Skip to main content
Erschienen in: Supportive Care in Cancer 9/2013

Open Access 01.09.2013 | Review Article

Music-based interventions in palliative cancer care: a review of quantitative studies and neurobiological literature

verfasst von: Patrick Archie, Eduardo Bruera, Lorenzo Cohen

Erschienen in: Supportive Care in Cancer | Ausgabe 9/2013

Abstract

Purpose

This study aimed to review quantitative literature pertaining to studies of music-based interventions in palliative cancer care and to review the neurobiological literature that may bare relevance to the findings from these studies.

Methods

A narrative review was performed, with particular emphasis on RCTs, meta-analyses, and systematic reviews. The Cochrane Library, Ovid, PubMed, CINAHL Plus, PsycINFO, and ProQuest were searched for the subject headings music, music therapy, cancer, oncology, palliative care, pain, anxiety, depression, mood, quality of life, prevalence, neuroscience, functional imaging, endogenous opioids, GABA, 5HT, dopamine, and permutations of these same search terms. Data for the review were comprised of articles published between 1970 and 2012. References of all the cited articles were also reviewed.

Results

Available evidence suggests that music-based interventions may have a positive impact on pain, anxiety, mood disturbance, and quality of life in cancer patients. Advances in neurobiology may provide insight into the potential mechanisms by which music impacts these outcomes.

Conclusions

More research is needed to determine what subpopulation of cancer patients is most likely to respond to music-based interventions, what interventions are most effective for individual outcomes, and what measurement parameters best gauge their effectiveness.

Introduction

By alleviating the physical and psychological symptoms associated with malignancy, palliative care serves a vital role in the multidisciplinary care of cancer patients. Common symptoms such as pain, anxiety, and mood disturbance can be difficult to manage with standard pharmaceutical options and may significantly interfere with quality of life (QOL) [1, 2]. The search for complimentary interventions that are both cost effective and associated with few side effects has led to an increased interest in the therapeutic use of music for cancer patients within the field of palliative care [36]. This review summarizes findings from quantitative research literature. Furthermore, it discusses challenges and opportunities associated with this emerging area of research and provides practical suggestions for future investigation.

Different music-based interventions defined

The interventions in this review are generally classified as either music medicine or music therapy. In “music medicine” interventions, patients listen to prerecorded music that is administered by healthcare staff and preselected by study investigators, who may or may not have any formal training in music therapy [7, 8]. In “music therapy” interventions, patients are offered prerecorded, live, and/or interactive music that is individualized by a trained music therapist [9, 10]. Hence, the crucial distinction between music medicine (MM) and music therapy (MT) is that the former involves only a stimulus and response, and the latter involves a therapeutic relationship based on individualized assessment, treatment, and evaluation [7].

