. (2002). Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. Journal of Immunology, 168, 44–50.CrossRef
82.
Zurück zum Zitat Riches, D. W. (1995). Signalling heterogeneity as a contributing factor in macrophage functional diversity. Seminars in Cell Biology, 6, 377–384.PubMedCrossRef Riches, D. W. (1995). Signalling heterogeneity as a contributing factor in macrophage functional diversity. Seminars in Cell Biology, 6, 377–384.PubMedCrossRef
83.
Zurück zum Zitat Stout, R. D., Jiang, C., Matta, B., Tietzel, I., Watkins, S. K., & Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175, 342–349.CrossRef Stout, R. D., Jiang, C., Matta, B., Tietzel, I., Watkins, S. K., & Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175, 342–349.CrossRef
84.
Zurück zum Zitat Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S., & Obin, M. S. (2010). Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes, 59, 1171–1181.PubMedPubMedCentralCrossRef Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S., & Obin, M. S. (2010). Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes, 59, 1171–1181.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De Nardo, D., Gohel, T. D., Emde, M., Schmidleithner, L., Ganesan, H., Nino-Castro, A., Mallmann, M. R., Labzin, L., Theis, H., Kraut, M., Beyer, M., Latz, E., Freeman, T. C., Ulas, T., & Schultze, J. L. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 40, 274–288.PubMedPubMedCentralCrossRef Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De Nardo, D., Gohel, T. D., Emde, M., Schmidleithner, L., Ganesan, H., Nino-Castro, A., Mallmann, M. R., Labzin, L., Theis, H., Kraut, M., Beyer, M., Latz, E., Freeman, T. C., Ulas, T., & Schultze, J. L. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 40, 274–288.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., Di Serio, C., Naldini, L., & De Palma, M. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114, 901–914.PubMedCrossRef Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., Di Serio, C., Naldini, L., & De Palma, M. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114, 901–914.PubMedCrossRef
87.
Zurück zum Zitat Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. The Journal of Clinical Investigation, 117, 1155–1166.PubMedPubMedCentralCrossRef Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. The Journal of Clinical Investigation, 117, 1155–1166.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., Vago, L., Nebuloni, M., Mantovani, A., & Sica, A. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107, 2112–2122.PubMedCrossRef Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., Vago, L., Nebuloni, M., Mantovani, A., & Sica, A. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107, 2112–2122.PubMedCrossRef
89.
Zurück zum Zitat Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., Robinson, S. C., & Balkwill, F. R. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. The Journal of Experimental Medicine, 205, 1261–1268.PubMedPubMedCentralCrossRef Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., Robinson, S. C., & Balkwill, F. R. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. The Journal of Experimental Medicine, 205, 1261–1268.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Sierra, J. R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., Piacibello, W., Kumanogoh, A., Kikutani, H., Comoglio, P. M., Tamagnone, L., & Giordano, S. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. The Journal of Experimental Medicine, 205, 1673–1685.PubMedPubMedCentralCrossRef Sierra, J. R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., Piacibello, W., Kumanogoh, A., Kikutani, H., Comoglio, P. M., Tamagnone, L., & Giordano, S. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. The Journal of Experimental Medicine, 205, 1673–1685.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., Ilkovitch, D., Schwendener, R. A., Iragavarapu-Charyulu, V., Cardentey, Y., Strbo, N., & Lopez, D. M. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69, 4800–4809.PubMedCrossRef Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., Ilkovitch, D., Schwendener, R. A., Iragavarapu-Charyulu, V., Cardentey, Y., Strbo, N., & Lopez, D. M. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69, 4800–4809.PubMedCrossRef
92.
Zurück zum Zitat Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605–612.PubMedCrossRef Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605–612.PubMedCrossRef
93.
Zurück zum Zitat Ruffell, B., Affara, N. I., & Coussens, L. M. (2012). Differential macrophage programming in the tumor microenvironment. Trends in Immunology, 33, 119–126.PubMedPubMedCentralCrossRef Ruffell, B., Affara, N. I., & Coussens, L. M. (2012). Differential macrophage programming in the tumor microenvironment. Trends in Immunology, 33, 119–126.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Van Overmeire, E., Laoui, D., Keirsse, J., Van Ginderachter, J. A., & Sarukhan, A. (2014). Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Frontiers in Immunology, 5, 127.PubMedPubMedCentral Van Overmeire, E., Laoui, D., Keirsse, J., Van Ginderachter, J. A., & Sarukhan, A. (2014). Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Frontiers in Immunology, 5, 127.PubMedPubMedCentral
95.
Zurück zum Zitat Egeblad, M., Ewald, A. J., Askautrud, H. A., Truitt, M. L., Welm, B. E., Bainbridge, E., Peeters, G., Krummel, M. F., & Werb, Z. (2008). Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Disease Models & Mechanisms, 1, 155–167 discussion 165.CrossRef Egeblad, M., Ewald, A. J., Askautrud, H. A., Truitt, M. L., Welm, B. E., Bainbridge, E., Peeters, G., Krummel, M. F., & Werb, Z. (2008). Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Disease Models & Mechanisms, 1, 155–167 discussion 165.CrossRef
96.
Zurück zum Zitat Huang, Y., Yuan, J., Righi, E., Kamoun, W. S., Ancukiewicz, M., Nezivar, J., Santosuosso, M., Martin, J. D., Martin, M. R., Vianello, F., Leblanc, P., Munn, L. L., Huang, P., Duda, D. G., Fukumura, D., Jain, R. K., & Poznansky, M. C. (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 109, 17561–17566.PubMedPubMedCentralCrossRef Huang, Y., Yuan, J., Righi, E., Kamoun, W. S., Ancukiewicz, M., Nezivar, J., Santosuosso, M., Martin, J. D., Martin, M. R., Vianello, F., Leblanc, P., Munn, L. L., Huang, P., Duda, D. G., Fukumura, D., Jain, R. K., & Poznansky, M. C. (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 109, 17561–17566.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Franklin, R. A., Liao, W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., Pamer, E. G., & Li, M. O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science, 344, 921–925.PubMedPubMedCentralCrossRef Franklin, R. A., Liao, W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., Pamer, E. G., & Li, M. O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science, 344, 921–925.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., Charles, K., Gordon, S., & Balkwill, F. R. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176, 5023–5032.CrossRef Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., Charles, K., Gordon, S., & Balkwill, F. R. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176, 5023–5032.CrossRef
99.
Zurück zum Zitat Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.PubMedCrossRef Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.PubMedCrossRef
100.
Zurück zum Zitat Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284, 34342–34354.PubMedPubMedCentralCrossRef Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284, 34342–34354.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Hsu, D. S., Wang, H. J., Tai, S. K., Chou, C. H., Hsieh, C. H., Chiu, P. H., Chen, N. J., & Yang, M. H. (2014). Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 26, 534–548.PubMedCrossRef Hsu, D. S., Wang, H. J., Tai, S. K., Chou, C. H., Hsieh, C. H., Chiu, P. H., Chen, N. J., & Yang, M. H. (2014). Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 26, 534–548.PubMedCrossRef
102.
Zurück zum Zitat Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179, 977–983.CrossRef Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179, 977–983.CrossRef
103.
Zurück zum Zitat Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., Mack, M., Pipeleers, D., In't Veld, P., De Baetselier, P., & Van Ginderachter, J. A. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Research, 70, 5728–5739.PubMedCrossRef Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., Mack, M., Pipeleers, D., In't Veld, P., De Baetselier, P., & Van Ginderachter, J. A. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Research, 70, 5728–5739.PubMedCrossRef
104.
Zurück zum Zitat Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104, 2224–2234.PubMedCrossRef Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104, 2224–2234.PubMedCrossRef
105.
Zurück zum Zitat Obeid, E., Nanda, R., Fu, Y. X., & Olopade, O. I. (2013). The role of tumor-associated macrophages in breast cancer progression (review). International Journal of Oncology, 43, 5–12.PubMedPubMedCentralCrossRef Obeid, E., Nanda, R., Fu, Y. X., & Olopade, O. I. (2013). The role of tumor-associated macrophages in breast cancer progression (review). International Journal of Oncology, 43, 5–12.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., Olson, O. C., Quick, M. L., Huse, J. T., Teijeiro, V., Setty, M., Leslie, C. S., Oei, Y., Pedraza, A., Zhang, J., Brennan, C. W., Sutton, J. C., Holland, E. C., Daniel, D., & Joyce, J. A. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 19, 1264–1272.PubMedPubMedCentralCrossRef Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., Olson, O. C., Quick, M. L., Huse, J. T., Teijeiro, V., Setty, M., Leslie, C. S., Oei, Y., Pedraza, A., Zhang, J., Brennan, C. W., Sutton, J. C., Holland, E. C., Daniel, D., & Joyce, J. A. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 19, 1264–1272.PubMedPubMedCentralCrossRef
107.
