Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 1/2007

01.01.2007 | Original Article

Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10

verfasst von: Nicolas Larmonier, Marilyn Marron, Yi Zeng, Jessica Cantrell, Angela Romanoski, Marjan Sepassi, Sylvia Thompson, Xinchun Chen, Samita Andreansky, Emmanuel Katsanis

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 1/2007

Einloggen, um Zugang zu erhalten

Abstract

CD4+CD25+ regulatory T cells have been characterized as a critical population of immunosuppressive cells. They play a crucial role in cancer progression by inhibiting the effector function of CD4+ or CD8+ T lymphocytes. However, whether regulatory T lymphocytes that expand during tumor progression can modulate dendritic cell function is unclear. To address this issue, we have evaluated the inhibitory potential of CD4+CD25+ regulatory T cells from mice bearing a BCR–ABL+ leukemia on bone marrow-derived dendritic cells. We present data demonstrating that CD4+CD25+FoxP3+ regulatory T cells from tumor-bearing animals impede dendritic cell function by down-regulating the activation of the transcription factor NF-κB. The expression of the co-stimulatory molecules CD80, CD86 and CD40, the production of TNF-α, IL-12, and CCL5/RANTES by the suppressed DC is strongly down-regulated. The suppression mechanism requires TGF-β and IL-10 and is associated with induction of the Smad signaling pathway and activation of the STAT3 transcription factor.
Literatur
1.
Zurück zum Zitat Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25(+)CD4(+) regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352CrossRefPubMed Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25(+)CD4(+) regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352CrossRefPubMed
2.
Zurück zum Zitat Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400PubMed Shevach EM (2002) CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400PubMed
3.
Zurück zum Zitat Asano M, Toda M, Sakaguchi N et al (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396CrossRefPubMed Asano M, Toda M, Sakaguchi N et al (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396CrossRefPubMed
4.
Zurück zum Zitat Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMed Sakaguchi S, Sakaguchi N, Asano M et al (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164PubMed
5.
Zurück zum Zitat Belkaid Y, Piccirillo CA, Mendez S et al (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507CrossRefPubMed Belkaid Y, Piccirillo CA, Mendez S et al (2002) CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502–507CrossRefPubMed
6.
Zurück zum Zitat Cobbold SP, Nolan KF, Graca L et al (2003) Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms. Immunol Rev 196:109–124CrossRefPubMed Cobbold SP, Nolan KF, Graca L et al (2003) Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms. Immunol Rev 196:109–124CrossRefPubMed
7.
Zurück zum Zitat Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218PubMed Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218PubMed
8.
Zurück zum Zitat Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458CrossRefPubMed Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458CrossRefPubMed
9.
Zurück zum Zitat Antony PA, Piccirillo CA, Akpinarli A et al (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174:2591–2601PubMed Antony PA, Piccirillo CA, Akpinarli A et al (2005) CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol 174:2591–2601PubMed
10.
Zurück zum Zitat Woo EY, Yeh H, Chu CS et al (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276PubMed Woo EY, Yeh H, Chu CS et al (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276PubMed
11.
Zurück zum Zitat Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761PubMed Liyanage UK, Moore TT, Joo HG et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761PubMed
12.
Zurück zum Zitat Ormandy LA, Hillemann T, Wedemeyer H et al (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65:2457–2464CrossRefPubMed Ormandy LA, Hillemann T, Wedemeyer H et al (2005) Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res 65:2457–2464CrossRefPubMed
13.
Zurück zum Zitat Liu JY, Zhang XS, Ding Y et al (2005) The changes of CD4+CD25+/CD4+ proportion in spleen of tumor-bearing BALB/c mice. J Transl Med 3:5CrossRefPubMed Liu JY, Zhang XS, Ding Y et al (2005) The changes of CD4+CD25+/CD4+ proportion in spleen of tumor-bearing BALB/c mice. J Transl Med 3:5CrossRefPubMed
14.
Zurück zum Zitat Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344CrossRefPubMed Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344CrossRefPubMed
15.
Zurück zum Zitat Sutmuller RP, van Duivenvoorde LM, van Elsas A et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832CrossRefPubMed Sutmuller RP, van Duivenvoorde LM, van Elsas A et al (2001) Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832CrossRefPubMed
16.
Zurück zum Zitat Yu P, Lee Y, Liu W et al (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201:779–791CrossRefPubMed Yu P, Lee Y, Liu W et al (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201:779–791CrossRefPubMed