Specific clinical endpoints studied

Pain

Pain represents one of the most common symptoms affecting patients with advanced malignancy. One recent meta-analysis [11] pooled data from 52 studies (total N = 19,985) and estimated pain to occur in 33 % of patients who had completed treatment with curative intent, 59 % of patients undergoing anticancer therapy, and 64 % of patients with advanced/metastatic/terminal disease. A subsequent meta-analysis [12] pooled data from 64 studies (total N = 95,159), 34 of which reported pain prevalence in patients with all stages of cancer (including early disease), and 30 of which reported pain prevalence in patients with advanced cancer. The combined weighted mean prevalence of pain in the 14,961 patients with advanced cancer was estimated to be 75 %.
Multiple studies have demonstrated that music-based interventions may have a mild to moderate analgesic effect (Table 1). Five such randomized controlled trials (RCTs) (total N = 391) were analyzed in a 2011 Cochrane Review [13]. Prerecorded music was provided perioperatively for 15 out of 30 breast cancer patients undergoing mastectomy [14], during bone marrow biopsy for 29 out of 59 hematologic malignancy patients [15], as a single 30-min session in 62 out of 126 adult patients with various malignancies [16], during lumbar puncture in 20 out of 40 pediatric leukemia patients [17], and as a single session with guided imagery in 65 out of 136 adult patients with various malignancies [18]. Based on the combined results of these five studies, the authors classified music's analgesic effect as moderate, with a standardized mean difference (SMD) of −0.59, (95 % CI from −0.92 to −0.27, P = 0.0003). All five of the above studies reported pain by self-reported measurement scales. An earlier Cochrane Review examined the effect of music on analgesic requirements during a painful procedure (five studies), during a 2-h postoperative period (three studies), or during a 24-h postoperative period (five studies) [19]. Although none of the included studies were limited to oncologic or palliative care settings, the 13 included studies (N = 1016) did show that exposure to music was associated with a decrease in opioid requirement, with a SMD of −1.29 (95 % CI from −0.92 to −0.27, P = 0.0062). These results were consistent with those from a separate meta-analysis [20] which studied the use of music vs. standard care in adult patients undergoing colonoscopy. This meta-analysis included three trials [2123] in which music was provided to a total of 130 out of 261 patients. The patients who received music required 29.7 % less analgesia with meperidine, alfentanil, or pethidine (P = 0.001) and 15 % less sedation with midazolam or propofol (P = 0.055). Finally, a single-arm study from 2006 [5] found that in 126 palliative care patients with pain (90 % of whom had cancer), mean self-reported pain scores decreased from 2.7 to 2.1 on a five-point VAS after a single MT session (P < 0.001).
Table 1
Individual studies investigating the analgesic effect of music-based interventions in either oncologic or palliative care settings
Author, year, type of study
Study population
Music intervention
Control
N, music group
N, control group
Results
Binns-Turner, 2008, RCTa [14]
Breast cancer patients undergoing mastectomy
MM: single session of prerecorded music through headphones (continuously from preoperative through postoperative period). Patients could select from classical, easy listening, inspirational, or new age
iPod and headphones but no music or sounds
15
15
Significant reduction in self-reported postop pain level by VAS (P = 0.007)
Danhauer et al., 2010, RCTa [15]
Hematologic malignancy patients undergoing lumbar puncture
MM: prerecorded music through headphones for duration of procedure. Patients could select from classical, harp, general instrumental, nature sounds, country, gospel, and jazz
Standard care
29
30
No significant reduction in self-reported intra-procedural pain level by VAS (P = 0.771)
Huang, 2006, RCTa [16]
Adult inpatients with various malignancies
MM: single 30-min session of prerecorded music through headphones. Patients could select from Taiwanese folk, Buddhist, harp, and piano recordings
Bed rest
62
64
Significant reduction in self-reported pain level by VAS (P < 0.001)
Nguyen et al., 2010, RCTa [17]
Pediatric leukemia patients undergoing lumbar puncture
MM: prerecorded music through headphones for duration of procedure. Patients could select from either traditional Vietnamese songs or children’s songs
iPod and headphones but no music or sounds
20
20
Significant reduction in self-reported intra-procedural pain level by VAS (P < 0.001)
Yonghui et al., 2009, RCTa [18]
Adult inpatients with various malignancies
MM: single 30-min session of unspecified music with unspecified guided imagery
Standard care
65
71
No significant reduction in self-reported pain detected by numeric rating scale (P > 0.05)
Gallagher, 2006, single-arm study
Adults with a terminal illnessb in an inpatient palliative care setting
MT: single session of varying length including live performance, listening to prerecorded music, and interactive techniques
None
126
0
Significant reduction in self-reported pain by VAS, from mean score of 2.7 before the session to mean score of 2.1 after the session (P < 0.001)
MM music medicine, MT music therapy
aIncluded in 2011 Cochrane Review
bFor 90 % of the patients in this study, the terminal illness was cancer
Overall, these data (derived exclusively from MM-based approaches except for [5]) support the use of music to decrease subjective pain and analgesic requirements in acute pain settings. However, more research is needed to investigate the analgesic efficacy of music for chronic pain, since cancer patients (particularly those in palliative care settings) frequently suffer from chronic pain (e.g., from bone metastases, visceral tumor growth, neuropathic pain associated with chemotherapy, etc.). In future studies investigating music-based interventions for chronic pain, careful consideration should be given to the frequency, duration, and type of interventions used (e.g., consideration of interventions not necessarily limited to MM).

