Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 2/2011

01.02.2011 | Review

Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model

verfasst von: Wim Maes, Stefaan W. Van Gool

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 2/2011

Einloggen, um Zugang zu erhalten

Abstract

Nearly twenty years of experimental immunotherapy for malignant glioma yielded important insights in the mechanisms governing glioma immunology. Still considered promising, it is clear that immunotherapy does not on its own represent the magic bullet in glioma therapy. In this review, we summarize the major immunotherapeutic achievements in the mouse GL261 glioma model, which has emerged as the gold standard syngeneic model for experimental glioma therapy. Gene therapy, monoclonal antibody treatment, cytokine therapy, cell transfer strategies and dendritic cell therapy were hereby considered. Apart from the considerable progress made in understanding glioma immunology in this model, we also addressed its most pertinent issues and shortcomings. Despite these, the GL261 model will remain indispensable in glioma research since it is a fast, highly reproducible and easy-to-establish model system.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefPubMed Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109CrossRefPubMed
2.
Zurück zum Zitat Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4(4):278–299PubMed Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. Neuro Oncol 4(4):278–299PubMed
3.
Zurück zum Zitat Nieder C, Grosu AL, Molls M (2000) A comparison of treatment results for recurrent malignant gliomas. Cancer Treat Rev 26(6):397–409CrossRefPubMed Nieder C, Grosu AL, Molls M (2000) A comparison of treatment results for recurrent malignant gliomas. Cancer Treat Rev 26(6):397–409CrossRefPubMed
4.
Zurück zum Zitat Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoom MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Eng J Med 352:987–996CrossRef Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoom MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Eng J Med 352:987–996CrossRef
5.
Zurück zum Zitat Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752CrossRefPubMed Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752CrossRefPubMed
6.
Zurück zum Zitat Aghi M, Chiocca EA (2006) Gene therapy for glioblastoma. Neurosurg Focus 20(4):E18PubMed Aghi M, Chiocca EA (2006) Gene therapy for glioblastoma. Neurosurg Focus 20(4):E18PubMed
7.
8.
Zurück zum Zitat Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24(8):1253–1265CrossRefPubMed Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24(8):1253–1265CrossRefPubMed
9.
Zurück zum Zitat Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85(2):133–148CrossRefPubMed Candolfi M, Curtin JF, Nichols WS, Muhammad AG, King GD, Pluhar GE et al (2007) Intracranial glioblastoma models in preclinical neuro-oncology: neuropathological characterization and tumor progression. J Neurooncol 85(2):133–148CrossRefPubMed
10.
Zurück zum Zitat Fomchenko EI, Holland EC (2006) Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 12(18):5288–5297CrossRefPubMed Fomchenko EI, Holland EC (2006) Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 12(18):5288–5297CrossRefPubMed
11.
Zurück zum Zitat Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15(1):110–116CrossRefPubMed Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH et al (2009) Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15(1):110–116CrossRefPubMed
12.
Zurück zum Zitat Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30(9):2394–2400PubMed Ausman JI, Shapiro WR, Rall DP (1970) Studies on the chemotherapy of experimental brain tumors: development of an experimental model. Cancer Res 30(9):2394–2400PubMed
13.
Zurück zum Zitat Zimmerman HM, Arnold H (1941) Experimental brain tumors. I. Tumors produced with methylcholanthrene. Cancer Res 1:919–938 Zimmerman HM, Arnold H (1941) Experimental brain tumors. I. Tumors produced with methylcholanthrene. Cancer Res 1:919–938
14.
Zurück zum Zitat Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553CrossRefPubMed Szatmari T, Lumniczky K, Desaknai S, Trajcevski S, Hidvegi EJ, Hamada H et al (2006) Detailed characterization of the mouse glioma 261 tumor model for experimental glioblastoma therapy. Cancer Sci 97(6):546–553CrossRefPubMed
15.
