Skip to main content
Erschienen in: Medical Oncology 1/2021

01.01.2021 | Original Paper

LDLRAD2 promotes pancreatic cancer progression through Akt/mTOR signaling pathway

verfasst von: Junhe Li, Wei Huang, Qing Han, Jianping Xiong, Zhiwang Song

Erschienen in: Medical Oncology | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Low-density lipoprotein receptor class A domain containing 2 (LDLRAD2) acts as a protein-coding gene in a large number of human diseases. However, the potential roles and underlying mechanism in pancreatic cancer remains unclear. Therefore, this study was conducted to address this question. Herein, we found that the expression of LDLRAD2 was elevated in pancreatic cancer tissues and cell lines. LDLRAD2 knockdown inhibited pancreatic cancer cell proliferation, migration, and invasion in vitro. Besides, silencing LDLRAD2 impaired tumor growth and metastasis in vivo and up-regulated the E-Cadherin level, whereas down-regulated the expression of N-Cadherin and Vimentin levels, which indicating that LDLRAD2 knockdown suppresses EMT. Additionally, LDLRAD2 knockdown decreased the Warburg effect and glycolytic enzymes expression. Pathway scan assay and western blotting assay indicated that LDLRAD2 knockdown significantly down-regulated the expression of phosphorylation of Akt and phosphorylation of mTOR, which suggested that knockdown of LDLRAD2 inhibits Akt/mTOR signaling pathway. Taken together, these findings suggested that LDLRAD2 may be an oncogene in pancreatic cancer via modulating Akt/mTOR signaling pathway.
Literatur
1.
Zurück zum Zitat Maitra A. Pancreatic cancer hidden in plain sight. Nature. 2020;581(7806):34–5.CrossRef Maitra A. Pancreatic cancer hidden in plain sight. Nature. 2020;581(7806):34–5.CrossRef
2.
Zurück zum Zitat Kozlowski MR, Kozlowski RE. A novel, small peptide with activity against human pancreatic cancer. Am J Cancer Res. 2020;10(5):1356–65.PubMedPubMedCentral Kozlowski MR, Kozlowski RE. A novel, small peptide with activity against human pancreatic cancer. Am J Cancer Res. 2020;10(5):1356–65.PubMedPubMedCentral
3.
Zurück zum Zitat Ye J, et al. PRDM3 attenuates pancreatitis and pancreatic tumorigenesis by regulating inflammatory response. Cell Death Dis. 2020;11(3):187.CrossRef Ye J, et al. PRDM3 attenuates pancreatitis and pancreatic tumorigenesis by regulating inflammatory response. Cell Death Dis. 2020;11(3):187.CrossRef
4.
Zurück zum Zitat Menini S, et al. Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in Kras(G12D/+) mice. J Exp Clin Cancer Res. 2020;39(1):152.CrossRef Menini S, et al. Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in Kras(G12D/+) mice. J Exp Clin Cancer Res. 2020;39(1):152.CrossRef
5.
Zurück zum Zitat Wei Y, et al. LDLRAD2 overexpression predicts poor prognosis and promotes metastasis by activating Wnt/beta-catenin/EMT signaling cascade in gastric cancer. Aging (Albany NY). 2019;11(20):8951–68.CrossRef Wei Y, et al. LDLRAD2 overexpression predicts poor prognosis and promotes metastasis by activating Wnt/beta-catenin/EMT signaling cascade in gastric cancer. Aging (Albany NY). 2019;11(20):8951–68.CrossRef
6.
Zurück zum Zitat Kuwada K, et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J Exp Clin Cancer Res. 2018;37(1):307.CrossRef Kuwada K, et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J Exp Clin Cancer Res. 2018;37(1):307.CrossRef
7.
Zurück zum Zitat Wang C, Yin W, Liu H. MicroRNA-10a promotes epithelial-to-mesenchymal transition and stemness maintenance of pancreatic cancer stem cells via upregulating the Hippo signaling pathway through WWC2 inhibition. J Cell Biochem. 2020;121(11):4505–21.CrossRef Wang C, Yin W, Liu H. MicroRNA-10a promotes epithelial-to-mesenchymal transition and stemness maintenance of pancreatic cancer stem cells via upregulating the Hippo signaling pathway through WWC2 inhibition. J Cell Biochem. 2020;121(11):4505–21.CrossRef
8.
Zurück zum Zitat Li M, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10(1):38–59.PubMedPubMedCentral Li M, et al. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res. 2020;10(1):38–59.PubMedPubMedCentral
9.
Zurück zum Zitat Xu M, et al. miR-22 suppresses epithelial–mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop. Cell Death Dis. 2018;9(2):209.CrossRef Xu M, et al. miR-22 suppresses epithelial–mesenchymal transition in bladder cancer by inhibiting Snail and MAPK1/Slug/vimentin feedback loop. Cell Death Dis. 2018;9(2):209.CrossRef