Anxiety

For many patients, the diagnosis of cancer can result in significant anxiety, which can interfere with sleep [24], enjoyment of life [25], interpersonal relationships [26], and overall daily activities [27]. Six studies using survey instruments found self-reported anxiety symptoms to be present in 19–48 % of cancer patients [1, 24, 2831]. In contrast, three studies using structured clinical interviews found DSM-IV-defined Anxiety Disorders (e.g., generalized anxiety disorder, panic disorder, and post-traumatic stress disorder) to be present in 7.6 to 18 % of cancer patients [24, 32, 33].
Several studies have demonstrated that music-based interventions may have a mild to moderate anxiolytic effect (Table 2). Seven such studies (six RCTs and one controlled clinical trial (CCT), total N = 386) using self-report outcomes were analyzed in the 2011 Cochrane Review [13]. Music was provided perioperatively for 15 out of 30 breast cancer patients undergoing mastectomy [14], during invasive procedures for 20 out of 39 pediatric cancer patients [34], directly prior to the administration of adjuvant chemotherapy for 30 out of 60 breast cancer patients [35], during bone marrow biopsy for 29 out of 59 adults with hematologic malignancy [15], during chemotherapy for 10 out of 20 adult cancer patients [36], during radiation therapy for 19 out of 42 adult cancer patients [37], and as a single 30-min session for 65 out of 136 adult cancer patients with pain [18]. Based on the combined results of these seven studies, the SMD on the 80-point State-Trait Anxiety Inventory Scale (STAI-S) was −11.20 units (95 % CI −19.59 to −2.82, P = 0.0088). These results were consistent with those from four other RCTs involving patients without cancer, in whom perioperative anxiety was significantly reduced by music-based interventions [3841]. One small but well-designed RCT specifically examined the effectiveness of a single 20–40-min MT session in reducing anxiety for terminally ill patients [42]. Although cancer was not an inclusion criterion, 24 out of 25 patients in the study had cancer, and all study participants were inpatients receiving palliative care services. Based on the Edmonton Symptom Assessment Scale anxiety scores before and after the intervention, the Mann–Whitney test showed that anxiety was significantly reduced in the music group compared to the control group (P = 0.005).
Table 2
Individual studies investigating the anxiolytic effect of music-based interventions in either oncologic or palliative care settings
Author, year, study type
Study population
Music intervention
Control
N, music group
N, control group
Results
Binns-Turner, 2008, RCTa [14]
Breast cancer patients undergoing mastectomy
MM: single session of prerecorded music through headphones (continuously from preoperative through postoperative period). Patients could select from classical, easy listening, inspirational, or new age
iPod with headphones but no music or sounds
15
15
Significant reduction in anxiety detected (P < 0.001). Mean STAI in music group fell from 41.5 to 30.7, while mean STAI in control group rose from 41.9 to 49.7
Bufalini, 2009, CCTa, b [34]
Pediatric cancer patients undergoing invasive procedures (e.g., lumbar puncture, bone marrow biopsy, etc.)
MT: single 15-min session of music listening followed by interactive music making for the remainder of the invasive procedure (all during conscious sedation). For listening phase, patients could select from children’s songs, folk, ethnic, and pop
Conscious sedation alone
20
19
Significant reduction in anxiety of patients in music group compared to control group at all times throughout procedure by modified Yale Preoperative Anxiety Scale (P < 0.05). STAI-S scores were only measured in the parents of the patients undergoing invasive procedures, in whom no significant difference was found
Bulfone et al., 2009, RCTa [35]
Breast cancer patients receiving adjuvant chemotherapy
MM: single 15-min session of prerecorded music through headphones while waiting for chemotherapy. Patients could select from new age, Celtic, classical, soundtracks, or nature music
Standard care
30
30
Significant reduction in anxiety detected (P < .001). Mean STAI in music group fell from 46.2 to 36.3, while mean STAI in control group rose from 43.4 to 44.8
Danhauer et al., 2010, RCTa` [15]
Hematologic malignancy patients undergoing bone marrow biopsy
MM: single 20- to 60- min session of prerecorded music through headphones for duration of BM biopsy. Patients could select from classical, harp, instrumental, nature sounds, country, gospel, and jazz
Standard care
29
30
No significant difference was found in the STAI-S scores between two groups (P = 0.766). However, “patient satisfaction with music was high; 66 % of the patients in the music group said that they very much preferred to listen to music with future biopsies”
