Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2019

07.11.2018

Limb Blood Flow Restriction Plus Mild Aerobic Exercise Training Protects the Heart Against Isoproterenol-Induced Cardiac Injury in Old Rats: Role of GSK-3β

verfasst von: Vida Naderi-Boldaji, Siyavash Joukar, Ali Noorafshan, Mohammad-Ali Bahreinipour

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

The present study was conducted to evaluate the effect of blood flow restriction (BFR) training on cardiac resistance to isoproterenol (ISO) induced heart injury in old rats and examined the hypothesis that BFR training may interfere with age-associated impairment of mitochondria by the inhibitory phosphorylation of GSK-3β at Ser9. Old male Wistar rats were divided into the following six groups: CTL (control), ISO (isoproterenol-treated), Sh + ISO (sham-operated plus ISO), BFR + ISO (blood flow restriction plus ISO), Sh-Ex + ISO (sham-operated subjected to exercise and ISO), and BFR-Ex + ISO (blood flow restriction along with exercise and ISO). 10 weeks of exercise training was considered. Then, cardiac injury was induced and physiological, histological, and biochemical parameters were recorded and assessed. Compared to CTL group, isoproterenol administration significantly reduced the systolic arterial pressure (SAP), left-ventricular systolic pressure (LVSP), and ± dp/dt max (P < 0.05). BFR training improved these parameters in the way that BFR-Ex + ISO group had higher SAP, LVSP and ± dp/dt max (P < 0.05) and lower LVEDP (left-ventricular end diastolic pressure) (P < 0.01) than untrained and Sh-Ex + ISO groups. The pS9-GSK-3β and pS9-GSK-3β/GSK-3β ratio were increased in the BFR-Ex + ISO group compared to CTL, ISO, Sh + ISO, and BFR + ISO groups (P < 0.05). The level of plasma cardiac Troponin-I and the severity of the injuries were significantly reduced in BFR-Ex + ISO group versus other cardiac damaged groups. In conclusion, our findings clearly confirmed the cardio-protective effect of BFR training against ISO-induced myocardial injury. Increased phosphorylated GSK-3β and angiogenesis in this model of exercise justify the resistance of old hearts facing stressful situations.
Literatur
1.
Zurück zum Zitat Arshad, J., Sagar, S., & Terzic, A. (2007). Aging and cardioprotection. Journal of Applied Physiology, 103(6), 2120–2128.CrossRef Arshad, J., Sagar, S., & Terzic, A. (2007). Aging and cardioprotection. Journal of Applied Physiology, 103(6), 2120–2128.CrossRef
2.
Zurück zum Zitat Narula, J., Jones, M. K., Deng, X., & Tarnawski, A. S. (2010). Impaired angiogenesis in aging myocardial microvascular endothelial cells is associated with reduced importin alpha and decreased nuclear transport of HIF1 alpha: Mechanistic implications. Journal of Physiology and Pharmacology, 61(2), 133–139.PubMed Narula, J., Jones, M. K., Deng, X., & Tarnawski, A. S. (2010). Impaired angiogenesis in aging myocardial microvascular endothelial cells is associated with reduced importin alpha and decreased nuclear transport of HIF1 alpha: Mechanistic implications. Journal of Physiology and Pharmacology, 61(2), 133–139.PubMed
3.
Zurück zum Zitat Crompton, M. (2004). Mitochondria and aging: A role for the permeability transition. Aging Cell, 3(1), 3–6.CrossRefPubMed Crompton, M. (2004). Mitochondria and aging: A role for the permeability transition. Aging Cell, 3(1), 3–6.CrossRefPubMed
4.
Zurück zum Zitat Di Lisa, F., Canton, M., Menabò, R., Kaludercic, N., & Bernardi, P. (2007). Mitochondria and cardioprotection. Heart Failure Reviews, 12(3–4), 249–260.CrossRefPubMed Di Lisa, F., Canton, M., Menabò, R., Kaludercic, N., & Bernardi, P. (2007). Mitochondria and cardioprotection. Heart Failure Reviews, 12(3–4), 249–260.CrossRefPubMed
5.
Zurück zum Zitat Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239.CrossRefPubMed Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239.CrossRefPubMed
6.
Zurück zum Zitat Yao, H. B., Shaw, P. C., Wong, C. C., & Wan, D. C. (2002). Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain. Journal of Chemical Neuroanatomy, 23(4), 291–297.CrossRefPubMed Yao, H. B., Shaw, P. C., Wong, C. C., & Wan, D. C. (2002). Expression of glycogen synthase kinase-3 isoforms in mouse tissues and their transcription in the brain. Journal of Chemical Neuroanatomy, 23(4), 291–297.CrossRefPubMed
7.