Zurück zum Zitat Daga A, Orengo AM, Gangemi RM, Marubbi D, Perera M, Comes A et al (2007) Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 121(8):1756–1763CrossRefPubMed Daga A, Orengo AM, Gangemi RM, Marubbi D, Perera M, Comes A et al (2007) Glioma immunotherapy by IL-21 gene-modified cells or by recombinant IL-21 involves antibody responses. Int J Cancer 121(8):1756–1763CrossRefPubMed
16.
Zurück zum Zitat Segal BM, Glass DD, Shevach EM (2002) Cutting edge: IL-10-producing CD4+ T cells mediate tumor rejection. J Immunol 168(1):1–4PubMed Segal BM, Glass DD, Shevach EM (2002) Cutting edge: IL-10-producing CD4+ T cells mediate tumor rejection. J Immunol 168(1):1–4PubMed
17.
Zurück zum Zitat Iizuka Y, Kojima H, Kobata T, Kawase T, Kawakami Y, Toda M (2006) Identification of a glioma antigen, GARC-1, using cytotoxic T lymphocytes induced by HSV cancer vaccine. Int J Cancer 118(4):942–949CrossRefPubMed Iizuka Y, Kojima H, Kobata T, Kawase T, Kawakami Y, Toda M (2006) Identification of a glioma antigen, GARC-1, using cytotoxic T lymphocytes induced by HSV cancer vaccine. Int J Cancer 118(4):942–949CrossRefPubMed
18.
Zurück zum Zitat Paul AK, Ciesielski MJ, Sajjad M, Wang X, Ferrone S, Abdel-Nabi H et al (2009) Expression of HMP/AN2, a melanoma associated antigen, in murine cerebral gliomas: potential for radioimmunotargeting. J Neurooncol 94(1):21–30CrossRefPubMed Paul AK, Ciesielski MJ, Sajjad M, Wang X, Ferrone S, Abdel-Nabi H et al (2009) Expression of HMP/AN2, a melanoma associated antigen, in murine cerebral gliomas: potential for radioimmunotargeting. J Neurooncol 94(1):21–30CrossRefPubMed
19.
Zurück zum Zitat Ciesielski MJ, Kozbor D, Castanaro CA, Barone TA, Fenstermaker RA (2008) Therapeutic effect of a T helper cell supported CTL response induced by a survivin peptide vaccine against murine cerebral glioma. Cancer Immunol Immunother 57(12):1827–1835CrossRefPubMed Ciesielski MJ, Kozbor D, Castanaro CA, Barone TA, Fenstermaker RA (2008) Therapeutic effect of a T helper cell supported CTL response induced by a survivin peptide vaccine against murine cerebral glioma. Cancer Immunol Immunother 57(12):1827–1835CrossRefPubMed
20.
Zurück zum Zitat Grauer OM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, Toonen LW et al (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122(8):1794–1802CrossRefPubMed Grauer OM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, Toonen LW et al (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122(8):1794–1802CrossRefPubMed
21.
Zurück zum Zitat Maes W, Deroose C, Reumers V, Krylyshkina O, Gijsbers R, Baekelandt V et al (2009) In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma. J Neurooncol 91(2):127–139CrossRefPubMed Maes W, Deroose C, Reumers V, Krylyshkina O, Gijsbers R, Baekelandt V et al (2009) In vivo bioluminescence imaging in an experimental mouse model for dendritic cell based immunotherapy against malignant glioma. J Neurooncol 91(2):127–139CrossRefPubMed
22.
Zurück zum Zitat Saris SC, Spiess P, Lieberman DM, Lin S, Walbridge S, Oldfield EH (1992) Treatment of murine primary brain tumors with systemic interleukin-2 and tumor-infiltrating lymphocytes. J Neurosurg 76(3):513–519CrossRefPubMed Saris SC, Spiess P, Lieberman DM, Lin S, Walbridge S, Oldfield EH (1992) Treatment of murine primary brain tumors with systemic interleukin-2 and tumor-infiltrating lymphocytes. J Neurosurg 76(3):513–519CrossRefPubMed
23.