Harper, 2001, RCT a [36]
Adult cancer patients receiving chemotherapy
MM: single 30-min session of prerecorded music through headphones during chemotherapy infusion. Patients were offered a new age recording published by Image Paths Inc., entitled, “Health Journeys: A Meditation To Help you with Chemotherapy”
Standard care
10
10
Borderline significant reduction in anxiety detected by STAI (P = 0.05). Mean STAI in music group fell from 42.9 to 28.5, while mean STAI in control group rose from 32.3 to 41.7. Although a significant reduction in anxiety was reportedly detected by the Beck Anxiety Inventory (P < 0.01), only BAI values after the intervention (not before) were specified
Smith et al., 2001, RCT a [37]
Adult cancer patients receiving radiation therapy
MM: multiple 30-min sessions of prerecorded music through headphones during simulation and daily treatments for the duration of therapy. Patients could select from rock and roll, big band, country and western, classical, easy listening, Spanish, or religious music
Standard care
19
23
No significant difference was found between two groups when mean STAI-S scores were compared. However, post hoc subgroup analysis showed that among patients with baseline state anxiety scores >34, those “patients in the experimental group had a steeper decline [from before until after the intervention(s)] compared to the controls”
Yonghui et al., 2009, RCTa, c [18]
Hospitalized adult cancer patients with pain
MM: Single 30-min session of prerecorded music with imagery during hospitalization
Standard care
65
71
Significant reduction in anxiety detected (P < 0.05). Mean STAI in music group fell from 57.9 to 33.8, but mean STAI in control group only fell from 58.6 to 55.9
Horne-Thompson and Grocke, 2008, RCT [42]
Adults with a terminal illness in an inpatient palliative care setting (24 out of 25 of which had a diagnosis of cancer)
MT: single 20- to 40-min session conducted by a registered music therapist. Techniques included “playing live familiar music, singing, music and relaxation, music and imagery, improvisation, music-assisted counseling, reminiscence, and listening to recorded music”
Visit from volunteer that either read to, conversed with, or provided emotional support to the patient
13
12
Significant reduction of anxiety in music group compared to the control group by Mann–Whitney testing (P = 0.005). Eight patients in music group reported a decrease in anxiety of between 1 and 5 points on ESAS scale, while only 1 patient in control group reported a decrease in anxiety of 1 point. Three patients in control group reported increased anxiety after the study interval
MM music medicine, MT music therapy
aIncluded in 2011 Cochrane Review [13]
bInsufficent information regarding presence/absence/method of randomization led to the classification of the Bufalini 2009 study [34] as a controlled clinical trial by the authors of the 2011 Cochrane review [13]. Note that the Bufalini 2009 study [34] used mYPAS scores to measure anxiety in the patients, but only used STAI-S scores to measure anxiety in the parents. Since the STAI-S scores in the parents (unlike the mYPAS scores in the patients) showed no significant difference, its inclusion in the pooled analysis with the other six trials would have tended to underestimate the effect of music on anxiety. Furthermore, a sensitivity analysis, excluding the results of both the Bufalini 2009 [34] and Yonghui 2009 [18] studies (based on unclear randomization methods), resulted in a mean difference of −9.46 (95 % CI −19.01 to 0.09, P = 0.05)
cPatients in the Yonghui 2009 study [18] were clearly randomized, hence its classification as an RCT by the authors of the 2011 Cochrane Review [13]. However, since its method of randomization was not entirely clear, it was excluded in the sensitivity analysis
Overall, these data (derived from six studies using MM and two studies using MT) support the use of music to reduce anxiety in situations such as before/during invasive procedures, chemotherapy, and radiation therapy. Relatively less is known about music’s capacity to decrease the need for pharmacologic anxiolytics/sedatives/hypnotics. Although one study in 327 patients undergoing elective surgery showed a greater decrease in preoperative STAI-S scores with relaxing music than 0.05–0.1mg/kg of midazolam (P < 0.001) [43], the relevance of this finding to the oncologic and palliative care settings remains uncertain. Furthermore, more research is needed to investigate the anxiolytic efficacy of music beyond the acute/situational anxiety setting, particularly for cancer patients in whom the recognition of disease progression and impending death may be particularly anxiety inducing [44, 45].