108.
Zurück zum Zitat Galdiero, M. R., Bonavita, E., Barajon, I., Garlanda, C., Mantovani, A., & Jaillon, S. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology, 218, 1402–1410.PubMedCrossRef Galdiero, M. R., Bonavita, E., Barajon, I., Garlanda, C., Mantovani, A., & Jaillon, S. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology, 218, 1402–1410.PubMedCrossRef
109.
Zurück zum Zitat Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66, 1–9.PubMedCrossRef Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66, 1–9.PubMedCrossRef
110.
Zurück zum Zitat Laoui, D., Movahedi, K., Van Overmeire, E., Van den Bossche, J., Schouppe, E., Mommer, C., Nikolaou, A., Morias, Y., De Baetselier, P., & Van Ginderachter, J. A. (2011). Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. The International Journal of Developmental Biology, 55, 861–867.PubMedCrossRef Laoui, D., Movahedi, K., Van Overmeire, E., Van den Bossche, J., Schouppe, E., Mommer, C., Nikolaou, A., Morias, Y., De Baetselier, P., & Van Ginderachter, J. A. (2011). Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. The International Journal of Developmental Biology, 55, 861–867.PubMedCrossRef
111.
Zurück zum Zitat Achyut, B. R., & Arbab, A. S. (2016). Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer. OncoTargets and Therapy, 9, 1047–1055.PubMedPubMedCentral Achyut, B. R., & Arbab, A. S. (2016). Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer. OncoTargets and Therapy, 9, 1047–1055.PubMedPubMedCentral
112.
Zurück zum Zitat Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 514.PubMedPubMedCentralCrossRef Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 514.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Mukhtar, R. A., Nseyo, O., Campbell, M. J., & Esserman, L. J. (2011). Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Review of Molecular Diagnostics, 11, 91–100.PubMedCrossRef Mukhtar, R. A., Nseyo, O., Campbell, M. J., & Esserman, L. J. (2011). Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Review of Molecular Diagnostics, 11, 91–100.PubMedCrossRef
114.
Zurück zum Zitat Gregory, A. D., & Houghton, A. M. (2011). Tumor-associated neutrophils: new targets for cancer therapy. Cancer Research, 71, 2411–2416.PubMedCrossRef Gregory, A. D., & Houghton, A. M. (2011). Tumor-associated neutrophils: new targets for cancer therapy. Cancer Research, 71, 2411–2416.PubMedCrossRef
115.
Zurück zum Zitat De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 10, 4895–4900.CrossRef De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 10, 4895–4900.CrossRef
116.
Zurück zum Zitat De Larco, J. E., Wuertz, B. R., Yee, D., Rickert, B. L., & Furcht, L. T. (2003). Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 13988–13993.PubMedPubMedCentralCrossRef De Larco, J. E., Wuertz, B. R., Yee, D., Rickert, B. L., & Furcht, L. T. (2003). Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 13988–13993.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447–458.PubMedCrossRef Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447–458.PubMedCrossRef
118.
Zurück zum Zitat Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.PubMedCrossRef Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.PubMedCrossRef
119.
Zurück zum Zitat Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56, 4625–4629.PubMed Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56, 4625–4629.PubMed
120.
Zurück zum Zitat Bingle, L., Lewis, C. E., Corke, K. P., Reed, M. W., & Brown, N. J. (2006). Macrophages promote angiogenesis in human breast tumour spheroids in vivo. British Journal of Cancer, 94, 101–107.PubMedPubMedCentralCrossRef Bingle, L., Lewis, C. E., Corke, K. P., Reed, M. W., & Brown, N. J. (2006). Macrophages promote angiogenesis in human breast tumour spheroids in vivo. British Journal of Cancer, 94, 101–107.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125, 5591–5596.PubMedCrossRef Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125, 5591–5596.PubMedCrossRef
122.
Zurück zum Zitat Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. The Journal of Experimental Medicine, 181, 435–440.PubMedCrossRef Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. The Journal of Experimental Medicine, 181, 435–440.PubMedCrossRef
123.
Zurück zum Zitat Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.PubMedPubMedCentralCrossRef Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Fritz, J. M., Tennis, M. A., Orlicky, D. J., Lin, H., Ju, C., Redente, E. F., Choo, K. S., Staab, T. A., Bouchard, R. J., Merrick, D. T., Malkinson, A. M., & Dwyer-Nield, L. D. (2014). Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Frontiers in Immunology, 5, 587.PubMedPubMedCentralCrossRef Fritz, J. M., Tennis, M. A., Orlicky, D. J., Lin, H., Ju, C., Redente, E. F., Choo, K. S., Staab, T. A., Bouchard, R. J., Merrick, D. T., Malkinson, A. M., & Dwyer-Nield, L. D. (2014). Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Frontiers in Immunology, 5, 587.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMedCrossRef
126.
Zurück zum Zitat Mantovani, A. (2011). B cells and macrophages in cancer: yin and yang. Nature Medicine, 17, 285–286.PubMedCrossRef Mantovani, A. (2011). B cells and macrophages in cancer: yin and yang. Nature Medicine, 17, 285–286.PubMedCrossRef
127.
Zurück zum Zitat Gallego-Ortega, D., Ledger, A., Roden, D. L., Law, A. M., Magenau, A., Kikhtyak, Z., Cho, C., Allerdice, S. L., Lee, H. J., Valdes-Mora, F., Herrmann, D., Salomon, R., Young, A. I., Lee, B. Y., Sergio, C. M., Kaplan, W., Piggin, C., Conway, J. R., Rabinovich, B., Millar, E. K., Oakes, S. R., Chtanova, T., Swarbrick, A., Naylor, M. J., O'Toole, S., Green, A. R., Timpson, P., Gee, J. M., Ellis, I. O., Clark, S. J., & Ormandy, C. J. (2015). ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid-derived suppressor cells. PLoS Biology, 13, e1002330.PubMedPubMedCentralCrossRef Gallego-Ortega, D., Ledger, A., Roden, D. L., Law, A. M., Magenau, A., Kikhtyak, Z., Cho, C., Allerdice, S. L., Lee, H. J., Valdes-Mora, F., Herrmann, D., Salomon, R., Young, A. I., Lee, B. Y., Sergio, C. M., Kaplan, W., Piggin, C., Conway, J. R., Rabinovich, B., Millar, E. K., Oakes, S. R., Chtanova, T., Swarbrick, A., Naylor, M. J., O'Toole, S., Green, A. R., Timpson, P., Gee, J. M., Ellis, I. O., Clark, S. J., & Ormandy, C. J. (2015). ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid-derived suppressor cells. PLoS Biology, 13, e1002330.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., Verstegen, N. J., Ciampricotti, M., Hawinkels, L. J., Jonkers, J., & de Visser, K. E. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522, 345–348.PubMedPubMedCentralCrossRef Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., Verstegen, N. J., Ciampricotti, M., Hawinkels, L. J., Jonkers, J., & de Visser, K. E. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522, 345–348.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Garcia-Mendoza, M. G., Inman, D. R., Ponik, S. M., Jeffery, J. J., Sheerar, D. S., Van Doorn, R. R., & Keely, P. J. (2016). Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment. Breast Cancer Research: BCR, 18, 49.PubMedCrossRef Garcia-Mendoza, M. G., Inman, D. R., Ponik, S. M., Jeffery, J. J., Sheerar, D. S., Van Doorn, R. R., & Keely, P. J. (2016). Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment. Breast Cancer Research: BCR, 18, 49.PubMedCrossRef
130.
Zurück zum Zitat Tabaries, S., Ouellet, V., Hsu, B. E., Annis, M. G., Rose, A. A., Meunier, L., Carmona, E., Tam, C. E., Mes-Masson, A. M., & Siegel, P. M. (2015). Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Research: BCR, 17, 45.PubMedCrossRef Tabaries, S., Ouellet, V., Hsu, B. E., Annis, M. G., Rose, A. A., Meunier, L., Carmona, E., Tam, C. E., Mes-Masson, A. M., & Siegel, P. M. (2015). Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Research: BCR, 17, 45.PubMedCrossRef
131.
Zurück zum Zitat Marini, O., Spina, C., Mimiola, E., Cassaro, A., Malerba, G., Todeschini, G., Perbellini, O., Scupoli, M., Carli, G., Facchinelli, D., Cassatella, M., Scapini, P., & Tecchio, C. (2016). Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget. Marini, O., Spina, C., Mimiola, E., Cassaro, A., Malerba, G., Todeschini, G., Perbellini, O., Scupoli, M., Carli, G., Facchinelli, D., Cassatella, M., Scapini, P., & Tecchio, C. (2016). Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget.