Zurück zum Zitat Plautz GE, Touhalisky JE, Shu S (1997) Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol 178(2):101–107CrossRefPubMed Plautz GE, Touhalisky JE, Shu S (1997) Treatment of murine gliomas by adoptive transfer of ex vivo activated tumor-draining lymph node cells. Cell Immunol 178(2):101–107CrossRefPubMed
24.
Zurück zum Zitat Kim JA, Averbook BJ, Chambers K, Rothchild K, Kjaergaard J, Papay R et al (2001) Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res 61(5):2031–2037PubMed Kim JA, Averbook BJ, Chambers K, Rothchild K, Kjaergaard J, Papay R et al (2001) Divergent effects of 4-1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res 61(5):2031–2037PubMed
25.
Zurück zum Zitat Kjaergaard J, Tanaka J, Kim JA, Rothchild K, Weinberg A, Shu S (2000) Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res 60(19):5514–5521PubMed Kjaergaard J, Tanaka J, Kim JA, Rothchild K, Weinberg A, Shu S (2000) Therapeutic efficacy of OX-40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth. Cancer Res 60(19):5514–5521PubMed
26.
Zurück zum Zitat Kjaergaard J, Wang LX, Kuriyama H, Shu S, Plautz GE (2005) Active immunotherapy for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines. J Neurosurg 103(1):156–164CrossRefPubMed Kjaergaard J, Wang LX, Kuriyama H, Shu S, Plautz GE (2005) Active immunotherapy for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines. J Neurosurg 103(1):156–164CrossRefPubMed
27.
Zurück zum Zitat Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167CrossRefPubMed Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167CrossRefPubMed
28.
Zurück zum Zitat El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+ CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105(3):430–437CrossRefPubMed El Andaloussi A, Han Y, Lesniak MS (2006) Prolongation of survival following depletion of CD4+ CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 105(3):430–437CrossRefPubMed
29.
Zurück zum Zitat Maes W, Rosas GG, Verbinnen B, Boon L, De Vleeschouwer S, Ceuppens JL et al (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11(5):529–542CrossRefPubMed Maes W, Rosas GG, Verbinnen B, Boon L, De Vleeschouwer S, Ceuppens JL et al (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11(5):529–542CrossRefPubMed
30.
Zurück zum Zitat Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15(21):6551–6559CrossRefPubMed Ueda R, Fujita M, Zhu X, Sasaki K, Kastenhuber ER, Kohanbash G et al (2009) Systemic inhibition of transforming growth factor-beta in glioma-bearing mice improves the therapeutic efficacy of glioma-associated antigen peptide vaccines. Clin Cancer Res 15(21):6551–6559CrossRefPubMed
31.
Zurück zum Zitat Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306CrossRefPubMed Banchereau J, Palucka AK (2005) Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5(4):296–306CrossRefPubMed
33.
Zurück zum Zitat Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51(1):1–9CrossRefPubMed Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51(1):1–9CrossRefPubMed
34.
Zurück zum Zitat Aoki H, Mizuno M, Natsume A, Tsugawa T, Tsujimura K, Takahashi T et al (2001) Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol Immunother 50(9):463–468CrossRefPubMed Aoki H, Mizuno M, Natsume A, Tsugawa T, Tsujimura K, Takahashi T et al (2001) Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol Immunother 50(9):463–468CrossRefPubMed
35.
Zurück zum Zitat Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M (2002) A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 22(2A):613–621PubMed Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M (2002) A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 22(2A):613–621PubMed
36.
Zurück zum Zitat Saito R, Mizuno M, Nakahara N, Tsuno T, Kumabe T, Yoshimoto T et al (2004) Vaccination with tumor cell lysate-pulsed dendritic cells augments the effect of IFN-beta gene therapy for malignant glioma in an experimental mouse intracranial glioma. Int J Cancer 111(5):777–782CrossRefPubMed Saito R, Mizuno M, Nakahara N, Tsuno T, Kumabe T, Yoshimoto T et al (2004) Vaccination with tumor cell lysate-pulsed dendritic cells augments the effect of IFN-beta gene therapy for malignant glioma in an experimental mouse intracranial glioma. Int J Cancer 111(5):777–782CrossRefPubMed
37.