Zurück zum Zitat Tong, H., Imahashi, K., Steenbergen, C., & Murphy, E. (2002). Phosphorylation of glycogen synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase–dependent pathway is cardioprotective. Circulation Research, 90(4), 377–379.CrossRefPubMed Tong, H., Imahashi, K., Steenbergen, C., & Murphy, E. (2002). Phosphorylation of glycogen synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase–dependent pathway is cardioprotective. Circulation Research, 90(4), 377–379.CrossRefPubMed
8.
Zurück zum Zitat Gross, E. R., Hsu, A. K., & Gross, G. J. (2004). Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circulation Research, 94(7), 960–966.CrossRefPubMed Gross, E. R., Hsu, A. K., & Gross, G. J. (2004). Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circulation Research, 94(7), 960–966.CrossRefPubMed
9.
Zurück zum Zitat Miura, T., Tanno, M., Miki, T., & Sato, T. (2006). Ser9 phosphorylation of mitochondrial GSK-3β is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. American Journal of Physiology-Heart and Circulatory Physiology, 295(5), H2079-H2086. Miura, T., Tanno, M., Miki, T., & Sato, T. (2006). Ser9 phosphorylation of mitochondrial GSK-3β is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. American Journal of Physiology-Heart and Circulatory Physiology, 295(5), H2079-H2086.
10.
Zurück zum Zitat Park, S. S., Zhao, H., Mueller, R. A., & Xu, Z. (2006). Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3β. Journal of Molecular and Cellular Cardiology, 40(5), 708–716.CrossRefPubMed Park, S. S., Zhao, H., Mueller, R. A., & Xu, Z. (2006). Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3β. Journal of Molecular and Cellular Cardiology, 40(5), 708–716.CrossRefPubMed
11.
Zurück zum Zitat Omar, M. A., Wang, L., & Clanachan, A. S. (2010). Cardioprotection by GSK-3 inhibition: Role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovascular Research, 86(3), 478–486.CrossRefPubMed Omar, M. A., Wang, L., & Clanachan, A. S. (2010). Cardioprotection by GSK-3 inhibition: Role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovascular Research, 86(3), 478–486.CrossRefPubMed
12.
Zurück zum Zitat Guertin, D. A., & Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer Cell, 12(1), 9–22.CrossRefPubMed Guertin, D. A., & Sabatini, D. M. (2007). Defining the role of mTOR in cancer. Cancer Cell, 12(1), 9–22.CrossRefPubMed
13.
Zurück zum Zitat Ascensao, A., Lumini-Oliveira, J., Oliveira, J. P., & Magalhaes, J. (2011). Mitochondria as a target for exercise-induced cardioprotection. Current Drug Targets, 12(6), 860–871.CrossRefPubMed Ascensao, A., Lumini-Oliveira, J., Oliveira, J. P., & Magalhaes, J. (2011). Mitochondria as a target for exercise-induced cardioprotection. Current Drug Targets, 12(6), 860–871.CrossRefPubMed
14.
Zurück zum Zitat Hausenloy, D. J., Lecour, S., & Yellon, D. M. (2011). Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: Two sides of the same coin. Antioxidants & Redox Signaling, 14(5), 893–907.CrossRef Hausenloy, D. J., Lecour, S., & Yellon, D. M. (2011). Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: Two sides of the same coin. Antioxidants & Redox Signaling, 14(5), 893–907.CrossRef
15.
Zurück zum Zitat Heusch, G., Boengler, K., & Schulz, R. (2008). Cardioprotection: Nitric oxide, protein kinases, and mitochondria. Circulation, 118(19), 1915–1919.CrossRefPubMed Heusch, G., Boengler, K., & Schulz, R. (2008). Cardioprotection: Nitric oxide, protein kinases, and mitochondria. Circulation, 118(19), 1915–1919.CrossRefPubMed
16.
Zurück zum Zitat Léger, B., Cartoni, R., Praz, M., Lamon, S., & Dériaz, O. (2006). Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. The Journal of Physiology, 576(3), 923–933.CrossRefPubMedPubMedCentral Léger, B., Cartoni, R., Praz, M., Lamon, S., & Dériaz, O. (2006). Akt signalling through GSK-3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. The Journal of Physiology, 576(3), 923–933.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Pearson, S. J., & Hussain, S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Medicine, 45(2), 187–200.CrossRefPubMed Pearson, S. J., & Hussain, S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Medicine, 45(2), 187–200.CrossRefPubMed
18.
