Skip to main content
Erschienen in: Cancer Immunology, Immunotherapy 12/2022

12.05.2022 | Original Article

In vitro and in vivo evaluation of DC-targeting PLGA nanoparticles encapsulating heparanase CD4+ and CD8+ T-cell epitopes for cancer immunotherapy

verfasst von: Xu-Dong Tang, Kui-Lin Lü, Jin Yu, Han-Jian Du, Chao-Qiang Fan, Lei Chen

Erschienen in: Cancer Immunology, Immunotherapy | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Heparanase has been identified as a universal tumor-associated antigen, but heparanase epitope peptides are difficult to recognize. Therefore, it is necessary to explore novel strategies to ensure efficient delivery to antigen-presenting cells. Here, we established a novel immunotherapy model targeting antigens to dendritic cell (DC) receptors using a combination of heparanase CD4+ and CD8+ T-cell epitope peptides to achieve an efficient cytotoxic T-cell response, which was associated with strong activation of DCs. First, pegylated poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were used to encapsulate a combined heparanase CD4+ and CD8+ T-cell epitope alone or in combination with Toll-like receptor 3 and 7 ligands as a model antigen to enhance immunogenicity. The ligands were then targeted to DC cell-surface molecules using a DEC-205 antibody. The binding and internalization of these PLGA NPs and the activation of DCs, the T-cell response and the tumor-killing effect were assessed. The results showed that PLGA NPs encapsulating epitope peptides (mHpa399 + mHpa519) could be targeted to and internalized by DCs more efficiently, stimulating higher levels of IL-12 production, T-cell proliferation and IFN-γ production by T cells in vitro. Moreover, vaccination with DEC-205-targeted PLGA NPs encapsulating combined epitope peptides exhibited higher tumor-killing efficacy both in vitro and in vivo. In conclusion, delivery of PLGA NP vaccines targeting DEC-205 based on heparanase CD4+ and CD8+ T-cell epitopes are suitable immunogens for antitumor immunotherapy and have promising potential for clinical applications.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570PubMedCrossRef Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570PubMedCrossRef
2.
Zurück zum Zitat Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271PubMedCrossRef Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ (2011) Natural innate and adaptive immunity to cancer. Annu Rev Immunol 29:235–271PubMedCrossRef
3.
4.
Zurück zum Zitat Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14(2):135–146PubMedCrossRef Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T (2014) Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 14(2):135–146PubMedCrossRef
5.
Zurück zum Zitat Hinrichs CS, Restifo NP (2013) Reassessing target antigens for adoptive T-cell therapy. Reassessing target antigens for adoptive T-cell therapy. Nat Biotechnol 31(11):999–1008PubMedPubMedCentralCrossRef Hinrichs CS, Restifo NP (2013) Reassessing target antigens for adoptive T-cell therapy. Reassessing target antigens for adoptive T-cell therapy. Nat Biotechnol 31(11):999–1008PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54(3):187–207PubMedCrossRef Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54(3):187–207PubMedCrossRef
7.
Zurück zum Zitat Nishimura Y, Tomita Y, Yuno A, Yoshitake Y, Shinohara M (2015) Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses. Cancer Sci 106(5):505–511PubMedPubMedCentralCrossRef Nishimura Y, Tomita Y, Yuno A, Yoshitake Y, Shinohara M (2015) Cancer immunotherapy using novel tumor-associated antigenic peptides identified by genome-wide cDNA microarray analyses. Cancer Sci 106(5):505–511PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Hammond E, Khurana A, Shridhar V, Dredge K (2014) The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancer therapeutics. Front Oncol 4:195PubMedPubMedCentralCrossRef Hammond E, Khurana A, Shridhar V, Dredge K (2014) The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancer therapeutics. Front Oncol 4:195PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277(19):3890–3903PubMedCrossRef Barash U, Cohen-Kaplan V, Dowek I, Sanderson RD, Ilan N, Vlodavsky I (2010) Proteoglycans in health and disease: new concepts for heparanase function in tumor progression and metastasis. FEBS J 277(19):3890–3903PubMedCrossRef