132.
Zurück zum Zitat Cavallo, F., Giovarelli, M., Gulino, A., Vacca, A., Stoppacciaro, A., Modesti, A., & Forni, G. (1992). Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. Journal of Immunology, 149, 3627–3635. Cavallo, F., Giovarelli, M., Gulino, A., Vacca, A., Stoppacciaro, A., Modesti, A., & Forni, G. (1992). Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. Journal of Immunology, 149, 3627–3635.
133.
Zurück zum Zitat Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., Belardelli, F., Forni, G., & Modesti, A. (1996). Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Laboratory Investigation: a Journal of Technical Methods and Pathology, 74, 146–157. Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., Belardelli, F., Forni, G., & Modesti, A. (1996). Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Laboratory Investigation: a Journal of Technical Methods and Pathology, 74, 146–157.
134.
Zurück zum Zitat Colombo, M. P., & Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine & Growth Factor Reviews, 13, 155–168.CrossRef Colombo, M. P., & Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine & Growth Factor Reviews, 13, 155–168.CrossRef
135.
Zurück zum Zitat Gajewski, T. F., Louahed, J., & Brichard, V. G. (2010). Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer Journal, 16, 399–403.CrossRef Gajewski, T. F., Louahed, J., & Brichard, V. G. (2010). Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer Journal, 16, 399–403.CrossRef
136.
Zurück zum Zitat Hadden, J. W. (1999). The immunology and immunotherapy of breast cancer: an update. International Journal of Immunopharmacology, 21, 79–101.PubMedCrossRef Hadden, J. W. (1999). The immunology and immunotherapy of breast cancer: an update. International Journal of Immunopharmacology, 21, 79–101.PubMedCrossRef
137.
Zurück zum Zitat Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R., & Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Research, 65, 8896–8904.PubMedCrossRef Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R., & Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Research, 65, 8896–8904.PubMedCrossRef
138.
Zurück zum Zitat Di Carlo, E., Rovero, S., Boggio, K., Quaglino, E., Amici, A., Smorlesi, A., Forni, G., & Musiani, P. (2001). Inhibition of mammary carcinogenesis by systemic interleukin 12 or p185neu DNA vaccination in Her-2/neu transgenic BALB/c mice. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 7, 830s–837s. Di Carlo, E., Rovero, S., Boggio, K., Quaglino, E., Amici, A., Smorlesi, A., Forni, G., & Musiani, P. (2001). Inhibition of mammary carcinogenesis by systemic interleukin 12 or p185neu DNA vaccination in Her-2/neu transgenic BALB/c mice. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 7, 830s–837s.
139.
Zurück zum Zitat Rimando, J., Campbell, J., Kim, J. H., Tang, S. C., & Kim, S. (2016). The pretreatment neutrophil/lymphocyte ratio is associated with all-cause mortality in black and white patients with non-metastatic breast cancer. Frontiers in Oncology, 6, 81.PubMedPubMedCentralCrossRef Rimando, J., Campbell, J., Kim, J. H., Tang, S. C., & Kim, S. (2016). The pretreatment neutrophil/lymphocyte ratio is associated with all-cause mortality in black and white patients with non-metastatic breast cancer. Frontiers in Oncology, 6, 81.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Benito-Martin, A., Di Giannatale, A., Ceder, S., & Peinado, H. (2015). The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Frontiers in Immunology, 6, 66.PubMedPubMedCentralCrossRef Benito-Martin, A., Di Giannatale, A., Ceder, S., & Peinado, H. (2015). The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Frontiers in Immunology, 6, 66.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Fite, K., Elkhadragy, L., & Gomez-Cambronero, J. (2016). A repertoire of microRNAs regulates cancer cell starvation by targeting phospholipase D in a feedback loop that operates maximally in cancer cells. Molecular and Cellular Biology, 36, 1078–1089.PubMedPubMedCentralCrossRef Fite, K., Elkhadragy, L., & Gomez-Cambronero, J. (2016). A repertoire of microRNAs regulates cancer cell starvation by targeting phospholipase D in a feedback loop that operates maximally in cancer cells. Molecular and Cellular Biology, 36, 1078–1089.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Foster, D. A. (2004). Targeting mTOR-mediated survival signals in anticancer therapeutic strategies. Expert Review of Anticancer Therapy, 4, 691–701.PubMedCrossRef Foster, D. A. (2004). Targeting mTOR-mediated survival signals in anticancer therapeutic strategies. Expert Review of Anticancer Therapy, 4, 691–701.PubMedCrossRef
143.
Zurück zum Zitat Rodrik, V., Zheng, Y., Harrow, F., Chen, Y., & Foster, D. A. (2005). Survival signals generated by estrogen and phospholipase D in MCF-7 breast cancer cells are dependent on Myc. Molecular and Cellular Biology, 25, 7917–7925.PubMedPubMedCentralCrossRef Rodrik, V., Zheng, Y., Harrow, F., Chen, Y., & Foster, D. A. (2005). Survival signals generated by estrogen and phospholipase D in MCF-7 breast cancer cells are dependent on Myc. Molecular and Cellular Biology, 25, 7917–7925.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920.PubMedCrossRef Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920.PubMedCrossRef
145.
Zurück zum Zitat Nilsson, J., Skog, J., Nordstrand, A., Baranov, V., Mincheva-Nilsson, L., Breakefield, X. O., & Widmark, A. (2009). Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. British Journal of Cancer, 100, 1603–1607.PubMedPubMedCentralCrossRef Nilsson, J., Skog, J., Nordstrand, A., Baranov, V., Mincheva-Nilsson, L., Breakefield, X. O., & Widmark, A. (2009). Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. British Journal of Cancer, 100, 1603–1607.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Kvistborg, P., & Yewdell, J. W. (2018). Enhancing responses to cancer immunotherapy. Science, 359, 516–517.PubMedCrossRef Kvistborg, P., & Yewdell, J. W. (2018). Enhancing responses to cancer immunotherapy. Science, 359, 516–517.PubMedCrossRef
147.
Zurück zum Zitat Wolchok, J. D., Rollin, L., & Larkin, J. (2017). Nivolumab and ipilimumab in advanced melanoma. The New England Journal of Medicine, 377, 2503–2504.PubMedCrossRef Wolchok, J. D., Rollin, L., & Larkin, J. (2017). Nivolumab and ipilimumab in advanced melanoma. The New England Journal of Medicine, 377, 2503–2504.PubMedCrossRef
148.
Zurück zum Zitat Chowell, D., Morris, L. G., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D., & Riaz, N. (2018). Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 359, 582–587.PubMedCrossRef Chowell, D., Morris, L. G., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D., & Riaz, N. (2018). Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 359, 582–587.PubMedCrossRef
149.
Zurück zum Zitat Robinson, J., Guethlein, L. A., Cereb, N., Yang, S. Y., Norman, P. J., Marsh, S. G., & Parham, P. (2017). Distinguishing functional polymorphism from random variation in the sequences of > 10,000 HLA-A,-B and-C alleles. PLoS Genetics, 13, e1006862.PubMedPubMedCentralCrossRef Robinson, J., Guethlein, L. A., Cereb, N., Yang, S. Y., Norman, P. J., Marsh, S. G., & Parham, P. (2017). Distinguishing functional polymorphism from random variation in the sequences of > 10,000 HLA-A,-B and-C alleles. PLoS Genetics, 13, e1006862.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348, 69–74.PubMedCrossRef Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348, 69–74.PubMedCrossRef
151.
Zurück zum Zitat Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: regulation of exosome loading. Seminars in Cancer Biology, 28, 3–13.PubMedPubMedCentralCrossRef Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: regulation of exosome loading. Seminars in Cancer Biology, 28, 3–13.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Saenz-Cuesta, M., Mittelbrunn, M., & Otaegui, D. (2015). Editorial: Novel clinical applications of extracellular vesicles. Frontiers in Immunology, 6, 381.PubMedPubMedCentral Saenz-Cuesta, M., Mittelbrunn, M., & Otaegui, D. (2015). Editorial: Novel clinical applications of extracellular vesicles. Frontiers in Immunology, 6, 381.PubMedPubMedCentral
153.
Zurück zum Zitat Mittelbrunn, M., & Sanchez-Madrid, F. (2012). Intercellular communication: diverse structures for exchange of genetic information. Nature Reviews. Molecular Cell Biology, 13, 328–335.PubMedPubMedCentralCrossRef Mittelbrunn, M., & Sanchez-Madrid, F. (2012). Intercellular communication: diverse structures for exchange of genetic information. Nature Reviews. Molecular Cell Biology, 13, 328–335.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Liu, F., Lang, R., Zhao, J., Zhang, X., Pringle, G. A., Fan, Y., Yin, D., Gu, F., Yao, Z., & Fu, L. (2011). CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Research and Treatment, 130, 645–655.PubMedCrossRef Liu, F., Lang, R., Zhao, J., Zhang, X., Pringle, G. A., Fan, Y., Yin, D., Gu, F., Yao, Z., & Fu, L. (2011). CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Research and Treatment, 130, 645–655.PubMedCrossRef
155.