Zurück zum Zitat Bahreinipour, M. A., Joukar, S., Hovanloo, F., Najafipour, H., & Naderi-boldaji, V. (2018). Mild aerobic training with blood flow restriction increases the hypertrophy index and MuSK in both slow and fast muscles of old rats: Role of PGC-1α. Life Sciences, 202, 103–109.CrossRefPubMed Bahreinipour, M. A., Joukar, S., Hovanloo, F., Najafipour, H., & Naderi-boldaji, V. (2018). Mild aerobic training with blood flow restriction increases the hypertrophy index and MuSK in both slow and fast muscles of old rats: Role of PGC-1α. Life Sciences, 202, 103–109.CrossRefPubMed
19.
Zurück zum Zitat Raji-Amirhasani, A., Joukar, S., Naderi-boldaji, V., & Bejeshk, M. A. (2018). Mild exercise along with limb blood-flow restriction modulates the electrocardiogram, angiotensin, and apelin receptors of the heart in aging rats. Iranian Journal of Basic Medical Sciences, 21(6), 558–563.PubMedPubMedCentral Raji-Amirhasani, A., Joukar, S., Naderi-boldaji, V., & Bejeshk, M. A. (2018). Mild exercise along with limb blood-flow restriction modulates the electrocardiogram, angiotensin, and apelin receptors of the heart in aging rats. Iranian Journal of Basic Medical Sciences, 21(6), 558–563.PubMedPubMedCentral
20.
Zurück zum Zitat Bahreinipour, M. A., Joukar, S., Hovanloo, F., & Najafipour, h (2017). Long-term low-intensity endurance exercise along with blood-flow restriction improves muscle mass and neuromuscular junction compartments in old rats. Iranian Journal of Medical Sciences, 42(6), 569. Bahreinipour, M. A., Joukar, S., Hovanloo, F., & Najafipour, h (2017). Long-term low-intensity endurance exercise along with blood-flow restriction improves muscle mass and neuromuscular junction compartments in old rats. Iranian Journal of Medical Sciences, 42(6), 569.
21.
Zurück zum Zitat Joukar, S., Najafipour, H., Dabiri, S. H., Sheibani, M., & Sharokhi, N. (2014). Cardioprotective effect of mumie (shilajit) on experimentally induced myocardial injury. Cardiovascular Toxicology, 4(3), 214–221.CrossRef Joukar, S., Najafipour, H., Dabiri, S. H., Sheibani, M., & Sharokhi, N. (2014). Cardioprotective effect of mumie (shilajit) on experimentally induced myocardial injury. Cardiovascular Toxicology, 4(3), 214–221.CrossRef
22.
Zurück zum Zitat Westenbrink, B. D., Ruifrok, W. P., Voors, A. A., & Schoemaker, R. G. (2010). Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovascular Research, 87(1), 30–39.CrossRefPubMed Westenbrink, B. D., Ruifrok, W. P., Voors, A. A., & Schoemaker, R. G. (2010). Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovascular Research, 87(1), 30–39.CrossRefPubMed
23.
Zurück zum Zitat Zhu, J., Rebecchi, M. J., Glass, P. S., Brink, P. R., & Liu, L. (2011). Cardioprotection of the aged rat heart by GSK-3β inhibitor is attenuated: Age-related changes in mitochondrial permeability transition pore modulation. American Journal of Physiology-Heart and Circulatory Physiology, 300(3), H922–H930.CrossRefPubMed Zhu, J., Rebecchi, M. J., Glass, P. S., Brink, P. R., & Liu, L. (2011). Cardioprotection of the aged rat heart by GSK-3β inhibitor is attenuated: Age-related changes in mitochondrial permeability transition pore modulation. American Journal of Physiology-Heart and Circulatory Physiology, 300(3), H922–H930.CrossRefPubMed
24.
Zurück zum Zitat Noorafshan, A. (2014). Stereology as a valuable tool in the toolbox of testicular research. Annals of Anatomy, 196(1), 57–66.CrossRefPubMed Noorafshan, A. (2014). Stereology as a valuable tool in the toolbox of testicular research. Annals of Anatomy, 196(1), 57–66.CrossRefPubMed
25.
