Skip to main content
Erschienen in: Lasers in Medical Science 1/2015

01.01.2015 | Original Article

Laser irradiation of ferrous particles for hyperthermia as cancer therapy, a theoretical study

verfasst von: Jigar M. Patel, Cahit A. Evrensel, Alan Fuchs, Joko Sutrisno

Erschienen in: Lasers in Medical Science | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Our recent in vivo animal studies showed the feasibility of using micron sized iron particles to induce physical damage to breast cancer tumors and thereby triggering a localized immune response to help fight the cancer. Combining a hyperthermic treatment with this ongoing study may enhance the immune response. As a result, a novel treatment of inducing hyperthermia using iron particles excited by a continuous wave near-infrared laser was analyzed. In this theoretical study, Mie scattering calculations were first conducted to determine the absorption and scattering efficiencies of the suspended drug coated particles. The resulting heat transfer between the particles and the surrounding tumor and the healthy tissue was modeled using Pennes’ Bioheat equation. Predicted temperature changes were satisfactory for inducing hyperthermia (42C), thermally triggering drug release, and even thermal ablation (55C).
Fußnoten
1
𝜖″(ω) has an additional term of conductance divided by the field frequency, σ/ω, since the material is a metal.
 
2
It is meaningful in the range where the wavelength of oscillation is much greater than the atomic dimension of the material.
 