Zurück zum Zitat Fatima, F., & Nawaz, M. (2015). Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chinese Journal of Cancer, 34, 541–553.PubMedCrossRef Fatima, F., & Nawaz, M. (2015). Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chinese Journal of Cancer, 34, 541–553.PubMedCrossRef
156.
Zurück zum Zitat Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., & Xu, W. (2015). Exosomes in cancer: small particle, big player. Journal of Hematology & Oncology, 8, 83.CrossRef Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., & Xu, W. (2015). Exosomes in cancer: small particle, big player. Journal of Hematology & Oncology, 8, 83.CrossRef
157.
Zurück zum Zitat Ko, J., Carpenter, E., & Issadore, D. (2016). Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. The Analyst, 141, 450–460.PubMedPubMedCentralCrossRef Ko, J., Carpenter, E., & Issadore, D. (2016). Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. The Analyst, 141, 450–460.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Balaj, L., Lessard, R., Dai, L., Cho, Y. J., Pomeroy, S. L., Breakefield, X. O., & Skog, J. (2011). Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature Communications, 2, 180.PubMedPubMedCentralCrossRef Balaj, L., Lessard, R., Dai, L., Cho, Y. J., Pomeroy, S. L., Breakefield, X. O., & Skog, J. (2011). Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature Communications, 2, 180.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., Yu, Y., Chow, A., O’Connor, S. T., Chin, A. R., Yen, Y., Wang, Y., Marcusson, E. G., Chu, P., Wu, J., Wu, X., Li, A. X., Li, Z., Gao, H., Ren, X., Boldin, M. P., Lin, P. C., & Wang, S. E. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25, 501–515.PubMedPubMedCentralCrossRef Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., Yu, Y., Chow, A., O’Connor, S. T., Chin, A. R., Yen, Y., Wang, Y., Marcusson, E. G., Chu, P., Wu, J., Wu, X., Li, A. X., Li, Z., Gao, H., Ren, X., Boldin, M. P., Lin, P. C., & Wang, S. E. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25, 501–515.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Melo, S. A., Sugimoto, H., O'Connell, J. T., Kato, N., Villanueva, A., Vidal, A., Qiu, L., Vitkin, E., Perelman, L. T., Melo, C. A., Lucci, A., Ivan, C., Calin, G. A., & Kalluri, R. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 26, 707–721.PubMedPubMedCentralCrossRef Melo, S. A., Sugimoto, H., O'Connell, J. T., Kato, N., Villanueva, A., Vidal, A., Qiu, L., Vitkin, E., Perelman, L. T., Melo, C. A., Lucci, A., Ivan, C., Calin, G. A., & Kalluri, R. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 26, 707–721.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Skog, J., Wurdinger, T., van Rijn, S., Meijer, D. H., Gainche, L., Sena-Esteves, M., Curry Jr., W. T., Carter, B. S., Krichevsky, A. M., & Breakefield, X. O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10, 1470–1476.PubMedPubMedCentralCrossRef Skog, J., Wurdinger, T., van Rijn, S., Meijer, D. H., Gainche, L., Sena-Esteves, M., Curry Jr., W. T., Carter, B. S., Krichevsky, A. M., & Breakefield, X. O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10, 1470–1476.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., Tetta, C., Bussolati, B., & Camussi, G. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71, 5346–5356.PubMedCrossRef Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., Tetta, C., Bussolati, B., & Camussi, G. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71, 5346–5356.PubMedCrossRef
163.
Zurück zum Zitat Ghossoub, R., Lembo, F., Rubio, A., Gaillard, C. B., Bouchet, J., Vitale, N., Slavík, J., Machala, M., & Zimmermann, P. (2014). Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nature Communications, 5, 3477.PubMedCrossRef Ghossoub, R., Lembo, F., Rubio, A., Gaillard, C. B., Bouchet, J., Vitale, N., Slavík, J., Machala, M., & Zimmermann, P. (2014). Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nature Communications, 5, 3477.PubMedCrossRef
164.
Zurück zum Zitat Laulagnier, K., Grand, D., Dujardin, A., Hamdi, S., Vincent-Schneider, H., Lankar, D., Salles, J.-P., Bonnerot, C., Perret, B., & Record, M. (2004). PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Letters, 572, 11–14.PubMedCrossRef Laulagnier, K., Grand, D., Dujardin, A., Hamdi, S., Vincent-Schneider, H., Lankar, D., Salles, J.-P., Bonnerot, C., Perret, B., & Record, M. (2004). PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Letters, 572, 11–14.PubMedCrossRef
165.
Zurück zum Zitat Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., & D’Souza-Schorey, C. (2009). ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology: CB, 19, 1875–1885.PubMedCrossRef Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., & D’Souza-Schorey, C. (2009). ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology: CB, 19, 1875–1885.PubMedCrossRef
166.
Zurück zum Zitat Clayton, A., Mitchell, J. P., Court, J., Mason, M. D., & Tabi, Z. (2007). Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Research, 67, 7458–7466.PubMedCrossRef Clayton, A., Mitchell, J. P., Court, J., Mason, M. D., & Tabi, Z. (2007). Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Research, 67, 7458–7466.PubMedCrossRef
167.
Zurück zum Zitat Mrizak, D., Martin, N., Barjon, C., Jimenez-Pailhes, A. S., Mustapha, R., Niki, T., Guigay, J., Pancre, V., de Launoit, Y., Busson, P., Morales, O., & Delhem, N. (2015). Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. Journal of the National Cancer Institute, 107, 363.PubMedCrossRef Mrizak, D., Martin, N., Barjon, C., Jimenez-Pailhes, A. S., Mustapha, R., Niki, T., Guigay, J., Pancre, V., de Launoit, Y., Busson, P., Morales, O., & Delhem, N. (2015). Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. Journal of the National Cancer Institute, 107, 363.PubMedCrossRef
168.
Zurück zum Zitat Ye, S. B., Li, Z. L., Luo, D. H., Huang, B. J., Chen, Y. S., Zhang, X. S., Cui, J., Zeng, Y. X., & Li, J. (2014). Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 5, 5439–5452.PubMedPubMedCentralCrossRef Ye, S. B., Li, Z. L., Luo, D. H., Huang, B. J., Chen, Y. S., Zhang, X. S., Cui, J., Zeng, Y. X., & Li, J. (2014). Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 5, 5439–5452.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., Ghajar, C., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B. A., Callahan, M. K., Yuan, J., Martins, V. R., Skog, J., Kaplan, R. N., Brady, M. S., Wolchok, J. D., Chapman, P. B., Kang, Y., Bromberg, J., & Lyden, D. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18, 883–891.PubMedPubMedCentralCrossRef Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., Ghajar, C., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B. A., Callahan, M. K., Yuan, J., Martins, V. R., Skog, J., Kaplan, R. N., Brady, M. S., Wolchok, J. D., Chapman, P. B., Kang, Y., Bromberg, J., & Lyden, D. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18, 883–891.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Nwabo Kamdje, A. H., Seke Etet, P. F., Vecchio, L., Tagne, R. S., Amvene, J. M., Muller, J. M., Krampera, M., & Lukong, K. E. (2014). New targeted therapies for breast cancer: a focus on tumor microenvironmental signals and chemoresistant breast cancers. World Journal of Clinical Cases, 2, 769–786.PubMedCrossRef Nwabo Kamdje, A. H., Seke Etet, P. F., Vecchio, L., Tagne, R. S., Amvene, J. M., Muller, J. M., Krampera, M., & Lukong, K. E. (2014). New targeted therapies for breast cancer: a focus on tumor microenvironmental signals and chemoresistant breast cancers. World Journal of Clinical Cases, 2, 769–786.PubMedCrossRef
172.