Zurück zum Zitat Joukar, S., Sheibani, M., & Joukar, F. (2012). Cardiovascular effect of nifedipine in morphine dependent rats: Hemodynamic, histopathological, and biochemical evidence. Croatian Medical Journal, 53(4), 343–349.CrossRefPubMedPubMedCentral Joukar, S., Sheibani, M., & Joukar, F. (2012). Cardiovascular effect of nifedipine in morphine dependent rats: Hemodynamic, histopathological, and biochemical evidence. Croatian Medical Journal, 53(4), 343–349.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Mühlfeld, C., Nyengaard, J. R., & Mayhew, T. M. (2010). A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovascular Pathology, 19(2), 65–82.CrossRefPubMed Mühlfeld, C., Nyengaard, J. R., & Mayhew, T. M. (2010). A review of state-of-the-art stereology for better quantitative 3D morphology in cardiac research. Cardiovascular Pathology, 19(2), 65–82.CrossRefPubMed
27.
Zurück zum Zitat Rona, G., Chappel, C. I., Balazs, T., & Gaudry, R. (1959). An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Archives of Pathology & Laboratory Medicine, 67, 443–455. Rona, G., Chappel, C. I., Balazs, T., & Gaudry, R. (1959). An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Archives of Pathology & Laboratory Medicine, 67, 443–455.
28.
Zurück zum Zitat Duchen, M. R. (2004). Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Molecular Aspects of Medicine, 25(4), 365–451.CrossRefPubMed Duchen, M. R. (2004). Mitochondria in health and disease: Perspectives on a new mitochondrial biology. Molecular Aspects of Medicine, 25(4), 365–451.CrossRefPubMed
29.
Zurück zum Zitat Aminizadeh, S., Marefati, H., Najafipour, H., Joukar, S., Dabiri, Sh, & Shahouzehi, B. (2016). Protective effects of high-intensity versus low-intensity interval training on isoproterenol-induced cardiac injury in wistar rats. Research in Cardiovascular Medicine, 6(1), 5. Aminizadeh, S., Marefati, H., Najafipour, H., Joukar, S., Dabiri, Sh, & Shahouzehi, B. (2016). Protective effects of high-intensity versus low-intensity interval training on isoproterenol-induced cardiac injury in wistar rats. Research in Cardiovascular Medicine, 6(1), 5.
30.
Zurück zum Zitat Naderi-Boldaji, V., Joukar, S., Noorafshan, A., Raji-amirhasani, A., Naderi-Boldaji, S., & Bejeshk, M. A. (2018). The effect of blood flow restriction along with low-intensity exercise on cardiac structure and function in aging rat: Role of angiogenesis. Life Sciences, 15(209), 202–209.CrossRef Naderi-Boldaji, V., Joukar, S., Noorafshan, A., Raji-amirhasani, A., Naderi-Boldaji, S., & Bejeshk, M. A. (2018). The effect of blood flow restriction along with low-intensity exercise on cardiac structure and function in aging rat: Role of angiogenesis. Life Sciences, 15(209), 202–209.CrossRef
31.
Zurück zum Zitat Abe, T., Fujita, S, Nakajima, T., Sakamaki, M., & Ozaki, H. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2 max in young men. Journal of Sports Science & Medicine, 9(3), 452–458. Abe, T., Fujita, S, Nakajima, T., Sakamaki, M., & Ozaki, H. (2010). Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2 max in young men. Journal of Sports Science & Medicine, 9(3), 452–458.
32.
Zurück zum Zitat Park, S., Kim, J. K., Choi, H. M., Kim, H. G., Beekley, M. D., & Nho, H. (2010). Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. European Journal of Applied Physiology, 109(4), 591–600.CrossRefPubMed Park, S., Kim, J. K., Choi, H. M., Kim, H. G., Beekley, M. D., & Nho, H. (2010). Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. European Journal of Applied Physiology, 109(4), 591–600.CrossRefPubMed
33.
Zurück zum Zitat Corvino, R. B., Denadai, B. S., Caputo, F., & dos Santos, R. P. (2014). Four weeks of blood flow restricted training increases time to exhaustion at severe intensity cycling exercise. Revista Brasileira de Cineantropometria & Desempenho Humano, 16(5), 557–570. Corvino, R. B., Denadai, B. S., Caputo, F., & dos Santos, R. P. (2014). Four weeks of blood flow restricted training increases time to exhaustion at severe intensity cycling exercise. Revista Brasileira de Cineantropometria & Desempenho Humano, 16(5), 557–570.
34.