10.
Zurück zum Zitat Rivara S, Milazzo FM, Giannini G (2016) Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 8(6):647–680PubMedCrossRef Rivara S, Milazzo FM, Giannini G (2016) Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 8(6):647–680PubMedCrossRef
11.
Zurück zum Zitat Masola V, Secchi MF, Gambaro G, Onisto M (2014) Heparanase as a target in cancer therapy. Curr Cancer Drug Targets 14(3):286–293PubMedCrossRef Masola V, Secchi MF, Gambaro G, Onisto M (2014) Heparanase as a target in cancer therapy. Curr Cancer Drug Targets 14(3):286–293PubMedCrossRef
12.
13.
Zurück zum Zitat Vlodavsky I, Beckhove P, Lerner I, Pisano C, Meirovitz A, Ilan N, Elkin M (2012) Significance of heparanase in cancer and inflammation. Cancer Microenviron 5(2):115–132PubMedCrossRef Vlodavsky I, Beckhove P, Lerner I, Pisano C, Meirovitz A, Ilan N, Elkin M (2012) Significance of heparanase in cancer and inflammation. Cancer Microenviron 5(2):115–132PubMedCrossRef
14.
Zurück zum Zitat Tang XD, Wan Y, Chen L, Chen T, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM (2008) H-2Kb-restricted CTL epitopes from mouse heparanase elicit an antitumor immune response in vivo. Cancer Res 68(5):1529–1537PubMedCrossRef Tang XD, Wan Y, Chen L, Chen T, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM (2008) H-2Kb-restricted CTL epitopes from mouse heparanase elicit an antitumor immune response in vivo. Cancer Res 68(5):1529–1537PubMedCrossRef
15.
Zurück zum Zitat Tang XD, Wang GZ, Guo J, Lü MH, Li C, Li N, Chao YL, Li CZ, Wu YY, Hu CJ, Fang DC, Yang SM (2012) Multiple antigenic peptides based on H-2K(b)-restricted CTL epitopes from murine heparanase induce a potent antitumor immune response in vivo. Mol Cancer Ther 11(5):1183–1192PubMedCrossRef Tang XD, Wang GZ, Guo J, Lü MH, Li C, Li N, Chao YL, Li CZ, Wu YY, Hu CJ, Fang DC, Yang SM (2012) Multiple antigenic peptides based on H-2K(b)-restricted CTL epitopes from murine heparanase induce a potent antitumor immune response in vivo. Mol Cancer Ther 11(5):1183–1192PubMedCrossRef
16.
Zurück zum Zitat Rammensee HG, Falk K, Rötzschke O (1993) Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11:213–244PubMedCrossRef Rammensee HG, Falk K, Rötzschke O (1993) Peptides naturally presented by MHC class I molecules. Annu Rev Immunol 11:213–244PubMedCrossRef
17.
Zurück zum Zitat Chen T, Tang XD, Wan Y, Chen L, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM (2008) HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 10(9):977–986PubMedPubMedCentralCrossRef Chen T, Tang XD, Wan Y, Chen L, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM (2008) HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 10(9):977–986PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Tang XD, Liang GP, Li C, Wan Y, Chen T, Chen L, Yu ST, Xiong Z, Fang DC, Wang GZ, Yang SM (2010) Cytotoxic T lymphocyte epitopes from human heparanase can elicit a potent anti-tumor immune response in mice. Cancer Immunol Immunother 59(7):1041–1047PubMedCrossRef Tang XD, Liang GP, Li C, Wan Y, Chen T, Chen L, Yu ST, Xiong Z, Fang DC, Wang GZ, Yang SM (2010) Cytotoxic T lymphocyte epitopes from human heparanase can elicit a potent anti-tumor immune response in mice. Cancer Immunol Immunother 59(7):1041–1047PubMedCrossRef
19.
Zurück zum Zitat Wang HY, Wang RF (2012) Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv Immunol 114:151–176PubMedPubMedCentralCrossRef Wang HY, Wang RF (2012) Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv Immunol 114:151–176PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Wang RF, Wang HY (2017) Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res 27(1):11–37PubMedCrossRef Wang RF, Wang HY (2017) Immune targets and neoantigens for cancer immunotherapy and precision medicine. Cell Res 27(1):11–37PubMedCrossRef
21.
Zurück zum Zitat Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W (2018) CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18(10):635–647PubMedCrossRef Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W (2018) CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18(10):635–647PubMedCrossRef
22.