Mood disturbance

The period following diagnosis of cancer can be very emotional for many patients. Patients with frequent depressive symptoms may develop a sustained disturbance of mood and may eventually meet criteria for a DSM-IV-defined Affective Disorder (e.g., major depressive disorder or dysthymic disorder). Prevalence studies suggest that self-reported depressive symptoms in patients with cancer are common and perhaps more common in the terminal/advanced setting [4649]. Four studies using survey instruments found depressive symptoms present in 53–74 % of cancer patients [46, 5052]. A much more recent meta-analysis of 94 interview-based studies estimated the combined mean prevalence of major depressive disorder and dysthymic disorder in palliative and hematologic–oncologic settings [53]. From the 24 studies conducted in palliative care settings (total N = 4,007), the combined mean prevalence of these two disorders was found to be 24.6 %. From the 70 studies conducted in hematology–oncology settings (total N = 10,071), combined mean prevalence was found to be 20.7 %. To place these numbers in context, the NIMH estimates the combined prevalence of major depressive disorder and dysthymic disorder to be 8.2 % among US adults (two to three times lower than in cancer patients).
While multiple studies have found that music-based interventions may have a positive impact on mood (Table 3), this has not necessarily been the case for depression. Such a discrepancy may be at least partially explained by differences between methods used to assess mood disturbance versus those used to assess depression. For example, the commonly used Profile of Mood States (POMS) uses six domains to calculate a total mood disturbance score: depression–dejection, tension–anxiety, anger–hostility, fatigue–inertia, confusion–bewilderment, and vigor–activity. The first five domains are weighted positively and the last domain is weighted negatively, such that a higher score indicates a greater disturbance of mood. Henceforth, music could elicit improvement in mood via the five other domains but not in “depression/dejection.” This difference in outcomes was well illustrated in a 2011 Cochrane Review [13], which analyzed five trials examining the effect of music on depression (total N = 468 patients). Music was provided for 128 out of 182 adults with cancer receiving chemotherapy or radiation therapy [54], 34 out of 60 adults with hematologic malignancy admitted for autologous SCT [55], 27 out of 48 adults with cancer undergoing radiation therapy [56], 20 out of 42 women with metastatic breast cancer [57], and 65 out of 136 adult cancer patients with pain [18]. The pooled estimate from these five trials did not find a statistically significant effect of music on depression (SMD = −0.07, 95 % CI −0.40 to 0.27, P = 0.69). However, the same meta-analysis analyzed three trials examining the effect of music on mood (total N = 105), and the pooled estimate from these three studies did demonstrate a statistically significant effect (SMD = 0.42, 95 % CI 0.03 to 0.81, P = 0.03). These three studies investigating the outcome of mood provided music to 8 out of 15 adults with cancer-related pain [58], 34 out of 60 adults with hematologic malignancy admitted for autologous SCT [55], and 15 out of 30 children with neoplasms needing chemotherapy [59]. That Cassileth’s same study [55] showed no effect on depression, but did show an effect on mood, supports the idea that the difference between these two outcomes may be more than semantic. Among the 123 palliative care patients with mood disturbance in the single-arm study of Gallagher et al. in 2006 [5], mean self-reported mood disturbance scores improved from 1.8 to 0.7 on a five-point VAS after a single MT session (P < 0.001).
Table 3
Individual studies investigating the effect of music-based interventions on mood disturbance in either oncologic or palliative care settings
Author, year, type of study
Study population
Music intervention
Control
N, music group
N, control group
Results
Beck, 1989, RCTa [58]
Adults with documented cancer-related pain (setting: patients’ homes)
MM: three 45-min sessions of prerecorded music through headphones. Patients could select from classical, jazz, folk, rock, country and western, easy listening, and new age
Listening to 60-cycle hum through headphones
8
7
No significant difference detected in mean percent change of five-point VAS between groups (P = 0.599). However, “60 % of the subjects [in the music group] demonstrated at least some improvement in mood”
Cassileth et al., 2003, RCTa [55]
Adults with hematologic malignancy admitted for SCT
MT: median of five 20–30-min sessions (over median of 10 days). Live bedside music therapy was provided by trained music therapist
Standard care
36
33
Significant improvement in mood detected: Patients in the music therapy group scored 37 % lower on total POMS of mood disturbance (P = 0.01) and 28 % lower in the combined anxiety/depression domains (P = 0.065)
Duocastella, 1999, RCTa [59]
Pediatric cancer patients receiving inpatient chemotherapy
MT: single 45-min individualized MT session. Sessions included singing, instrument playing, movement to music, and musical games
Single session of non-musical activities led by music therapist
15
15
No significant improvement in mood detected using five-point Likert scale
Gallagher et al., 2006, single-arm studyb [5]
Adults with a terminal illness in an inpatient palliative care settingb
MT: single session of varying length including live performance, listening to prerecorded music, and interactive techniques
None
123
0
Significant improvement in mood detected: mean self-reported mood disturbance scores improved from 1.8 to 0.7 on a five-point VAS after a single music therapy session (P < 0.001)
MM music medicine, MT music therapy
aIncluded in 2011 Cochrane Review
bPercentage of patients with cancer not specified
Overall, the limited data available regarding the outcome of mood (derived from three studies using MT and one study using MM) suggest that music may have a mild positive impact on the mood of cancer patients. Considering that the effects of music-based interventions on pain and anxiety have been most well demonstrated in acute settings, it may not be surprising that a single intervention (MM or MT based) may not show as much impact on mood disturbance, particularly chronically depressed mood. The availability of fast-acting pharmacologic analgesics and anxiolytics, versus the unavailability of any fast-acting pharmacologic antidepressant, may point toward potentially important neurobiological differences underlying these symptoms. With this in mind, particular consideration should be given to the frequency and duration (as well as the type) of interventions in future studies investigating the impact of music on mood in cancer patients.