Literatur
1.
Zurück zum Zitat Andrȧ W, d’Ambly C, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194:197–203CrossRef Andrȧ W, d’Ambly C, Hergt R, Hilger I, Kaiser WA (1999) Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. J Magn Magn Mater 194:197–203CrossRef
2.
Zurück zum Zitat Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans BME Biomed Eng 31(1):70–75CrossRef Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans BME Biomed Eng 31(1):70–75CrossRef
4.
Zurück zum Zitat Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley
5.
Zurück zum Zitat Bouchlaka MN, Sckisel GD, Wilkins D, Maverakis E, Monjazeb AM, Fung M, Welniak L, Redelman D, Fuchs A, Evrensel CA, Murphy WM (2012) Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses. PLoS ONE 7 (10). doi:10.1371/journal.pone.0048049 PubMedCentralPubMed Bouchlaka MN, Sckisel GD, Wilkins D, Maverakis E, Monjazeb AM, Fung M, Welniak L, Redelman D, Fuchs A, Evrensel CA, Murphy WM (2012) Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses. PLoS ONE 7 (10). doi:10.​1371/​journal.​pone.​0048049 PubMedCentralPubMed
6.
Zurück zum Zitat Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. The Lancet Oncology. doi:10.1016/S1470-2045(12)70211-5. in Press Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. The Lancet Oncology. doi:10.​1016/​S1470-2045(12)70211-5. in Press
7.
Zurück zum Zitat Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185PubMedCrossRef Byrnes KR, Waynant RW, Ilev IK, Wu X, Barna L, Smith K, Heckert R, Gerst H, Anders JJ (2005) Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury. Lasers Surg Med 36(3):171–185PubMedCrossRef
8.
Zurück zum Zitat Cerussi A, Shah N, Tromberg B, Hsiang D, Butler J, Durkin A (2006) Electromagnetic scattering by magnetic spheres. J Biomed Opt 11 (4) Cerussi A, Shah N, Tromberg B, Hsiang D, Butler J, Durkin A (2006) Electromagnetic scattering by magnetic spheres. J Biomed Opt 11 (4)
9.
Zurück zum Zitat Cippitelli M, Fionda C, Di Bona D, Piccoli M, Frati L, Santoni A (2005) Hyperthermia enhances CD95-ligand gene expression in T lymphocytes. J Immunol 174(1):223–232PubMedCrossRef Cippitelli M, Fionda C, Di Bona D, Piccoli M, Frati L, Santoni A (2005) Hyperthermia enhances CD95-ligand gene expression in T lymphocytes. J Immunol 174(1):223–232PubMedCrossRef
10.
Zurück zum Zitat Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G (1999) Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast. Appl Phys Lett 74(6):874–876CrossRef Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G (1999) Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast. Appl Phys Lett 74(6):874–876CrossRef
11.
Zurück zum Zitat Deng ZS, Liu J (2001) Blood perfusion-based model for characterizing the temperature fluctuation in living tissues. Physica A: Statistical Mechanics and its Applications, vol 300 Deng ZS, Liu J (2001) Blood perfusion-based model for characterizing the temperature fluctuation in living tissues. Physica A: Statistical Mechanics and its Applications, vol 300
12.
Zurück zum Zitat DeRosa ME, DeRosa RL, Noni LM, Hendrick ES (2007) Phase separation of poly(N-isopropylacrylamide) solutions and gels using a near infrared fiber laser. J Appl Polym Sci 105(4):2083–2090CrossRef DeRosa ME, DeRosa RL, Noni LM, Hendrick ES (2007) Phase separation of poly(N-isopropylacrylamide) solutions and gels using a near infrared fiber laser. J Appl Polym Sci 105(4):2083–2090CrossRef
14.
Zurück zum Zitat Durduran T, Choe R, Culver J, Zubkow L, Holboke M, Giammarco J, Chance B, Yodh A (2002) Bulk optical properties of healthy female breast tissue. Phys Med Biol 47:2847–2861PubMedCrossRef Durduran T, Choe R, Culver J, Zubkow L, Holboke M, Giammarco J, Chance B, Yodh A (2002) Bulk optical properties of healthy female breast tissue. Phys Med Biol 47:2847–2861PubMedCrossRef
15.
Zurück zum Zitat Erickson TA, Tunnell JW (2007) Gold nanoshells in biomedical applications. Wiley-VCH Verlag GmbH & Co. KGaA Erickson TA, Tunnell JW (2007) Gold nanoshells in biomedical applications. Wiley-VCH Verlag GmbH & Co. KGaA
16.
Zurück zum Zitat Evrensel C, Fuchs A, Gordaninejad F , Patel J, Sutrisno J , Nation C, Cook C , Rosen A, Bouchlaka M, Murphy W (2011) Immunotherapy with magnetorheologic fluids. Era of hope Evrensel C, Fuchs A, Gordaninejad F , Patel J, Sutrisno J , Nation C, Cook C , Rosen A, Bouchlaka M, Murphy W (2011) Immunotherapy with magnetorheologic fluids. Era of hope
17.
Zurück zum Zitat Hapke B (2005) Theory of reflectance and emittance spectroscopy, 1st edn. Cambridge University Press Hapke B (2005) Theory of reflectance and emittance spectroscopy, 1st edn. Cambridge University Press
18.
Zurück zum Zitat Hergt R, Dutz S, Mu̇ller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18(38):S2919CrossRef Hergt R, Dutz S, Mu̇ller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18(38):S2919CrossRef
19.
Zurück zum Zitat Hilger I, Hergt R, Kaiser WA (2005) Towards breast cancer treatment by magnetic heating. J Magn Magn Mater 293(1):314–319CrossRef Hilger I, Hergt R, Kaiser WA (2005) Towards breast cancer treatment by magnetic heating. J Magn Magn Mater 293(1):314–319CrossRef
20.
Zurück zum Zitat Hirsch L, West J, Stafford R, Bankson J, Sershen S, Price R, Hazle J, Halas N (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13, 549–13, 554CrossRef Hirsch L, West J, Stafford R, Bankson J, Sershen S, Price R, Hazle J, Halas N (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci U S A 100(23):13, 549–13, 554CrossRef
21.
Zurück zum Zitat Hulst HVD (1957) Light Scattering by Small Particles. Wiley Hulst HVD (1957) Light Scattering by Small Particles. Wiley
22.
Zurück zum Zitat Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248PubMedCrossRef Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248PubMedCrossRef