Zurück zum Zitat Lövgren T, Sarhan D, Truxová I et al (2017) Enhanced stimulation of human tumor-specific T cells by dendritic cells matured in the presence of interferon-γ and multiple toll-like receptor agonists. Cancer Immunol Immunother 66(10):1333–1344PubMedPubMedCentralCrossRef Lövgren T, Sarhan D, Truxová I et al (2017) Enhanced stimulation of human tumor-specific T cells by dendritic cells matured in the presence of interferon-γ and multiple toll-like receptor agonists. Cancer Immunol Immunother 66(10):1333–1344PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Zhou CX, Li D, Chen YL et al (2014) Resiquimod and polyinosinic-polycytidylic acid formulation with aluminum hydroxide as an adjuvant for foot-and-mouth disease vaccine. BMC Vet Res 10:2PubMedPubMedCentralCrossRef Zhou CX, Li D, Chen YL et al (2014) Resiquimod and polyinosinic-polycytidylic acid formulation with aluminum hydroxide as an adjuvant for foot-and-mouth disease vaccine. BMC Vet Res 10:2PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM (2015) Nanoparticulate immunotherapy for cancer. J Control Release 219:167–180PubMedCrossRef Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM (2015) Nanoparticulate immunotherapy for cancer. J Control Release 219:167–180PubMedCrossRef
25.
Zurück zum Zitat Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316PubMedCrossRef Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14(5):1310–1316PubMedCrossRef
26.
Zurück zum Zitat Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P (2012) Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 18(12):3229–3241PubMedPubMedCentralCrossRef Zamboni WC, Torchilin V, Patri AK, Hrkach J, Stern S, Lee R, Nel A, Panaro NJ, Grodzinski P (2012) Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance. Clin Cancer Res 18(12):3229–3241PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Zang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D (2017) Nanoparticles for tumor immunotherapy. Eur J Pharm Biopharm 115:243–256PubMedCrossRef Zang X, Zhao X, Hu H, Qiao M, Deng Y, Chen D (2017) Nanoparticles for tumor immunotherapy. Eur J Pharm Biopharm 115:243–256PubMedCrossRef
28.
Zurück zum Zitat Decker WK, Xing D, Shpall EJ (2006) Dendritic cell immunotherapy for the treatment of neoplastic disease. Biol Blood Marrow Transplant 12(2):113–125PubMedCrossRef Decker WK, Xing D, Shpall EJ (2006) Dendritic cell immunotherapy for the treatment of neoplastic disease. Biol Blood Marrow Transplant 12(2):113–125PubMedCrossRef
29.
30.
Zurück zum Zitat Bos R, Sherman LA (2010) CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res 70(21):8368–8377PubMedPubMedCentralCrossRef Bos R, Sherman LA (2010) CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res 70(21):8368–8377PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Nakanishi Y, Lu B, Gerard C, Iwasaki A (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462(7272):510–513PubMedPubMedCentralCrossRef Nakanishi Y, Lu B, Gerard C, Iwasaki A (2009) CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 462(7272):510–513PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Zhu Z, Cuss SM, Singh V et al (2015) CD4+ T cell help selectively enhances high-avidity tumor antigen-specific CD8+ T cells. J Immunol 195(7):3482–3489PubMedCrossRef Zhu Z, Cuss SM, Singh V et al (2015) CD4+ T cell help selectively enhances high-avidity tumor antigen-specific CD8+ T cells. J Immunol 195(7):3482–3489PubMedCrossRef
33.
Zurück zum Zitat Wick DA, Martin SD, Nelson BH, Webb JR (2011) Profound CD8+ T cell immunity elicited by sequential daily immunization with exogenous antigen plus the TLR3 agonist poly(I:C). Vaccine 29(5):984–993PubMedCrossRef Wick DA, Martin SD, Nelson BH, Webb JR (2011) Profound CD8+ T cell immunity elicited by sequential daily immunization with exogenous antigen plus the TLR3 agonist poly(I:C). Vaccine 29(5):984–993PubMedCrossRef
34.
Zurück zum Zitat Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Löwik CW, Ossendorp F (2014) Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release 192:209–218PubMedCrossRef Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Löwik CW, Ossendorp F (2014) Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release 192:209–218PubMedCrossRef
35.
36.
Zurück zum Zitat Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172PubMedCrossRef Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172PubMedCrossRef
37.