Zurück zum Zitat Tsugawa T, Kuwashima N, Sato H, Fellows-Mayle WK, Dusak JE, Okada K (2004) Sequential delivery of interferon-alpha gene and DCs to intracranial gliomas promotes an effective antitumor response. Gene Ther 11(21):1551–1558CrossRefPubMed Tsugawa T, Kuwashima N, Sato H, Fellows-Mayle WK, Dusak JE, Okada K (2004) Sequential delivery of interferon-alpha gene and DCs to intracranial gliomas promotes an effective antitumor response. Gene Ther 11(21):1551–1558CrossRefPubMed
38.
Zurück zum Zitat Kuwashima N, Nishimura F, Eguchi J, Sato H, Hatano M, Tsugawa T et al (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4):2730–2740PubMed Kuwashima N, Nishimura F, Eguchi J, Sato H, Hatano M, Tsugawa T et al (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4):2730–2740PubMed
39.
Zurück zum Zitat Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B et al (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66(21):10247–10252CrossRefPubMed Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B et al (2006) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66(21):10247–10252CrossRefPubMed
40.
Zurück zum Zitat Pellegatta S, Poliani PL, Corno D, Grisoli M, Cusimano M, Ubiali F et al (2006) Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurol Res 28(5):527–531CrossRefPubMed Pellegatta S, Poliani PL, Corno D, Grisoli M, Cusimano M, Ubiali F et al (2006) Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurol Res 28(5):527–531CrossRefPubMed
41.
Zurück zum Zitat Jiang XB, Lu XL, Hu P, Liu RE (2009) Improved therapeutic efficacy using vaccination with glioma lysate-pulsed dendritic cells combined with IP-10 in murine glioma. Vaccine 27(44):6210–6216CrossRefPubMed Jiang XB, Lu XL, Hu P, Liu RE (2009) Improved therapeutic efficacy using vaccination with glioma lysate-pulsed dendritic cells combined with IP-10 in murine glioma. Vaccine 27(44):6210–6216CrossRefPubMed
42.
Zurück zum Zitat Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63(23):8487–8491PubMed Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63(23):8487–8491PubMed
43.
Zurück zum Zitat Ciesielski MJ, Apfel L, Barone TA, Castro CA, Weiss TC, Fenstermaker RA (2006) Antitumor effects of a xenogeneic survivin bone marrow derived dendritic cell vaccine against murine GL261 gliomas. Cancer Immunol Immunother 55(12):1491–1503CrossRefPubMed Ciesielski MJ, Apfel L, Barone TA, Castro CA, Weiss TC, Fenstermaker RA (2006) Antitumor effects of a xenogeneic survivin bone marrow derived dendritic cell vaccine against murine GL261 gliomas. Cancer Immunol Immunother 55(12):1491–1503CrossRefPubMed
44.
Zurück zum Zitat Ciesielski MJ, Ahluwalia MS, Munich SA, Orton M, Barone T, Chanan-Khan A et al (2010) Antitumor cytotoxic T-cell response induced by a survivin peptide mimic. Cancer Immunol Immunother 59(8):1211–1221CrossRefPubMed Ciesielski MJ, Ahluwalia MS, Munich SA, Orton M, Barone T, Chanan-Khan A et al (2010) Antitumor cytotoxic T-cell response induced by a survivin peptide mimic. Cancer Immunol Immunother 59(8):1211–1221CrossRefPubMed
45.
Zurück zum Zitat Fujita M, Zhu X, Ueda R, Sasaki K, Kohanbash G, Kastenhuber ER et al (2009) Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells—significant roles of CXCL10. Cancer Res 69(4):1587–1595CrossRefPubMed Fujita M, Zhu X, Ueda R, Sasaki K, Kohanbash G, Kastenhuber ER et al (2009) Effective immunotherapy against murine gliomas using type 1 polarizing dendritic cells—significant roles of CXCL10. Cancer Res 69(4):1587–1595CrossRefPubMed
46.