Zurück zum Zitat Zhang, X. M., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., Landis, M. D., Wiechmann, L., Schiff, R., Giuliano, M., Wong, H. L., Fuqua, S. W., Contreras, A., Gutierrez, C., Huang, J., Mao, S. F., Pavlick, A. C., Froehlich, A. M., Wu, M. F., Tsimelzon, A., Hilsenbeck, S. G., Chen, E. S., Zuloaga, P., Shaw, C. A., Rimawi, M. F., Perou, C. M., Mills, G. B., Chang, J. C., & Lewis, M. T. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73, 4885–4897.PubMedPubMedCentralCrossRef Zhang, X. M., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., Landis, M. D., Wiechmann, L., Schiff, R., Giuliano, M., Wong, H. L., Fuqua, S. W., Contreras, A., Gutierrez, C., Huang, J., Mao, S. F., Pavlick, A. C., Froehlich, A. M., Wu, M. F., Tsimelzon, A., Hilsenbeck, S. G., Chen, E. S., Zuloaga, P., Shaw, C. A., Rimawi, M. F., Perou, C. M., Mills, G. B., Chang, J. C., & Lewis, M. T. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73, 4885–4897.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Ahn, S. G., Jeong, J., Hong, S., & Jung, W. H. (2015). Current issues and clinical evidence in tumor-infiltrating lymphocytes in breast cancer. Journal of Pathology and Translational Medicine, 49, 355–363.PubMedPubMedCentralCrossRef Ahn, S. G., Jeong, J., Hong, S., & Jung, W. H. (2015). Current issues and clinical evidence in tumor-infiltrating lymphocytes in breast cancer. Journal of Pathology and Translational Medicine, 49, 355–363.PubMedPubMedCentralCrossRef
174.
175.
Zurück zum Zitat Temme, C., Simonelig, M., & Wahle, E. (2014). Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Frontiers in Genetics, 5. Temme, C., Simonelig, M., & Wahle, E. (2014). Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Frontiers in Genetics, 5.
176.
Zurück zum Zitat Martinez, J., Ren, Y. G., Thuresson, A. C., Hellman, U., Astrom, J., & Virtanen, A. (2000). A 54-kDa fragment of the poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting poly(A)-specific 3′ exonuclease. The Journal of Biological Chemistry, 275, 24222–24230.PubMedCrossRef Martinez, J., Ren, Y. G., Thuresson, A. C., Hellman, U., Astrom, J., & Virtanen, A. (2000). A 54-kDa fragment of the poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting poly(A)-specific 3′ exonuclease. The Journal of Biological Chemistry, 275, 24222–24230.PubMedCrossRef
177.
Zurück zum Zitat Godwin, A. R., Kojima, S., Green, C. B., & Wilusz, J. (2013). Kiss your tail goodbye: the role of PARN, Nocturnin, and Angel deadenylases in mRNA biology. Biochimica et Biophysica Acta, 1829, 571–579.PubMedCrossRef Godwin, A. R., Kojima, S., Green, C. B., & Wilusz, J. (2013). Kiss your tail goodbye: the role of PARN, Nocturnin, and Angel deadenylases in mRNA biology. Biochimica et Biophysica Acta, 1829, 571–579.PubMedCrossRef
178.
Zurück zum Zitat Martinez, J., Ren, Y. G., Thuresson, A. C., Hellmann, U., Astrom, J., & Virtanen, A. (2000). A 54-kDa fragment of the poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting poly(A)-specific 3′ exonuclease. Journal of Biological Chemistry, 275, 24222–24230.PubMedCrossRef Martinez, J., Ren, Y. G., Thuresson, A. C., Hellmann, U., Astrom, J., & Virtanen, A. (2000). A 54-kDa fragment of the poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting poly(A)-specific 3′ exonuclease. Journal of Biological Chemistry, 275, 24222–24230.PubMedCrossRef
179.
Zurück zum Zitat Wilson, T., & Treisman, R. (1988). Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature, 336, 396–399.PubMedCrossRef Wilson, T., & Treisman, R. (1988). Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature, 336, 396–399.PubMedCrossRef
180.
Zurück zum Zitat Mitchell, P., & Tollervey, D. (2000). mRNA stability in eukaryotes. Current Opinion in Genetics & Development, 10, 193–198.CrossRef Mitchell, P., & Tollervey, D. (2000). mRNA stability in eukaryotes. Current Opinion in Genetics & Development, 10, 193–198.CrossRef
181.
Zurück zum Zitat Shyu, A. B., Belasco, J. G., & Greenberg, M. E. (1991). Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes & Development, 5, 221–231.CrossRef Shyu, A. B., Belasco, J. G., & Greenberg, M. E. (1991). Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes & Development, 5, 221–231.CrossRef
183.
Zurück zum Zitat Nousch, M., Techritz, N., Hampel, D., Millonigg, S., & Eckmann, C. R. (2013). The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans. Journal of Cell Science, 126, 4274–4285.PubMedCrossRef Nousch, M., Techritz, N., Hampel, D., Millonigg, S., & Eckmann, C. R. (2013). The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans. Journal of Cell Science, 126, 4274–4285.PubMedCrossRef
184.
Zurück zum Zitat Funakoshi, Y., Doi, Y., Hosoda, N., Uchida, N., Osawa, M., Shimada, I., Tsujimoto, M., Suzuki, T., Katada, T., & Hoshino, S. (2007). Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes & Development, 21, 3135–3148.CrossRef Funakoshi, Y., Doi, Y., Hosoda, N., Uchida, N., Osawa, M., Shimada, I., Tsujimoto, M., Suzuki, T., Katada, T., & Hoshino, S. (2007). Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes & Development, 21, 3135–3148.CrossRef
185.
Zurück zum Zitat Mazan-Mamczarz, K., Galban, S., Lopez de Silanes, I., Martindale, J. L., Atasoy, U., Keene, J. D., & Gorospe, M. (2003). RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proceedings of the National Academy of Sciences of the United States of America, 100, 8354–8359.PubMedPubMedCentralCrossRef Mazan-Mamczarz, K., Galban, S., Lopez de Silanes, I., Martindale, J. L., Atasoy, U., Keene, J. D., & Gorospe, M. (2003). RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proceedings of the National Academy of Sciences of the United States of America, 100, 8354–8359.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Jalkanen, A. L., Coleman, S. J., & Wilusz, J. (2014). Determinants and implications of mRNA poly(A) tail size—does this protein make my tail look big? Seminars in Cell & Developmental Biology, 34, 24–32.CrossRef Jalkanen, A. L., Coleman, S. J., & Wilusz, J. (2014). Determinants and implications of mRNA poly(A) tail size—does this protein make my tail look big? Seminars in Cell & Developmental Biology, 34, 24–32.CrossRef
187.
Zurück zum Zitat Zhang, X., Devany, E., Murphy, M. R., Glazman, G., Persaud, M., & Kleiman, F. E. (2015). PARN deadenylase is involved in miRNA-dependent degradation of TP53 mRNA in mammalian cells. Nucleic Acids Research, 43, 10925–10938.PubMedPubMedCentralCrossRef Zhang, X., Devany, E., Murphy, M. R., Glazman, G., Persaud, M., & Kleiman, F. E. (2015). PARN deadenylase is involved in miRNA-dependent degradation of TP53 mRNA in mammalian cells. Nucleic Acids Research, 43, 10925–10938.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2012). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481, 190–194.CrossRef Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2012). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481, 190–194.CrossRef
189.
Zurück zum Zitat Cevher, M. A., Zhang, X., Fernandez, S., Kim, S., Baquero, J., Nilsson, P., Lee, S., Virtanen, A., & Kleiman, F. E. (2010). Nuclear deadenylation/polyadenylation factors regulate 3′ processing in response to DNA damage. The EMBO Journal, 29, 1674–1687.PubMedPubMedCentralCrossRef Cevher, M. A., Zhang, X., Fernandez, S., Kim, S., Baquero, J., Nilsson, P., Lee, S., Virtanen, A., & Kleiman, F. E. (2010). Nuclear deadenylation/polyadenylation factors regulate 3′ processing in response to DNA damage. The EMBO Journal, 29, 1674–1687.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Devany, E., Zhang, X., Park, J. Y., Tian, B., & Kleiman, F. E. (2013). Positive and negative feedback loops in the p53 and mRNA 3′ processing pathways. Proceedings of the National Academy of Sciences of the United States of America, 110, 3351–3356.PubMedPubMedCentralCrossRef Devany, E., Zhang, X., Park, J. Y., Tian, B., & Kleiman, F. E. (2013). Positive and negative feedback loops in the p53 and mRNA 3′ processing pathways. Proceedings of the National Academy of Sciences of the United States of America, 110, 3351–3356.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Maragozidis, P., Karangeli, M., Labrou, M., Dimoulou, G., Papaspyrou, K., Salataj, E., Pournaras, S., Matsouka, P., Gourgoulianis, K. I., & Balatsos, N. A. (2012). Alterations of deadenylase expression in acute leukemias: evidence for poly(A)-specific ribonuclease as a potential biomarker. Acta Haematologica, 128, 39–46.PubMedCrossRef Maragozidis, P., Karangeli, M., Labrou, M., Dimoulou, G., Papaspyrou, K., Salataj, E., Pournaras, S., Matsouka, P., Gourgoulianis, K. I., & Balatsos, N. A. (2012). Alterations of deadenylase expression in acute leukemias: evidence for poly(A)-specific ribonuclease as a potential biomarker. Acta Haematologica, 128, 39–46.PubMedCrossRef
192.