Zurück zum Zitat Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14):3666–3678PubMedCrossRef Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32(14):3666–3678PubMedCrossRef
38.
Zurück zum Zitat Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413PubMedCrossRef Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38(5):1404–1413PubMedCrossRef
39.
Zurück zum Zitat Raghuwanshi D, Mishra V, Suresh MR, Kaur K (2012) A simple approach for enhanced immune response using engineered dendritic cell targeted nanoparticles. Vaccine 30(50):7292–7299PubMedCrossRef Raghuwanshi D, Mishra V, Suresh MR, Kaur K (2012) A simple approach for enhanced immune response using engineered dendritic cell targeted nanoparticles. Vaccine 30(50):7292–7299PubMedCrossRef
40.
Zurück zum Zitat Tacken PJ, Figdor CG (2011) Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines. Semin Immunol 23(1):12–20PubMedCrossRef Tacken PJ, Figdor CG (2011) Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines. Semin Immunol 23(1):12–20PubMedCrossRef
41.
Zurück zum Zitat Burgdorf S, Kurts C (2008) Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 20(1):89–95PubMedCrossRef Burgdorf S, Kurts C (2008) Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 20(1):89–95PubMedCrossRef
42.
Zurück zum Zitat Tsoi KM, MacParland SA, Ma XZ, Spetzler VN, Echeverri J, Ouyang B, Fadel SM, Sykes EA, Goldaracena N, Kaths JM, Conneely JB, Alman BA, Selzner M, Ostrowski MA, Adeyi OA, Zilman A, McGilvray ID, Chan WC (2016) Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 15(11):1212–1221PubMedPubMedCentralCrossRef Tsoi KM, MacParland SA, Ma XZ, Spetzler VN, Echeverri J, Ouyang B, Fadel SM, Sykes EA, Goldaracena N, Kaths JM, Conneely JB, Alman BA, Selzner M, Ostrowski MA, Adeyi OA, Zilman A, McGilvray ID, Chan WC (2016) Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 15(11):1212–1221PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522PubMedCrossRef Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161(2):505–522PubMedCrossRef
44.
Zurück zum Zitat Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, DeSimone JM, Tepper JE, Vincent BG, Serody JS, Wang AZ (2017) Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 12(9):877–882PubMedPubMedCentralCrossRef Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, DeSimone JM, Tepper JE, Vincent BG, Serody JS, Wang AZ (2017) Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 12(9):877–882PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Liu L, Cao F, Liu X, Wang H, Zhang C, Sun H, Wang C, Leng X, Song C, Kong D, Ma G (2016) Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses. ACS Appl Mater Interfaces 8(19):11969–11979PubMedCrossRef Liu L, Cao F, Liu X, Wang H, Zhang C, Sun H, Wang C, Leng X, Song C, Kong D, Ma G (2016) Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses. ACS Appl Mater Interfaces 8(19):11969–11979PubMedCrossRef
46.
Zurück zum Zitat Jahan ST, Sadat SMA, Yarahmadi M, Haddadi A (2019) Potentiating antigen specific immune response by targeted delivery of the PLGA-based model cancer vaccine. Mol Pharm 16(2):498–509PubMedCrossRef Jahan ST, Sadat SMA, Yarahmadi M, Haddadi A (2019) Potentiating antigen specific immune response by targeted delivery of the PLGA-based model cancer vaccine. Mol Pharm 16(2):498–509PubMedCrossRef
47.
Zurück zum Zitat Hänel G, Angerer C, Petry K, Lichtenegger FS, Subklewe M (2021) Blood DCs activated with R848 and poly(I:C) induce antigen-specific immune responses against viral and tumor-associated antigens. Cancer Immunol Immunother CII:1–14 Hänel G, Angerer C, Petry K, Lichtenegger FS, Subklewe M (2021) Blood DCs activated with R848 and poly(I:C) induce antigen-specific immune responses against viral and tumor-associated antigens. Cancer Immunol Immunother CII:1–14
Metadaten
Titel
In vitro and in vivo evaluation of DC-targeting PLGA nanoparticles encapsulating heparanase CD4+ and CD8+ T-cell epitopes for cancer immunotherapy
verfasst von
Xu-Dong Tang
Kui-Lin Lü
Jin Yu
Han-Jian Du
Chao-Qiang Fan
Lei Chen
Publikationsdatum
12.05.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Cancer Immunology, Immunotherapy / Ausgabe 12/2022
Print ISSN: 0340-7004
Elektronische ISSN: 1432-0851
DOI
https://doi.org/10.1007/s00262-022-03209-1

Weitere Artikel der Ausgabe 12/2022

Cancer Immunology, Immunotherapy 12/2022 Zur Ausgabe

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.