17.
Zurück zum Zitat Prasad SJ, Farrand KJ, Matthews SA et al (2005) Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells. J Immunol 174:90–98PubMed Prasad SJ, Farrand KJ, Matthews SA et al (2005) Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells. J Immunol 174:90–98PubMed
18.
Zurück zum Zitat Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337CrossRefPubMed Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337CrossRefPubMed
19.
Zurück zum Zitat Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336CrossRefPubMed Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336CrossRefPubMed
20.
Zurück zum Zitat Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061CrossRefPubMed Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061CrossRefPubMed
21.
Zurück zum Zitat Fontenot JD, Rasmussen JP, Williams LM et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341CrossRefPubMed Fontenot JD, Rasmussen JP, Williams LM et al (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341CrossRefPubMed
22.
Zurück zum Zitat Nakamura K, Kitani A, Fuss I et al (2004) TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172:834–842PubMed Nakamura K, Kitani A, Fuss I et al (2004) TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 172:834–842PubMed
23.
Zurück zum Zitat Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644CrossRefPubMed Nakamura K, Kitani A, Strober W (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629–644CrossRefPubMed
24.
Zurück zum Zitat Piccirillo CA, Letterio JJ, Thornton AM et al (2002) CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246CrossRefPubMed Piccirillo CA, Letterio JJ, Thornton AM et al (2002) CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 196:237–246CrossRefPubMed
25.
Zurück zum Zitat Misra N, Bayry J, Lacroix-Desmazes S et al (2004) Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172:4676–4680PubMed Misra N, Bayry J, Lacroix-Desmazes S et al (2004) Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172:4676–4680PubMed
26.
Zurück zum Zitat Sato K, Tateishi S, Kubo K et al (2005) Downregulation of IL-12 and a novel negative feedback system mediated by CD25(+)CD4(+) T cells. Biochem Biophys Res Commun 330:226–232CrossRefPubMed Sato K, Tateishi S, Kubo K et al (2005) Downregulation of IL-12 and a novel negative feedback system mediated by CD25(+)CD4(+) T cells. Biochem Biophys Res Commun 330:226–232CrossRefPubMed
27.
Zurück zum Zitat Cederbom L, Hall H, Ivars F (2000) CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 30:1538–1543CrossRefPubMed Cederbom L, Hall H, Ivars F (2000) CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 30:1538–1543CrossRefPubMed
28.
Zurück zum Zitat Serra P, Amrani A, Yamanouchi J et al (2003) CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19:877–889CrossRefPubMed Serra P, Amrani A, Yamanouchi J et al (2003) CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 19:877–889CrossRefPubMed
29.
Zurück zum Zitat Chen W, Qin H, Reese VA et al (1998) CTLs specific for bcr–abl joining region segment peptides fail to lyse leukemia cells expressing p210 bcr–abl protein. J Immunother 21:257–268PubMedCrossRef Chen W, Qin H, Reese VA et al (1998) CTLs specific for bcr–abl joining region segment peptides fail to lyse leukemia cells expressing p210 bcr–abl protein. J Immunother 21:257–268PubMedCrossRef
30.
Zurück zum Zitat McLaughlin J, Chianese E, Witte ON (1987) In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci USA 84:6558–6562PubMedCrossRef McLaughlin J, Chianese E, Witte ON (1987) In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci USA 84:6558–6562PubMedCrossRef
31.
Zurück zum Zitat He L, Feng H, Raymond A et al (2001) Dendritic-cell-peptide immunization provides immunoprotection against bcr–abl-positive leukemia in mice. Cancer Immunol Immunother 50:31–40CrossRefPubMed He L, Feng H, Raymond A et al (2001) Dendritic-cell-peptide immunization provides immunoprotection against bcr–abl-positive leukemia in mice. Cancer Immunol Immunother 50:31–40CrossRefPubMed
32.
Zurück zum Zitat Feng H, Zeng Y, Whitesell L et al (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97:3505–3512CrossRefPubMed Feng H, Zeng Y, Whitesell L et al (2001) Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 97:3505–3512CrossRefPubMed
33.
Zurück zum Zitat Nishikawa H, Jager E, Ritter G et al (2005) CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood 106:1008–1011CrossRefPubMed Nishikawa H, Jager E, Ritter G et al (2005) CD4+ CD25+ regulatory T cells control the induction of antigen-specific CD4+ helper T cell responses in cancer patients. Blood 106:1008–1011CrossRefPubMed
34.
Zurück zum Zitat Somasundaram R, Jacob L, Swoboda R et al (2002) Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 62:5267–5272PubMed Somasundaram R, Jacob L, Swoboda R et al (2002) Inhibition of cytolytic T lymphocyte proliferation by autologous CD4+/CD25+ regulatory T cells in a colorectal carcinoma patient is mediated by transforming growth factor-beta. Cancer Res 62:5267–5272PubMed
35.
