Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 8/2021

08.01.2021 | Original Article

Kinetic metrics of 18F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography

verfasst von: Guobing Liu, Hongrong Xu, Pengcheng Hu, Hui Tan, Yiqiu Zhang, Haojun Yu, Xuening Li, Hongcheng Shi

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To investigate the kinetic metrics of 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) in normal organs by using dynamic total-body (TB) positron emission tomography (PET).

Methods

Dynamic TB-PET was performed for nine healthy volunteers. Time-to-activity curves (TACs) were obtained by drawing regions of interest in the organs. A two-tissue compartment model was fitted for each tissue TAC. Constant rates, including k1, k2, and k3, and the metabolic rate of FDG (MRFDG) were obtained. The parameter statistics, including the average, standard deviation, coefficient of variance, and inter-site and inter-individual variances, were compared.

Results

Constant rates and MRFDG varied significantly among organs and subjects, but not among sides or sub-regions within an organ. The mean k1 and k2 ranged from 0.0158 min−1 in the right lower lung to 1.1883 min−1 in the anterior wall of the left ventricle (LV) myocardium and from 0.1116 min−1 in the left parietal white matter to 4.6272 min−1 in the left thyroid, respectively. The k3 was lowest in the right upper area of the liver and highest in the septal wall of the LV myocardium. Mean MRFDG ranged from 23.1696 μmol/100 g/min in the parietal cortex to 0.5945 μmol/100 g/min in the lung. Four groups of organs with similar kinetic characteristics were identified: (1) the cerebral white matter, lung, liver, muscle, bone, and bone marrow; (2) cerebral and cerebellar cortex; (3) LV myocardium and thyroid; and (4) pancreas, spleen, and kidney.