193.
Zurück zum Zitat Maragozidis, P., Papanastasi, E., Scutelnic, D., Totomi, A., Kokkori, I., Zarogiannis, S. G., Kerenidi, T., Gourgoulianis, K. I., & Balatsos, N. A. (2015). Poly(A)-specific ribonuclease and Nocturnin in squamous cell lung cancer: prognostic value and impact on gene expression. Molecular Cancer, 14, 187.PubMedPubMedCentralCrossRef Maragozidis, P., Papanastasi, E., Scutelnic, D., Totomi, A., Kokkori, I., Zarogiannis, S. G., Kerenidi, T., Gourgoulianis, K. I., & Balatsos, N. A. (2015). Poly(A)-specific ribonuclease and Nocturnin in squamous cell lung cancer: prognostic value and impact on gene expression. Molecular Cancer, 14, 187.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., & Chinnaiyan, A. M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 6, 1–6.PubMedPubMedCentralCrossRef Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., & Chinnaiyan, A. M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 6, 1–6.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., Chen, H., Omeroglu, G., Meterissian, S., Omeroglu, A., Hallett, M., & Park, M. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14, 518–527.PubMedCrossRef Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., Chen, H., Omeroglu, G., Meterissian, S., Omeroglu, A., Hallett, M., & Park, M. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14, 518–527.PubMedCrossRef
196.
Zurück zum Zitat Mittal, S., Aslam, A., Doidge, R., Medica, R., & Winkler, G. S. (2011). The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Molecular Biology of the Cell, 22, 748–758.PubMedPubMedCentralCrossRef Mittal, S., Aslam, A., Doidge, R., Medica, R., & Winkler, G. S. (2011). The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Molecular Biology of the Cell, 22, 748–758.PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat Marx, V. (2018). Meet some code-breakers of noncoding RNAs. Nature Publishing Group. Marx, V. (2018). Meet some code-breakers of noncoding RNAs. Nature Publishing Group.
198.
Zurück zum Zitat Telonis, A. G., Magee, R., Loher, P., Chervoneva, I., Londin, E., & Rigoutsos, I. (2017). Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Research, 45, 2973–2985.PubMedPubMedCentralCrossRef Telonis, A. G., Magee, R., Loher, P., Chervoneva, I., Londin, E., & Rigoutsos, I. (2017). Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Research, 45, 2973–2985.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Li, Z. H., & Rana, T. M. (2012). Molecular mechanisms of RNA-triggered gene silencing machineries. Accounts of Chemical Research, 45, 1122–1131.PubMedPubMedCentralCrossRef Li, Z. H., & Rana, T. M. (2012). Molecular mechanisms of RNA-triggered gene silencing machineries. Accounts of Chemical Research, 45, 1122–1131.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Ling, H., Fabbri, M., & Calin, G. A. (2013). MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews. Drug Discovery, 12, 847–865.PubMedPubMedCentralCrossRef Ling, H., Fabbri, M., & Calin, G. A. (2013). MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews. Drug Discovery, 12, 847–865.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Ohtsuka, M., Ling, H., Doki, Y., Mori, M., & Calin, G. A. (2015). MicroRNA processing and human cancer. Journal of Clinical Medicine, 4, 1651–1667.PubMedPubMedCentralCrossRef Ohtsuka, M., Ling, H., Doki, Y., Mori, M., & Calin, G. A. (2015). MicroRNA processing and human cancer. Journal of Clinical Medicine, 4, 1651–1667.PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRef Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMedCrossRef
205.
Zurück zum Zitat Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6, 376–385.PubMedCrossRef Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6, 376–385.PubMedCrossRef
206.
Zurück zum Zitat Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18, 3016–3027.CrossRef Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18, 3016–3027.CrossRef
207.
Zurück zum Zitat Hwang, H. W., Wentzel, E. A., & Mendell, J. T. (2007). A hexanucleotide element directs microRNA nuclear import. Science, 315, 97–100.PubMedCrossRef Hwang, H. W., Wentzel, E. A., & Mendell, J. T. (2007). A hexanucleotide element directs microRNA nuclear import. Science, 315, 97–100.PubMedCrossRef
208.
Zurück zum Zitat Eiring, A. M., Harb, J. G., Neviani, P., Garton, C., Oaks, J. J., Spizzo, R., Liu, S., Schwind, S., Santhanam, R., Hickey, C. J., Becker, H., Chandler, J. C., Andino, R., Cortes, J., Hokland, P., Huettner, C. S., Bhatia, R., Roy, D. C., Liebhaber, S. A., Caligiuri, M. A., Marcucci, G., Garzon, R., Croce, C. M., Calin, G. A., & Perrotti, D. (2010). miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell, 140, 652–665.PubMedPubMedCentralCrossRef Eiring, A. M., Harb, J. G., Neviani, P., Garton, C., Oaks, J. J., Spizzo, R., Liu, S., Schwind, S., Santhanam, R., Hickey, C. J., Becker, H., Chandler, J. C., Andino, R., Cortes, J., Hokland, P., Huettner, C. S., Bhatia, R., Roy, D. C., Liebhaber, S. A., Caligiuri, M. A., Marcucci, G., Garzon, R., Croce, C. M., Calin, G. A., & Perrotti, D. (2010). miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell, 140, 652–665.PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., & Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309, 1577–1581.PubMedCrossRef Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., & Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309, 1577–1581.PubMedCrossRef
210.
Zurück zum Zitat Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., Fabbri, M., Cimmino, A., Lee, E. J., Wojcik, S. E., Shimizu, M., Tili, E., Rossi, S., Taccioli, C., Pichiorri, F., Liu, X., Zupo, S., Herlea, V., Gramantieri, L., Lanza, G., Alder, H., Rassenti, L., Volinia, S., Schmittgen, T. D., Kipps, T. J., Negrini, M., & Croce, C. M. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12, 215–229.PubMedCrossRef Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., Fabbri, M., Cimmino, A., Lee, E. J., Wojcik, S. E., Shimizu, M., Tili, E., Rossi, S., Taccioli, C., Pichiorri, F., Liu, X., Zupo, S., Herlea, V., Gramantieri, L., Lanza, G., Alder, H., Rassenti, L., Volinia, S., Schmittgen, T. D., Kipps, T. J., Negrini, M., & Croce, C. M. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12, 215–229.PubMedCrossRef
211.
Zurück zum Zitat Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.PubMedCrossRef Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.PubMedCrossRef
212.
Zurück zum Zitat Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G. J., Zanesi, N., Crawford, M., Ozer, G. H., Wernicke, D., Alder, H., Caligiuri, M. A., Nana-Sinkam, P., Perrotti, D., & Croce, C. M. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 109, E2110–E2116.PubMedPubMedCentralCrossRef Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G. J., Zanesi, N., Crawford, M., Ozer, G. H., Wernicke, D., Alder, H., Caligiuri, M. A., Nana-Sinkam, P., Perrotti, D., & Croce, C. M. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 109, E2110–E2116.PubMedPubMedCentralCrossRef
213.
Zurück zum Zitat Lehmann, S. M., Kruger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., Habbel, P., Kalin, R., Franzoni, E., Rybak, A., Nguyen, D., Veh, R., Ninnemann, O., Peters, O., Nitsch, R., Heppner, F. L., Golenbock, D., Schott, E., Ploegh, H. L., Wulczyn, F. G., & Lehnardt, S. (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neuroscience, 15, 827–835.PubMedCrossRef Lehmann, S. M., Kruger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., Habbel, P., Kalin, R., Franzoni, E., Rybak, A., Nguyen, D., Veh, R., Ninnemann, O., Peters, O., Nitsch, R., Heppner, F. L., Golenbock, D., Schott, E., Ploegh, H. L., Wulczyn, F. G., & Lehnardt, S. (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neuroscience, 15, 827–835.PubMedCrossRef
214.
Zurück zum Zitat Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., & Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedPubMedCentralCrossRef Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., & Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., & Calin, G. A. (2011). MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature Reviews. Clinical Oncology, 8, 467–477.PubMedPubMedCentralCrossRef Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., & Calin, G. A. (2011). MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature Reviews. Clinical Oncology, 8, 467–477.PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat Redis, R. S., Calin, S., Yang, Y., You, M. J., & Calin, G. A. (2012). Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacology & Therapeutics, 136, 169–174.CrossRef Redis, R. S., Calin, S., Yang, Y., You, M. J., & Calin, G. A. (2012). Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacology & Therapeutics, 136, 169–174.CrossRef
218.