Zurück zum Zitat Lichtor T, Glick RP, Kim TS, Hand R, Cohen EP (1995) Prolonged survival of mice with glioma injected intracerebrally with double cytokine-secreting cells. J Neurosurg 83(6):1038–1044CrossRefPubMed Lichtor T, Glick RP, Kim TS, Hand R, Cohen EP (1995) Prolonged survival of mice with glioma injected intracerebrally with double cytokine-secreting cells. J Neurosurg 83(6):1038–1044CrossRefPubMed
47.
Zurück zum Zitat Glick RP, Lichtor T, Panchal R, Mahendra A, Cohen EP (2003) Treatment with allogeneic interleukin-2 secreting fibroblasts protects against the development of malignant brain tumors. J Neurooncol 64(1–2):139–146PubMed Glick RP, Lichtor T, Panchal R, Mahendra A, Cohen EP (2003) Treatment with allogeneic interleukin-2 secreting fibroblasts protects against the development of malignant brain tumors. J Neurooncol 64(1–2):139–146PubMed
48.
Zurück zum Zitat Spagnolo A, Glick RP, Lin H, Cohen EP, Feinstein DL, Lichtor T (2007) Prolonged survival of mice with established intracerebral glioma receiving combined treatment with peroxisome proliferator-activated receptor-gamma thiazolidinedione agonists and interleukin-2-secreting syngeneic/allogeneic fibroblasts. J Neurosurg 106(2):299–305CrossRefPubMed Spagnolo A, Glick RP, Lin H, Cohen EP, Feinstein DL, Lichtor T (2007) Prolonged survival of mice with established intracerebral glioma receiving combined treatment with peroxisome proliferator-activated receptor-gamma thiazolidinedione agonists and interleukin-2-secreting syngeneic/allogeneic fibroblasts. J Neurosurg 106(2):299–305CrossRefPubMed
49.
Zurück zum Zitat Herrlinger U, Kramm CM, Johnston KM, Louis DN, Finkelstein D, Reznikoff G et al (1997) Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 4(6):345–352PubMed Herrlinger U, Kramm CM, Johnston KM, Louis DN, Finkelstein D, Reznikoff G et al (1997) Vaccination for experimental gliomas using GM-CSF-transduced glioma cells. Cancer Gene Ther 4(6):345–352PubMed
50.
Zurück zum Zitat Herrlinger U, Jacobs A, Quinones A, Woiciechowsky C, Sena-Esteves M, Rainov NG et al (2000) Helper virus-free herpes simplex virus type 1 amplicon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma. Hum Gene Ther 11(10):1429–1438CrossRefPubMed Herrlinger U, Jacobs A, Quinones A, Woiciechowsky C, Sena-Esteves M, Rainov NG et al (2000) Helper virus-free herpes simplex virus type 1 amplicon vectors for granulocyte-macrophage colony-stimulating factor-enhanced vaccination therapy for experimental glioma. Hum Gene Ther 11(10):1429–1438CrossRefPubMed
51.
Zurück zum Zitat Yu JS, Burwick JA, Dranoff G, Breakefield XO (1997) Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 8(9):1065–1072CrossRefPubMed Yu JS, Burwick JA, Dranoff G, Breakefield XO (1997) Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 8(9):1065–1072CrossRefPubMed
52.
Zurück zum Zitat Newcomb EW, Demaria S, Lukyanov Y, Shao Y, Schnee T, Kawashima N et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12(15):4730–4737CrossRefPubMed Newcomb EW, Demaria S, Lukyanov Y, Shao Y, Schnee T, Kawashima N et al (2006) The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL261 gliomas. Clin Cancer Res 12(15):4730–4737CrossRefPubMed
53.