Zurück zum Zitat Oliveira, M. F. M., Caputo, F., Corvino, R. B., & Denadai, B. S. (2016). Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scandinavian Journal of Medicine & Science in Sports, 26(9), 017–1025.CrossRef Oliveira, M. F. M., Caputo, F., Corvino, R. B., & Denadai, B. S. (2016). Short-term low-intensity blood flow restricted interval training improves both aerobic fitness and muscle strength. Scandinavian Journal of Medicine & Science in Sports, 26(9), 017–1025.CrossRef
35.
Zurück zum Zitat Ascensão, A., Lumini-Oliveira, J., Machado, G., & Ferreira, R. M., & Gonçalves, I. O. (2011). Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore in doxorubicin treated rats. Clinical Science, 120(1), 37–49.CrossRefPubMed Ascensão, A., Lumini-Oliveira, J., Machado, G., & Ferreira, R. M., & Gonçalves, I. O. (2011). Acute exercise protects against calcium-induced cardiac mitochondrial permeability transition pore in doxorubicin treated rats. Clinical Science, 120(1), 37–49.CrossRefPubMed
36.
Zurück zum Zitat Wu, Y., Peng, H., Cui, M., Whitney, N. P., Huang, Y., & Zheng, C. J. (2009). CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. Journal of Neurochemistry, 109(4), 1157–1167.CrossRefPubMedPubMedCentral Wu, Y., Peng, H., Cui, M., Whitney, N. P., Huang, Y., & Zheng, C. J. (2009). CXCL12 increases human neural progenitor cell proliferation through Akt-1/FOXO3a signaling pathway. Journal of Neurochemistry, 109(4), 1157–1167.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Pons, S., Martin, V., Portal, L., Zini, R., & Morin, D. (2013). Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities. Journal of Molecular and Cellular Cardiology, 54, 82–89.CrossRefPubMed Pons, S., Martin, V., Portal, L., Zini, R., & Morin, D. (2013). Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated co-morbidities. Journal of Molecular and Cellular Cardiology, 54, 82–89.CrossRefPubMed
38.
Zurück zum Zitat Miura, T., Nishihara, M., & Miki, T. (2009). Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: Role of GSK-3beta in myocardial protection against ischemia/reperfusion injury. Pharmacolgical Science, 109(2), 162–167.CrossRef Miura, T., Nishihara, M., & Miki, T. (2009). Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: Role of GSK-3beta in myocardial protection against ischemia/reperfusion injury. Pharmacolgical Science, 109(2), 162–167.CrossRef
39.
Zurück zum Zitat Lim, S. Y., Davidson, S. M., Hausenloy, D. J., & Yellon, D. M. (2007). Preconditioning and postconditioning: The essential role of the mitochondrial permeability transition pore. Cardiovascular Research, 75(3), 530–535.CrossRefPubMedPubMedCentral Lim, S. Y., Davidson, S. M., Hausenloy, D. J., & Yellon, D. M. (2007). Preconditioning and postconditioning: The essential role of the mitochondrial permeability transition pore. Cardiovascular Research, 75(3), 530–535.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Miura, T., & Miki, T. (2009). GSK-3β, a therapeutic target for cardiomyocyte protection. Circulation Journal, 73(7), 1184–1192.CrossRefPubMed Miura, T., & Miki, T. (2009). GSK-3β, a therapeutic target for cardiomyocyte protection. Circulation Journal, 73(7), 1184–1192.CrossRefPubMed
41.
Zurück zum Zitat Izem-Meziane, M., Djerdjouri, B., Rimbaud, S., & Caffin, F. (2011). Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: Protective effect of curcumin. American Journal of Physiology-Heart and Circulatory Physiology, 302(3), H665–H674.CrossRefPubMed Izem-Meziane, M., Djerdjouri, B., Rimbaud, S., & Caffin, F. (2011). Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: Protective effect of curcumin. American Journal of Physiology-Heart and Circulatory Physiology, 302(3), H665–H674.CrossRefPubMed
Metadaten
Titel
Limb Blood Flow Restriction Plus Mild Aerobic Exercise Training Protects the Heart Against Isoproterenol-Induced Cardiac Injury in Old Rats: Role of GSK-3β
verfasst von
Vida Naderi-Boldaji
Siyavash Joukar
Ali Noorafshan
Mohammad-Ali Bahreinipour
Publikationsdatum
07.11.2018
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2019
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9490-y

Weitere Artikel der Ausgabe 3/2019

Cardiovascular Toxicology 3/2019 Zur Ausgabe