Zurück zum Zitat Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews. Genetics, 12, 861–874.PubMedCrossRef Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews. Genetics, 12, 861–874.PubMedCrossRef
219.
Zurück zum Zitat Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., Teruya-Feldstein, J., Bell, G. W., & Weinberg, R. A. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28, 341–347.PubMedPubMedCentralCrossRef Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., Teruya-Feldstein, J., Bell, G. W., & Weinberg, R. A. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28, 341–347.PubMedPubMedCentralCrossRef
220.
Zurück zum Zitat Song, S. J., Poliseno, L., Song, M. S., Ala, U., Webster, K., Ng, C., Beringer, G., Brikbak, N. J., Yuan, X., Cantley, L. C., Richardson, A. L., & Pandolfi, P. P. (2013). MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell, 154, 311–324.PubMedPubMedCentralCrossRef Song, S. J., Poliseno, L., Song, M. S., Ala, U., Webster, K., Ng, C., Beringer, G., Brikbak, N. J., Yuan, X., Cantley, L. C., Richardson, A. L., & Pandolfi, P. P. (2013). MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell, 154, 311–324.PubMedPubMedCentralCrossRef
221.
222.
Zurück zum Zitat Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S. W., Croce, C. M., & Dejean, A. (2010). miR-221 overexpression contributes to liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 264–269.PubMedCrossRef Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S. W., Croce, C. M., & Dejean, A. (2010). miR-221 overexpression contributes to liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 264–269.PubMedCrossRef
223.
Zurück zum Zitat Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G. A., Liu, C. G., Sorrentino, A., Croce, C. M., & Peschle, C. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proceedings of the National Academy of Sciences of the United States of America, 102, 18081–18086.PubMedPubMedCentralCrossRef Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G. A., Liu, C. G., Sorrentino, A., Croce, C. M., & Peschle, C. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proceedings of the National Academy of Sciences of the United States of America, 102, 18081–18086.PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467, 86–90.PubMedCrossRef Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467, 86–90.PubMedCrossRef
225.
Zurück zum Zitat Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N., & Croce, C. M. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7024–7029.PubMedPubMedCentralCrossRef Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N., & Croce, C. M. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7024–7029.PubMedPubMedCentralCrossRef
226.
Zurück zum Zitat Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., Ambesi-Impiombato, A., Califano, A., Migliazza, A., Bhagat, G., & Dalla-Favera, R. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17, 28–40.PubMedCrossRef Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., Ambesi-Impiombato, A., Califano, A., Migliazza, A., Bhagat, G., & Dalla-Favera, R. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17, 28–40.PubMedCrossRef
227.
Zurück zum Zitat Mavrakis, K. J., Van Der Meulen, J., Wolfe, A. L., Liu, X., Mets, E., Taghon, T., Khan, A. A., Setty, M., Rondou, P., Vandenberghe, P., Delabesse, E., Benoit, Y., Socci, N. B., Leslie, C. S., Van Vlierberghe, P., Speleman, F., & Wendel, H. G. (2011). A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature Genetics, 43, 673–678.PubMedPubMedCentralCrossRef Mavrakis, K. J., Van Der Meulen, J., Wolfe, A. L., Liu, X., Mets, E., Taghon, T., Khan, A. A., Setty, M., Rondou, P., Vandenberghe, P., Delabesse, E., Benoit, Y., Socci, N. B., Leslie, C. S., Van Vlierberghe, P., Speleman, F., & Wendel, H. G. (2011). A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature Genetics, 43, 673–678.PubMedPubMedCentralCrossRef
228.
Zurück zum Zitat O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839–843.PubMedCrossRef O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839–843.PubMedCrossRef
229.
Zurück zum Zitat Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., & Foster, D. A. (2006). Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene, 25, 7305–7310.PubMedCrossRef Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., & Foster, D. A. (2006). Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene, 25, 7305–7310.PubMedCrossRef
230.
Zurück zum Zitat Shi, M., Zheng, Y., Garcia, A., Xu, L., & Foster, D. A. (2007). Phospholipase D provides a survival signal in human cancer cells with activated H-Ras or K-Ras. Cancer Letters, 258, 268–275.PubMedPubMedCentralCrossRef Shi, M., Zheng, Y., Garcia, A., Xu, L., & Foster, D. A. (2007). Phospholipase D provides a survival signal in human cancer cells with activated H-Ras or K-Ras. Cancer Letters, 258, 268–275.PubMedPubMedCentralCrossRef
231.
Zurück zum Zitat Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J. M., Di Padova, F., Lin, S. C., Gram, H., & Han, J. H. (2005). Involvement of MicroRNA in AU-rich element-mediated mRNA instability. Cell, 120, 623–634.PubMedCrossRef Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J. M., Di Padova, F., Lin, S. C., Gram, H., & Han, J. H. (2005). Involvement of MicroRNA in AU-rich element-mediated mRNA instability. Cell, 120, 623–634.PubMedCrossRef
232.
Zurück zum Zitat Braun, J. E., Huntzinger, E., & Izaurralde, E. (2012). A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harbor Perspectives in Biology, 4. Braun, J. E., Huntzinger, E., & Izaurralde, E. (2012). A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harbor Perspectives in Biology, 4.
233.
Zurück zum Zitat Lavieri, R., Scott, S. A., Lewis, J. A., Selvy, P. E., Armstrong, M. D., Brown, H. A., & Lindsley, C. W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity. Bioorganic & Medicinal Chemistry Letters, 19, 2240–2243.CrossRef Lavieri, R., Scott, S. A., Lewis, J. A., Selvy, P. E., Armstrong, M. D., Brown, H. A., & Lindsley, C. W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity. Bioorganic & Medicinal Chemistry Letters, 19, 2240–2243.CrossRef
234.
Zurück zum Zitat Lewis, J. A., Scott, S. A., Lavieri, R., Buck, J. R., Selvy, P. E., Stoops, S. L., Armstrong, M. D., Brown, H. A., & Lindsley, C. W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: impact of alternative halogenated privileged structures for PLD1 specificity. Bioorganic & Medicinal Chemistry Letters, 19, 1916–1920.CrossRef Lewis, J. A., Scott, S. A., Lavieri, R., Buck, J. R., Selvy, P. E., Stoops, S. L., Armstrong, M. D., Brown, H. A., & Lindsley, C. W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: impact of alternative halogenated privileged structures for PLD1 specificity. Bioorganic & Medicinal Chemistry Letters, 19, 1916–1920.CrossRef
235.
Zurück zum Zitat Scott, S. A., Selvy, P. E., Buck, J. R., Cho, H. P., Criswell, T. L., Thomas, A. L., Armstrong, M. D., Arteaga, C. L., Lindsley, C. W., & Brown, H. A. (2009). Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nature Chemical Biology, 5, 108–117.PubMedPubMedCentralCrossRef Scott, S. A., Selvy, P. E., Buck, J. R., Cho, H. P., Criswell, T. L., Thomas, A. L., Armstrong, M. D., Arteaga, C. L., Lindsley, C. W., & Brown, H. A. (2009). Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nature Chemical Biology, 5, 108–117.PubMedPubMedCentralCrossRef
236.
Zurück zum Zitat Sulzmaier, F. J., Valmiki, M. K. G., Nelson, D. A., Caliva, M. J., Geerts, D., Matter, M. L., White, E. P., & Ramos, J. W. (2012). PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase D. Oncogene, 31, 3547–3560.PubMedCrossRef Sulzmaier, F. J., Valmiki, M. K. G., Nelson, D. A., Caliva, M. J., Geerts, D., Matter, M. L., White, E. P., & Ramos, J. W. (2012). PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase D. Oncogene, 31, 3547–3560.PubMedCrossRef
237.
Zurück zum Zitat Bruntz, R. C., Taylor, H. E., Lindsley, C. W., & Brown, H. A. (2014). Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. Journal of Biological Chemistry, 289, 600–616.PubMedCrossRef Bruntz, R. C., Taylor, H. E., Lindsley, C. W., & Brown, H. A. (2014). Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. Journal of Biological Chemistry, 289, 600–616.PubMedCrossRef
238.
Zurück zum Zitat Han, X., Yu, R., Zhen, D., Tao, S., Schmidt, M., & Han, L. (2011). β-1, 3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PloS One, 6, e21468.PubMedPubMedCentralCrossRef Han, X., Yu, R., Zhen, D., Tao, S., Schmidt, M., & Han, L. (2011). β-1, 3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PloS One, 6, e21468.PubMedPubMedCentralCrossRef
239.