Zurück zum Zitat Natsume A, Mizuno M, Ryuke Y, Yoshida J (1999) Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther 6(9):1626–1633CrossRefPubMed Natsume A, Mizuno M, Ryuke Y, Yoshida J (1999) Antitumor effect and cellular immunity activation by murine interferon-beta gene transfer against intracerebral glioma in mouse. Gene Ther 6(9):1626–1633CrossRefPubMed
54.
Zurück zum Zitat Natsume A, Tsujimura K, Mizuno M, Takahashi T, Yoshida J (2000) IFN-beta gene therapy induces systemic antitumor immunity against malignant glioma. J Neurooncol 47(2):117–124CrossRefPubMed Natsume A, Tsujimura K, Mizuno M, Takahashi T, Yoshida J (2000) IFN-beta gene therapy induces systemic antitumor immunity against malignant glioma. J Neurooncol 47(2):117–124CrossRefPubMed
55.
Zurück zum Zitat Blaszczyk-Thurin M, Ertl IO, Ertl HC (2002) An experimental vaccine expressing wild-type p53 induces protective immunity against glioblastoma cells with high levels of endogenous p53. Scand J Immunol 56(4):361–375CrossRefPubMed Blaszczyk-Thurin M, Ertl IO, Ertl HC (2002) An experimental vaccine expressing wild-type p53 induces protective immunity against glioblastoma cells with high levels of endogenous p53. Scand J Immunol 56(4):361–375CrossRefPubMed
56.
Zurück zum Zitat Wu A, Oh S, Ericson K, Demorest ZL, Vengco I, Gharagozlou S (2007) Transposon-based interferon gamma gene transfer overcomes limitations of episomal plasmid for immunogene therapy of glioblastoma. Cancer Gene Ther 14(6):550–560CrossRefPubMed Wu A, Oh S, Ericson K, Demorest ZL, Vengco I, Gharagozlou S (2007) Transposon-based interferon gamma gene transfer overcomes limitations of episomal plasmid for immunogene therapy of glioblastoma. Cancer Gene Ther 14(6):550–560CrossRefPubMed
57.
Zurück zum Zitat Sonabend AM, Velicu S, Ulasov IV, Han Y, Tyler B, Brem H et al (2008) A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer Drugs 19(2):133–142CrossRefPubMed Sonabend AM, Velicu S, Ulasov IV, Han Y, Tyler B, Brem H et al (2008) A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer Drugs 19(2):133–142CrossRefPubMed
58.
Zurück zum Zitat Vetter M, Hofer MJ, Roth E, Pircher HP, Pagenstecher A (2009) Intracerebral interleukin 12 induces glioma rejection in the brain predominantly by CD8+ T cells and independently of interferon-gamma. J Neuropathol Exp Neurol 68(5):525–534CrossRefPubMed Vetter M, Hofer MJ, Roth E, Pircher HP, Pagenstecher A (2009) Intracerebral interleukin 12 induces glioma rejection in the brain predominantly by CD8+ T cells and independently of interferon-gamma. J Neuropathol Exp Neurol 68(5):525–534CrossRefPubMed
59.
Zurück zum Zitat Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R et al (2009) TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 16(2):149–160CrossRefPubMed Enderlin M, Kleinmann EV, Struyf S, Buracchi C, Vecchi A, Kinscherf R et al (2009) TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther 16(2):149–160CrossRefPubMed
60.
Zurück zum Zitat El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54(6):526–535CrossRefPubMed El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54(6):526–535CrossRefPubMed
61.
Zurück zum Zitat Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S et al (2008) TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 181(10):6720–6729PubMed Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S et al (2008) TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 181(10):6720–6729PubMed
62.
Zurück zum Zitat Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J et al (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 5:10CrossRefPubMed Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J et al (2007) Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 5:10CrossRefPubMed
63.
Zurück zum Zitat Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10(a):133–146PubMed Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10(a):133–146PubMed
64.