Zurück zum Zitat Onishi H, Kuroki H, Matsumoto K et al (2004) Monocyte-derived dendritic cells that capture dead tumor cells secrete IL-12 and TNF-alpha through IL-12/TNF-alpha/NF-kappaB autocrine loop. Cancer Immunol Immunother 53:1093–1100CrossRefPubMed Onishi H, Kuroki H, Matsumoto K et al (2004) Monocyte-derived dendritic cells that capture dead tumor cells secrete IL-12 and TNF-alpha through IL-12/TNF-alpha/NF-kappaB autocrine loop. Cancer Immunol Immunother 53:1093–1100CrossRefPubMed
36.
Zurück zum Zitat Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562CrossRefPubMed Sakaguchi S (2004) Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562CrossRefPubMed
37.
Zurück zum Zitat Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296CrossRefPubMed Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296CrossRefPubMed
38.
Zurück zum Zitat Chen W, Wahl SM (2003) TGF-beta: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev 14:85–89CrossRefPubMed Chen W, Wahl SM (2003) TGF-beta: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine Growth Factor Rev 14:85–89CrossRefPubMed
39.
Zurück zum Zitat Moore KW, de Waal Malefyt R, Coffman RL et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765CrossRefPubMed Moore KW, de Waal Malefyt R, Coffman RL et al (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765CrossRefPubMed
40.
Zurück zum Zitat Williams LM, Ricchetti G, Sarma U et al (2004) Interleukin-10 suppression of myeloid cell activation—a continuing puzzle. Immunology 113:281–292CrossRefPubMed Williams LM, Ricchetti G, Sarma U et al (2004) Interleukin-10 suppression of myeloid cell activation—a continuing puzzle. Immunology 113:281–292CrossRefPubMed
41.
Zurück zum Zitat Hoentjen F, Sartor RB, Ozaki M et al (2005) STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105:689–696CrossRefPubMed Hoentjen F, Sartor RB, Ozaki M et al (2005) STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105:689–696CrossRefPubMed
42.
Zurück zum Zitat Taams LS, van Amelsfort JM, Tiemessen MM et al (2005) Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 66:222–230CrossRefPubMed Taams LS, van Amelsfort JM, Tiemessen MM et al (2005) Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 66:222–230CrossRefPubMed
43.
Zurück zum Zitat Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689PubMed Almand B, Clark JI, Nikitina E et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689PubMed
44.
Zurück zum Zitat Almand B, Resser JR, Lindman B et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766PubMed Almand B, Resser JR, Lindman B et al (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766PubMed
45.
Zurück zum Zitat Chaux P, Favre N, Martin M et al (1997) Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int J Cancer 72:619–624CrossRefPubMed Chaux P, Favre N, Martin M et al (1997) Tumor-infiltrating dendritic cells are defective in their antigen-presenting function and inducible B7 expression in rats. Int J Cancer 72:619–624CrossRefPubMed
46.
Zurück zum Zitat Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952CrossRefPubMed Gabrilovich D (2004) Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 4:941–952CrossRefPubMed
47.
Zurück zum Zitat Monti P, Leone BE, Zerbi A et al (2004) Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10 high IL-12 low regulatory dendritic cell. J Immunol 172:7341–7349PubMed Monti P, Leone BE, Zerbi A et al (2004) Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10 high IL-12 low regulatory dendritic cell. J Immunol 172:7341–7349PubMed
48.
Zurück zum Zitat Steinbrink K, Jonuleit H, Muller G et al (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93:1634–1642PubMed Steinbrink K, Jonuleit H, Muller G et al (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumor cells. Blood 93:1634–1642PubMed
49.
Zurück zum Zitat Kuwana M (2002) Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum Immunol 63:1156–1163CrossRefPubMed Kuwana M (2002) Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets. Hum Immunol 63:1156–1163CrossRefPubMed
50.
Zurück zum Zitat Verginis P, Li HS, Carayanniotis G (2005) Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T Cells. J Immunol 174:7433–7439PubMed Verginis P, Li HS, Carayanniotis G (2005) Tolerogenic semimature dendritic cells suppress experimental autoimmune thyroiditis by activation of thyroglobulin-specific CD4+CD25+ T Cells. J Immunol 174:7433–7439PubMed
51.
Zurück zum Zitat Mahnke K, Qian Y, Knop J et al (2003) Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101:4862–4869CrossRefPubMed Mahnke K, Qian Y, Knop J et al (2003) Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101:4862–4869CrossRefPubMed
Metadaten
Titel
Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-β and IL-10
verfasst von
Nicolas Larmonier
Marilyn Marron
Yi Zeng
Jessica Cantrell
Angela Romanoski
Marjan Sepassi
Sylvia Thompson
Xinchun Chen
Samita Andreansky
Emmanuel Katsanis
Publikationsdatum
01.01.2007
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 1/2007
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-006-0160-8

Weitere Artikel der Ausgabe 1/2007

Cancer Immunology, Immunotherapy 1/2007 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.