23.
Zurück zum Zitat Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton T (2006) Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys: 100 Keblinski P, Cahill DG, Bodapati A, Sullivan CR, Taton T (2006) Limits of localized heating by electromagnetically excited nanoparticles. J Appl Phys: 100
24.
Zurück zum Zitat Kerker M (1969) The Scattering of Light and other electromagnetic radiation. Academic Press. Inc Kerker M (1969) The Scattering of Light and other electromagnetic radiation. Academic Press. Inc
25.
Zurück zum Zitat Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley Kittel C (2004) Introduction to solid state physics, 8th edn. Wiley
26.
Zurück zum Zitat Landau L, Lifshitz E , Pitaevskiĭ L (1984) Electrodynamics of continuous media, vol 8, 2nd edn. Pergamon Press Landau L, Lifshitz E , Pitaevskiĭ L (1984) Electrodynamics of continuous media, vol 8, 2nd edn. Pergamon Press
27.
Zurück zum Zitat Letfullin RR, Joenathan C, George TF, Zharov VP (2006) Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine 1(4):473– 480PubMedCrossRef Letfullin RR, Joenathan C, George TF, Zharov VP (2006) Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine 1(4):473– 480PubMedCrossRef
28.
Zurück zum Zitat Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, R W Alexander J, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22(7):1099–1119PubMedCrossRef Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, R W Alexander J, Ward CA (1983) Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl Opt 22(7):1099–1119PubMedCrossRef
30.
Zurück zum Zitat Qin Z, Bischof JC (2012) Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 41:1191–1217PubMedCrossRef Qin Z, Bischof JC (2012) Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 41:1191–1217PubMedCrossRef
31.
Zurück zum Zitat Schueller G, Stift A, Friedl J, Dubsky P, Bachleitner-Hofmann T, Benkoe T, Jakesz R, Gnant M (2003) Hyperthermia improves cellular immune response to human hepatocellular carcinoma subsequent to co-culture with tumor lysate pulsed dendritic cells. Int J Oncol 22(6):1397–1402PubMed Schueller G, Stift A, Friedl J, Dubsky P, Bachleitner-Hofmann T, Benkoe T, Jakesz R, Gnant M (2003) Hyperthermia improves cellular immune response to human hepatocellular carcinoma subsequent to co-culture with tumor lysate pulsed dendritic cells. Int J Oncol 22(6):1397–1402PubMed
32.
Zurück zum Zitat Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R, Tromberg B (2001) Noninvasive functional optical spectroscopy of human breast tissue. Proc Natl Acad Sci 98(8):4420–4425PubMedCentralPubMedCrossRef Shah N, Cerussi A, Eker C, Espinoza J, Butler J, Fishkin J, Hornung R, Tromberg B (2001) Noninvasive functional optical spectroscopy of human breast tissue. Proc Natl Acad Sci 98(8):4420–4425PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Gibson J, Tosteson T, Poplack S, Paulsen K (2003) Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breat tomography. Proc Natl Acad Sci U S A 100(21):12, 349–12, 354CrossRef Srinivasan S, Pogue BW, Jiang S, Dehghani H, Kogel C, Soho S, Gibson J, Tosteson T, Poplack S, Paulsen K (2003) Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breat tomography. Proc Natl Acad Sci U S A 100(21):12, 349–12, 354CrossRef
34.
Zurück zum Zitat Stratton JA (1941) Electromagnetic Theory. McGraw-Hill Book Company. Inc Stratton JA (1941) Electromagnetic Theory. McGraw-Hill Book Company. Inc
35.
Zurück zum Zitat Tamer U, Gündoğdu Y, Boyaci IH, Pekmez K (2010) Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12:1187–1196CrossRef Tamer U, Gündoğdu Y, Boyaci IH, Pekmez K (2010) Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12:1187–1196CrossRef
36.
Zurück zum Zitat Tromberg B, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-Invasive in vivo characterizatoin of breast tumors using photon migration spectroscopy. Neoplasia 2(1-2):26–40PubMedCentralPubMedCrossRef Tromberg B, Shah N, Lanning R, Cerussi A, Espinoza J, Pham T, Svaasand L, Butler J (2000) Non-Invasive in vivo characterizatoin of breast tumors using photon migration spectroscopy. Neoplasia 2(1-2):26–40PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol: 19 Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol: 19
38.
Zurück zum Zitat Welch AJ, van Gemert MJ (2011) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer Welch AJ, van Gemert MJ (2011) Optical-thermal response of laser-irradiated tissue, 2nd edn. Springer
39.
Zurück zum Zitat Welch AJ, Torres J, Cheong WF (1989) Laser physics and laser-tissue interaction. Tex Heart Inst J 16(3):141–149PubMedCentralPubMed Welch AJ, Torres J, Cheong WF (1989) Laser physics and laser-tissue interaction. Tex Heart Inst J 16(3):141–149PubMedCentralPubMed
40.
Zurück zum Zitat Zhang HG, Mehta K, Cohen P, Guha C (2008) Hyperthermia on immune regulation: A temperature’s story. Cancer Lett 271(2):191–204PubMedCrossRef Zhang HG, Mehta K, Cohen P, Guha C (2008) Hyperthermia on immune regulation: A temperature’s story. Cancer Lett 271(2):191–204PubMedCrossRef
41.
Zurück zum Zitat Zharov VP, Letfullin RR, Galitovskaya EN (2005) Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D Appl Phys 38:2571–2581CrossRef Zharov VP, Letfullin RR, Galitovskaya EN (2005) Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D Appl Phys 38:2571–2581CrossRef
Metadaten
Titel
Laser irradiation of ferrous particles for hyperthermia as cancer therapy, a theoretical study
verfasst von
Jigar M. Patel
Cahit A. Evrensel
Alan Fuchs
Joko Sutrisno
Publikationsdatum
01.01.2015
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2015
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-014-1618-0

Weitere Artikel der Ausgabe 1/2015

Lasers in Medical Science 1/2015 Zur Ausgabe