Zurück zum Zitat Fujita M, Zhu X, Sasaki K, Ueda R, Low KL, Pollack IF et al (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180(4):2089–2098PubMed Fujita M, Zhu X, Sasaki K, Ueda R, Low KL, Pollack IF et al (2008) Inhibition of STAT3 promotes the efficacy of adoptive transfer therapy using type-1 CTLs by modulation of the immunological microenvironment in a murine intracranial glioma. J Immunol 180(4):2089–2098PubMed
65.
Zurück zum Zitat Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57(13):1458–1467CrossRefPubMed Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57(13):1458–1467CrossRefPubMed
66.
Zurück zum Zitat De Vleeschouwer S, Rapp M, Sorg RV, Steiger HJ, Stummer W, Van Gool S et al (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59(5):988–999PubMed De Vleeschouwer S, Rapp M, Sorg RV, Steiger HJ, Stummer W, Van Gool S et al (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59(5):988–999PubMed
67.
Zurück zum Zitat Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45(2):141–157CrossRefPubMed Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M et al (1999) Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 45(2):141–157CrossRefPubMed
68.
Zurück zum Zitat June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117(6):1466–1476CrossRefPubMed June CH (2007) Adoptive T cell therapy for cancer in the clinic. J Clin Invest 117(6):1466–1476CrossRefPubMed
69.
Zurück zum Zitat Bigner DD, Brown M, Coleman RE, Friedman AH, Friedman HS, McLendon RE et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′)2—a preliminary report. J Neurooncol 24(1):109–122CrossRefPubMed Bigner DD, Brown M, Coleman RE, Friedman AH, Friedman HS, McLendon RE et al (1995) Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′)2—a preliminary report. J Neurooncol 24(1):109–122CrossRefPubMed
70.
Zurück zum Zitat Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA, Bigner DD (2004) Monoclonal antibodies for brain tumour treatment. Expert Opin Biol Ther 4(9):1453–1471CrossRefPubMed Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA, Bigner DD (2004) Monoclonal antibodies for brain tumour treatment. Expert Opin Biol Ther 4(9):1453–1471CrossRefPubMed
71.
Zurück zum Zitat Parajuli P, Sloan AE (2004) Dendritic cell-based immunotherapy of malignant gliomas. Cancer Invest 22(3):405–416CrossRefPubMed Parajuli P, Sloan AE (2004) Dendritic cell-based immunotherapy of malignant gliomas. Cancer Invest 22(3):405–416CrossRefPubMed
72.
Zurück zum Zitat Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68(14):5955–5964CrossRefPubMed Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68(14):5955–5964CrossRefPubMed
73.
Zurück zum Zitat De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J et al (2008) Clinical experience of postoperative adjuvant dendritic cell-based immunotherapy in a large group of patients with relapsed glioblastoma multiforme. Clin Cancer Res 14(10):3098–3104CrossRefPubMed De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J et al (2008) Clinical experience of postoperative adjuvant dendritic cell-based immunotherapy in a large group of patients with relapsed glioblastoma multiforme. Clin Cancer Res 14(10):3098–3104CrossRefPubMed
74.
Zurück zum Zitat Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G et al (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 99(2):261–272CrossRefPubMed Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G et al (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 99(2):261–272CrossRefPubMed
75.
Zurück zum Zitat Rainov NG, Ren H (2003) Gene therapy for human malignant brain tumors. Cancer J 9(3):180–188CrossRefPubMed Rainov NG, Ren H (2003) Gene therapy for human malignant brain tumors. Cancer J 9(3):180–188CrossRefPubMed
76.
Zurück zum Zitat Andersen MH, Sorensen RB, Schrama D, Svane IM, Becker JC, Thor SP (2008) Cancer treatment: the combination of vaccination with other therapies. Cancer Immunol Immunother 57(11):1735–1743CrossRefPubMed Andersen MH, Sorensen RB, Schrama D, Svane IM, Becker JC, Thor SP (2008) Cancer treatment: the combination of vaccination with other therapies. Cancer Immunol Immunother 57(11):1735–1743CrossRefPubMed
77.