Conclusion

The kinetic rates and MRFDG significantly differed among organs. The kinetic metrics of FDG parameters in normal organs can serve as a reference for future dynamic PET imaging and research.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285–91.CrossRef Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total-body dynamic reconstruction and parametric imaging on the uEXPLORER. J Nucl Med. 2020;61(2):285–91.CrossRef
2.
Zurück zum Zitat Cherry SR. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol. 2004;49(3):R13–48.CrossRef Cherry SR. In vivo molecular and genomic imaging: new challenges for imaging physics. Phys Med Biol. 2004;49(3):R13–48.CrossRef
3.
Zurück zum Zitat Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46(2):501–18.CrossRef Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46(2):501–18.CrossRef
4.
Zurück zum Zitat Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, Akers SR. Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol. 2013;15(3):345–52.CrossRef Cheng G, Alavi A, Lim E, Werner TJ, Del Bello CV, Akers SR. Dynamic changes of FDG uptake and clearance in normal tissues. Mol Imaging Biol. 2013;15(3):345–52.CrossRef
5.
Zurück zum Zitat Fujimura Y, Kimura Y, Simeon FG, Dickstein LP, Pike VW, Innis RB, et al. Biodistribution and radiation dosimetry in humans of a new PET ligand, 18F-PBR06, to image translocator protein (18 kDa). J Nucl Med. 2010;51(1):145–9.CrossRef Fujimura Y, Kimura Y, Simeon FG, Dickstein LP, Pike VW, Innis RB, et al. Biodistribution and radiation dosimetry in humans of a new PET ligand, 18F-PBR06, to image translocator protein (18 kDa). J Nucl Med. 2010;51(1):145–9.CrossRef
6.
Zurück zum Zitat Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med. 2019;60(3):299–303.CrossRef Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med. 2019;60(3):299–303.CrossRef
7.
Zurück zum Zitat Zhang X, Badawi RD, Cherry SR, Qi J. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol. 2018;63(13):767–70.CrossRef Zhang X, Badawi RD, Cherry SR, Qi J. Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol. 2018;63(13):767–70.CrossRef
8.
Zurück zum Zitat Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169. Cherry SR, Badawi RD, Karp JS, Moses WW, Price P, Jones T. Total-body imaging: transforming the role of positron emission tomography. Sci Transl Med. 2017;9(381):eaaf6169.
9.
Zurück zum Zitat Surti S, Karp JS. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol. 2015;60(13):5343–58.CrossRef Surti S, Karp JS. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol. 2015;60(13):5343–58.CrossRef
10.
Zurück zum Zitat Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-Body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.CrossRef Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-Body PET: Maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.CrossRef
11.
Zurück zum Zitat Heiss W, Pawlik G, Herholz K, Wagner R, Goldner H, Wienhard K. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [1Sp]-2-pluoro-2-deoxy-n-glucose. J Cereb Blood Flow Metab. 1984;4(2):212–23.CrossRef Heiss W, Pawlik G, Herholz K, Wagner R, Goldner H, Wienhard K. Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [1Sp]-2-pluoro-2-deoxy-n-glucose. J Cereb Blood Flow Metab. 1984;4(2):212–23.CrossRef
12.
Zurück zum Zitat Morita K, Katoh C, Yoshinaga K, Noriyasu K, Mabuchi M, Tsukamoto T, et al. Quantitative analysis of myocardial glucose utilization in patients with left ventricular dysfunction by means of 18F-FDG dynamic positron tomography and three-compartment analysis. Eur J Nucl Med Mol Imaging. 2005;32(7):806–12.CrossRef Morita K, Katoh C, Yoshinaga K, Noriyasu K, Mabuchi M, Tsukamoto T, et al. Quantitative analysis of myocardial glucose utilization in patients with left ventricular dysfunction by means of 18F-FDG dynamic positron tomography and three-compartment analysis. Eur J Nucl Med Mol Imaging. 2005;32(7):806–12.CrossRef
13.
Zurück zum Zitat Choi Y, Brunken RC, Hawkins RA, Huang SC, Buxton DB, Hoh CK, et al. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med. 1993;20(4):308–18.CrossRef Choi Y, Brunken RC, Hawkins RA, Huang SC, Buxton DB, Hoh CK, et al. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med. 1993;20(4):308–18.CrossRef
14.
Zurück zum Zitat Brix G, Ziegler SI, Bellemann ME, Doll J, Schosser R, Lucht R, et al. Quantification of [(18)F]FDG uptake in the normal liver using dynamic PET: impact and modeling of the dual hepatic blood supply. J Nucl Med. 2001;42(8):1265–73.PubMed Brix G, Ziegler SI, Bellemann ME, Doll J, Schosser R, Lucht R, et al. Quantification of [(18)F]FDG uptake in the normal liver using dynamic PET: impact and modeling of the dual hepatic blood supply. J Nucl Med. 2001;42(8):1265–73.PubMed
15.
Zurück zum Zitat Choi Y, Hawkins RA, Huang SC, Brunken RC, Hoh CK, Messa C, et al. Evaluation of the effect of glucose ingestion and kinetic model configurations of FDG in the normal liver. J Nucl Med. 1994;35(5):818–23.PubMed Choi Y, Hawkins RA, Huang SC, Brunken RC, Hoh CK, Messa C, et al. Evaluation of the effect of glucose ingestion and kinetic model configurations of FDG in the normal liver. J Nucl Med. 1994;35(5):818–23.PubMed
16.
Zurück zum Zitat Hays MT, Segall GM. A mathematical model for the distribution of fluorodeoxyglucose in humans. J Nucl Med. 1999;40(8):1358–66.PubMed Hays MT, Segall GM. A mathematical model for the distribution of fluorodeoxyglucose in humans. J Nucl Med. 1999;40(8):1358–66.PubMed
17.
Zurück zum Zitat Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R. Measurement of skeletal muscle glucose utilization by dynamic 18F-FDG PET without arterial blood sampling. Nucl Med Commun. 2005;26(1):31–7.CrossRef Yokoyama I, Inoue Y, Moritan T, Ohtomo K, Nagai R. Measurement of skeletal muscle glucose utilization by dynamic 18F-FDG PET without arterial blood sampling. Nucl Med Commun. 2005;26(1):31–7.CrossRef
18.
Zurück zum Zitat Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRef Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.CrossRef
19.
Zurück zum Zitat Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.PubMed Wahl LM, Asselin MC, Nahmias C. Regions of interest in the venous sinuses as input functions for quantitative PET. J Nucl Med. 1999;40(10):1666–75.PubMed
20.
Zurück zum Zitat Wu H, Dimitrakopoulou-Strauss A, Heichel TO, Lehner B, Bernd L, Ewerbeck V, et al. Quantitative evaluation of skeletal tumours with dynamic FDG PET: SUV in comparison to Patlak analysis. Eur J Nucl Med. 2001;28(6):704–10.CrossRef Wu H, Dimitrakopoulou-Strauss A, Heichel TO, Lehner B, Bernd L, Ewerbeck V, et al. Quantitative evaluation of skeletal tumours with dynamic FDG PET: SUV in comparison to Patlak analysis. Eur J Nucl Med. 2001;28(6):704–10.CrossRef
21.
Zurück zum Zitat Price PM, Badawi RD, Cherry SR, Jones T. Ultra staging to unmask the prescribing of adjuvant therapy in cancer patients: the future opportunity to image micrometastases using total-body 18F-FDG PET scanning. J Nucl Med. 2014;55(4):696–7.CrossRef Price PM, Badawi RD, Cherry SR, Jones T. Ultra staging to unmask the prescribing of adjuvant therapy in cancer patients: the future opportunity to image micrometastases using total-body 18F-FDG PET scanning. J Nucl Med. 2014;55(4):696–7.CrossRef
22.
Zurück zum Zitat de Geus-Oei LF, Visser EP, Krabbe PF, van Hoorn BA, Koenders EB, Willemsen AT, et al. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies. J Nucl Med. 2006;47(6):945–9.PubMed de Geus-Oei LF, Visser EP, Krabbe PF, van Hoorn BA, Koenders EB, Willemsen AT, et al. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies. J Nucl Med. 2006;47(6):945–9.PubMed
23.
Zurück zum Zitat Keiding S, Munk OL, Schiøtt KM, Hansen SB. Dynamic 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography of liver tumours without blood sampling. Eur J Nucl Med. 2000;27(4):407–12.CrossRef Keiding S, Munk OL, Schiøtt KM, Hansen SB. Dynamic 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography of liver tumours without blood sampling. Eur J Nucl Med. 2000;27(4):407–12.CrossRef
24.
Zurück zum Zitat Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Phys. 1980;238(1):E69–82. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Phys. 1980;238(1):E69–82.
25.
Zurück zum Zitat Laffon E, Adhoute X, de Clermont H, Marthan R. Is liver SUV stable over time in (1)(8)F-FDG PET imaging? J Nucl Med Technol. 2011;39(4):258–63.CrossRef Laffon E, Adhoute X, de Clermont H, Marthan R. Is liver SUV stable over time in (1)(8)F-FDG PET imaging? J Nucl Med Technol. 2011;39(4):258–63.CrossRef
26.
Zurück zum Zitat Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRef Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRef
Metadaten
Titel
Kinetic metrics of 18F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography
verfasst von
Guobing Liu
Hongrong Xu
Pengcheng Hu
Hui Tan
Yiqiu Zhang
Haojun Yu
Xuening Li
Hongcheng Shi
Publikationsdatum
08.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 8/2021
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-020-05124-y

Weitere Artikel der Ausgabe 8/2021

European Journal of Nuclear Medicine and Molecular Imaging 8/2021 Zur Ausgabe