Zurück zum Zitat Basiouni, S., Fuhrmann, H., & Schumann, J. (2013). The influence of polyunsaturated fatty acids on the phospholipase D isoforms trafficking and activity in mast cells. International Journal of Molecular Sciences, 14, 9005–9017.PubMedPubMedCentralCrossRef Basiouni, S., Fuhrmann, H., & Schumann, J. (2013). The influence of polyunsaturated fatty acids on the phospholipase D isoforms trafficking and activity in mast cells. International Journal of Molecular Sciences, 14, 9005–9017.PubMedPubMedCentralCrossRef
240.
Zurück zum Zitat Jiang, Y., Sverdlov, M. S., Toth, P. T., Huang, L. S., Du, G. W., Liu, Y. Y., Natarajan, V., & Minshall, R. D. (2016). Phosphatidic acid produced by RalA-activated PLD2 stimulates caveolae-mediated endocytosis and trafficking in endothelial cells. Journal of Biological Chemistry, 291, 20729–20738.PubMedCrossRef Jiang, Y., Sverdlov, M. S., Toth, P. T., Huang, L. S., Du, G. W., Liu, Y. Y., Natarajan, V., & Minshall, R. D. (2016). Phosphatidic acid produced by RalA-activated PLD2 stimulates caveolae-mediated endocytosis and trafficking in endothelial cells. Journal of Biological Chemistry, 291, 20729–20738.PubMedCrossRef
241.
Zurück zum Zitat Lavieri, R. R., Scott, S. A., Selvy, P. E., Kim, K., Jadhav, S., Morrison, R. I., Daniels, J. S., Brown, H. A., & Lindsley, C. W. (2010). Design, synthesis, and biological evaluation of halogenated N-(2-(4-Oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. Journal of Medicinal Chemistry, 53, 6706–6719.PubMedPubMedCentralCrossRef Lavieri, R. R., Scott, S. A., Selvy, P. E., Kim, K., Jadhav, S., Morrison, R. I., Daniels, J. S., Brown, H. A., & Lindsley, C. W. (2010). Design, synthesis, and biological evaluation of halogenated N-(2-(4-Oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. Journal of Medicinal Chemistry, 53, 6706–6719.PubMedPubMedCentralCrossRef
242.
Zurück zum Zitat Ganesan, R., Mahankali, M., Alter, G., & Gomez-Cambronero, J. (2015). Two sites of action for PLD2 inhibitors: the enzyme catalytic center and an allosteric, phosphoinositide biding pocket. Biochimica et Biophysica Acta, 1851, 261–272.PubMedCrossRef Ganesan, R., Mahankali, M., Alter, G., & Gomez-Cambronero, J. (2015). Two sites of action for PLD2 inhibitors: the enzyme catalytic center and an allosteric, phosphoinositide biding pocket. Biochimica et Biophysica Acta, 1851, 261–272.PubMedCrossRef
243.
Zurück zum Zitat Henkels, K. M., Muppani, N. R., & Gomez-Cambronero, J. (2016). PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases. PLoS One, 11, e0166553.PubMedPubMedCentralCrossRef Henkels, K. M., Muppani, N. R., & Gomez-Cambronero, J. (2016). PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases. PLoS One, 11, e0166553.PubMedPubMedCentralCrossRef
244.
Zurück zum Zitat Chaves-Moreira, D., de Moraes, F. R., Caruso, Í. P., Chaim, O. M., Senff-Ribeiro, A., Ullah, A., da Silva, L. S., Chahine, J., Arni, R. K., & Veiga, S. S. (2017). Potential implications for designing drugs against the brown spider venom phospholipase-D. Journal of Cellular Biochemistry, 118, 726–738.PubMedCrossRef Chaves-Moreira, D., de Moraes, F. R., Caruso, Í. P., Chaim, O. M., Senff-Ribeiro, A., Ullah, A., da Silva, L. S., Chahine, J., Arni, R. K., & Veiga, S. S. (2017). Potential implications for designing drugs against the brown spider venom phospholipase-D. Journal of Cellular Biochemistry, 118, 726–738.PubMedCrossRef
245.
Zurück zum Zitat Bonnefond, M.-L., Lambert, B., Giffard, F., Abeilard, E., Brotin, E., Louis, M.-H., Gueye, M. S., Gauduchon, P., Poulain, L., & N’Diaye, M. (2015). Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation. Apoptosis, 20, 535–550.PubMedPubMedCentralCrossRef Bonnefond, M.-L., Lambert, B., Giffard, F., Abeilard, E., Brotin, E., Louis, M.-H., Gueye, M. S., Gauduchon, P., Poulain, L., & N’Diaye, M. (2015). Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation. Apoptosis, 20, 535–550.PubMedPubMedCentralCrossRef
246.
Zurück zum Zitat Monovich, L., Mugrage, B., Quadros, E., Toscano, K., Tommasi, R., LaVoie, S., Liu, E., Du, Z., LaSala, D., Boyar, W., & Steed, P. (2007). Optimization of halopemide for phospholipase D2 inhibition. Bioorganic & Medicinal Chemistry Letters, 17, 2310–2311.CrossRef Monovich, L., Mugrage, B., Quadros, E., Toscano, K., Tommasi, R., LaVoie, S., Liu, E., Du, Z., LaSala, D., Boyar, W., & Steed, P. (2007). Optimization of halopemide for phospholipase D2 inhibition. Bioorganic & Medicinal Chemistry Letters, 17, 2310–2311.CrossRef
247.
Zurück zum Zitat Stegner, D., Thielmann, I., Kraft, P., Frohman, M. A., Stoll, G., & Nieswandt, B. (2013). Pharmacological inhibition of phospholipase D protects mice from occlusive thrombus formation and ischemic stroke—brief report significance. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2212–2217.PubMedCrossRef Stegner, D., Thielmann, I., Kraft, P., Frohman, M. A., Stoll, G., & Nieswandt, B. (2013). Pharmacological inhibition of phospholipase D protects mice from occlusive thrombus formation and ischemic stroke—brief report significance. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2212–2217.PubMedCrossRef
248.
Zurück zum Zitat Su, W., Yeku, O., Olepu, S., Genna, A., Park, J.-S., Ren, H., Du, G., Gelb, M. H., Morris, A. J., & Frohman, M. A. (2009). 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Molecular Pharmacology, 75, 437–446.PubMedCrossRef Su, W., Yeku, O., Olepu, S., Genna, A., Park, J.-S., Ren, H., Du, G., Gelb, M. H., Morris, A. J., & Frohman, M. A. (2009). 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Molecular Pharmacology, 75, 437–446.PubMedCrossRef
249.
Zurück zum Zitat O'connell, J., O’sullivan, G. C., Collins, J. K., & Shanahan, F. (1996). The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. Journal of Experimental Medicine, 184, 1075–1082.PubMedCrossRef O'connell, J., O’sullivan, G. C., Collins, J. K., & Shanahan, F. (1996). The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. Journal of Experimental Medicine, 184, 1075–1082.PubMedCrossRef
250.
Zurück zum Zitat Strand, S., Hofmann, W. J., Hug, H., Müller, M., Otto, G., Strand, D., Mariani, S. M., Stremmel, W., Krammer, P. H., & Galle, P. R. (1996). Lymphocyte apoptosis induced by CD95 (APO–1/Fas) ligand–expressing tumor cells—a mechanism of immune evasion? Nature Medicine, 2, 1361.PubMedCrossRef Strand, S., Hofmann, W. J., Hug, H., Müller, M., Otto, G., Strand, D., Mariani, S. M., Stremmel, W., Krammer, P. H., & Galle, P. R. (1996). Lymphocyte apoptosis induced by CD95 (APO–1/Fas) ligand–expressing tumor cells—a mechanism of immune evasion? Nature Medicine, 2, 1361.PubMedCrossRef
251.
Zurück zum Zitat Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. New England Journal of Medicine, 363, 1938–1948.PubMedCrossRef Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. New England Journal of Medicine, 363, 1938–1948.PubMedCrossRef
252.
Zurück zum Zitat Hudis, C. A., & Gianni, L. (2011). Triple-negative breast cancer: an unmet medical need. The Oncologist, 16, 1–11.PubMedCrossRef Hudis, C. A., & Gianni, L. (2011). Triple-negative breast cancer: an unmet medical need. The Oncologist, 16, 1–11.PubMedCrossRef
Metadaten
Titel
Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells
verfasst von
Julian Gomez-Cambronero
Publikationsdatum
08.08.2018
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2-3/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-018-9753-x

Weitere Artikel der Ausgabe 2-3/2018

Cancer and Metastasis Reviews 2-3/2018 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.