Zurück zum Zitat Kim TG, Kim CH, Park JS, Park SD, Kim CK, Chung DS et al (2010) Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin Vaccine Immunol 17(1):143–153CrossRefPubMed Kim TG, Kim CH, Park JS, Park SD, Kim CK, Chung DS et al (2010) Immunological factors relating to the antitumor effect of temozolomide chemoimmunotherapy in a murine glioma model. Clin Vaccine Immunol 17(1):143–153CrossRefPubMed
78.
Zurück zum Zitat Liu G, Black KL, Yu JS (2006) Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Rev Vaccines 5(2):233–247CrossRefPubMed Liu G, Black KL, Yu JS (2006) Sensitization of malignant glioma to chemotherapy through dendritic cell vaccination. Expert Rev Vaccines 5(2):233–247CrossRefPubMed
79.
Zurück zum Zitat Schlegel PG, Eyrich M, Kramm C, Van Gool S (2010) Tumor vaccination for high-grade glioma. Pediatr Blood Cancer 55(7):1437CrossRefPubMed Schlegel PG, Eyrich M, Kramm C, Van Gool S (2010) Tumor vaccination for high-grade glioma. Pediatr Blood Cancer 55(7):1437CrossRefPubMed
80.
Zurück zum Zitat Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648CrossRefPubMed Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648CrossRefPubMed
81.
Zurück zum Zitat Lichtor T, Glick RP, Tarlock K, Moffett S, Mouw E, Cohen EP (2002) Application of interleukin-2-secreting syngeneic/allogeneic fibroblasts in the treatment of primary and metastatic brain tumors. Cancer Gene Ther 9(5):464–469CrossRefPubMed Lichtor T, Glick RP, Tarlock K, Moffett S, Mouw E, Cohen EP (2002) Application of interleukin-2-secreting syngeneic/allogeneic fibroblasts in the treatment of primary and metastatic brain tumors. Cancer Gene Ther 9(5):464–469CrossRefPubMed
82.
Zurück zum Zitat Herrlinger U, Aulwurm S, Strik H, Weit S, Naumann U, Weller M (2004) MIP-1alpha antagonizes the effect of a GM-CSF-enhanced subcutaneous vaccine in a mouse glioma model. J Neurooncol 66(1–2):147–154CrossRefPubMed Herrlinger U, Aulwurm S, Strik H, Weit S, Naumann U, Weller M (2004) MIP-1alpha antagonizes the effect of a GM-CSF-enhanced subcutaneous vaccine in a mouse glioma model. J Neurooncol 66(1–2):147–154CrossRefPubMed
83.
Zurück zum Zitat Smith KE, Janelidze S, Visse E, Badn W, Salford L, Siesjo P et al (2007) Synergism between GM-CSF and IFNgamma: enhanced immunotherapy in mice with glioma. Int J Cancer 120(1):75–80CrossRefPubMed Smith KE, Janelidze S, Visse E, Badn W, Salford L, Siesjo P et al (2007) Synergism between GM-CSF and IFNgamma: enhanced immunotherapy in mice with glioma. Int J Cancer 120(1):75–80CrossRefPubMed
84.
Zurück zum Zitat Smith KE, Fritzell S, Badn W, Eberstal S, Janelidze S, Visse E (2009) Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 124(3):630–637CrossRefPubMed Smith KE, Fritzell S, Badn W, Eberstal S, Janelidze S, Visse E (2009) Cure of established GL261 mouse gliomas after combined immunotherapy with GM-CSF and IFNgamma is mediated by both CD8+ and CD4+ T-cells. Int J Cancer 124(3):630–637CrossRefPubMed
Metadaten
Titel
Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model
verfasst von
Wim Maes
Stefaan W. Van Gool
Publikationsdatum
01.02.2011
Verlag
Springer-Verlag
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 2/2011
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-010-0946-6

Weitere Artikel der Ausgabe 2/2011

Cancer Immunology, Immunotherapy 2/2011 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.