10.
Zurück zum Zitat Yoshida J, et al. Metformin inhibits TGFbeta1-induced epithelial–mesenchymal transition and liver metastasis of pancreatic cancer cells. Oncol Rep. 2020;44(1):371–81.CrossRef Yoshida J, et al. Metformin inhibits TGFbeta1-induced epithelial–mesenchymal transition and liver metastasis of pancreatic cancer cells. Oncol Rep. 2020;44(1):371–81.CrossRef
11.
Zurück zum Zitat Shen L, et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A. 2015;112(17):5425–30.CrossRef Shen L, et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A. 2015;112(17):5425–30.CrossRef
12.
Zurück zum Zitat Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.CrossRef Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.CrossRef
13.
Zurück zum Zitat Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012;2(10):881–98.CrossRef Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012;2(10):881–98.CrossRef
14.
Zurück zum Zitat Qiao S, et al. REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors. Genes Dev. 2020;34(11–12):751–66.CrossRef Qiao S, et al. REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors. Genes Dev. 2020;34(11–12):751–66.CrossRef
15.
Zurück zum Zitat Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.CrossRef Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.CrossRef
16.
Zurück zum Zitat Ji S, et al. FBW7 (F-box and WD Repeat Domain-Containing 7) negatively regulates glucose metabolism by targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) axis in pancreatic cancer. Clin Cancer Res. 2016;22(15):3950–60.CrossRef Ji S, et al. FBW7 (F-box and WD Repeat Domain-Containing 7) negatively regulates glucose metabolism by targeting the c-Myc/TXNIP (Thioredoxin-Binding Protein) axis in pancreatic cancer. Clin Cancer Res. 2016;22(15):3950–60.CrossRef
17.
Zurück zum Zitat Carmona-Fontaine C, et al. Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc Natl Acad Sci U S A. 2013;110(48):19402–7.CrossRef Carmona-Fontaine C, et al. Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proc Natl Acad Sci U S A. 2013;110(48):19402–7.CrossRef
18.
Zurück zum Zitat Ye H, et al. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis. 2018;9(5):453.CrossRef Ye H, et al. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death Dis. 2018;9(5):453.CrossRef
19.
Zurück zum Zitat Zhang M, et al. SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway. Cell Death Dis. 2019;10(8):612.CrossRef Zhang M, et al. SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway. Cell Death Dis. 2019;10(8):612.CrossRef
20.
Zurück zum Zitat Su CC. Tanshinone IIA can inhibit MiaPaCa2 human pancreatic cancer cells by dual blockade of the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways. Oncol Rep. 2018;40(5):3102–11.PubMed Su CC. Tanshinone IIA can inhibit MiaPaCa2 human pancreatic cancer cells by dual blockade of the Ras/Raf/MEK/ERK and PI3K/AKT/mTOR pathways. Oncol Rep. 2018;40(5):3102–11.PubMed
21.
Zurück zum Zitat Xu X, et al. Indole-2-carboxamide derivative LG25 inhibits triple-negative breast cancer growth by suppressing Akt/mTOR/NF-kappaB signalling pathway. Drug Des Dev Ther. 2019;13:3539–50.CrossRef Xu X, et al. Indole-2-carboxamide derivative LG25 inhibits triple-negative breast cancer growth by suppressing Akt/mTOR/NF-kappaB signalling pathway. Drug Des Dev Ther. 2019;13:3539–50.CrossRef
22.
Zurück zum Zitat Li J, et al. OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer. Theranostics. 2019;9(1):179–95.CrossRef Li J, et al. OTUB2 stabilizes U2AF2 to promote the Warburg effect and tumorigenesis via the AKT/mTOR signaling pathway in non-small cell lung cancer. Theranostics. 2019;9(1):179–95.CrossRef
23.
Zurück zum Zitat Yan X, et al. Knockdown of KRT17 decreases osteosarcoma cell proliferation and the Warburg effect via the AKT/mTOR/HIF1alpha pathway. Oncol Rep. 2020;44(1):103–14.CrossRef Yan X, et al. Knockdown of KRT17 decreases osteosarcoma cell proliferation and the Warburg effect via the AKT/mTOR/HIF1alpha pathway. Oncol Rep. 2020;44(1):103–14.CrossRef
Metadaten
Titel
LDLRAD2 promotes pancreatic cancer progression through Akt/mTOR signaling pathway
verfasst von
Junhe Li
Wei Huang
Qing Han
Jianping Xiong
Zhiwang Song
Publikationsdatum
01.01.2021
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 1/2021
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-020-01451-0

Weitere Artikel der Ausgabe 1/2021

Medical Oncology 1/2021 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.