Quality of life

Although there may be less prevalence data measuring overall QOL impairment in cancer patients (relative to pain, anxiety, and depression), the available data suggest that cancer is indeed associated with impaired QOL compared to the normal population [6062]. This association could be expected for a number of reasons: first, because pain, anxiety, and depression are frequently incorporated into the tools used to measure HR-QOL in cancer patients; secondly, because all three of these symptoms have been shown to commonly affect patients with cancer [63]; and finally, because multiple studies in patients with multiple types of cancer have demonstrated independent associations between HR-QOL impairment and pain [6468], anxiety [6971], and depression [7274].
Although the impact of music-based interventions on QOL has not been as extensively studied as pain, anxiety, or mood disturbance, four RCTs analyzed in the 2011 Cochrane Review [13] compared the impact of music-based interventions to standard care on QOL scores (Table 4). Clearly, QOL represents a more complex and multi-faceted outcome than pain, anxiety, or depression, and the comparison of results from these four studies was made even more complex by the fact that they all used different QOL assessment tools. In one of the four studies [57], pretest differences were too large for the results to be included in the pooled estimate. Through the other three trials, music was offered to 4 of 8 adults with cancer [75], 40 out of 80 adults with terminal cancer [76], and 124 out of 260 cancer patients receiving chemotherapy [77]. When the results from these three trials were subject to meta-analysis, a heterogeneous, nonsignificant effect was found (SMD = 2.01, 95 % CI −0.09 to 4.11, P = 0.06). Paradoxically, this nonsignificance actually resulted from a much larger beneficial effect reported in the study by Zhong [77] than that reported in the studies by Burns [75] and Hilliard [76]. When the results from the Burns and Hilliard studies were subject to meta-analysis (N = 88), this resulted in a homogenous and significant effect of MT on QOL (SMD = 1.02, 95 %CI 0.58 to 1.47, P = 0.00001). One interesting aspect of the Hilliard study was that even as the physical health of the patients in the music group declined, QOL scores improved. This was not the case in the control group, in whom QOL scores worsened as their physical health declined [76].
Table 4
Individual studies investigating the effect of music-based interventions on QOL in either oncologic or palliative care settings
Author, year, type of study
Study population
Music intervention
Control
N music group
N control group
Results
Hanser, 2006, RCTa [57]
Metastatic breast cancer patients (outpatient setting)
MT: three 45-min sessions consisting of live music, improvisation, and songwriting
Standard care
20
22
No significant improvement in QOL detected using the 136-point FACT-G scale. Although the music group’s mean score rose from 75.4 to 78.9, and the control group’s mean score only rose from 82.2 to 83.1, P > 0.05
Burns, 2001, RCTa [75]
Adult outpatients with cancer
MT: 10 weekly 90–120-min sessions of the Bonny Method of Guided Imagery and “specially sequenced Western Art” music
Wait-list group
4
4
No significant improvement in QOL detected using 100-point QOL-Cancer Scale. Although the music group’s mean score rose from 75.40 to 91.77, and control group’s mean score only rose from 76.02 to 77.85, P > 0.05
Hilliard, 2003, RCTa [76]
Adults with terminal cancer (setting: home hospice)
MT: 2–13 weekly/biweekly MT sessions of varying lengths. Techniques included singing, lyric analysis, instrument playing, song parody, planning of funerals, song gifts
Standard care
40
40
Significant improvement in QOL detected using 280-point Hospice QOL Index-Revised scale (P < 0.05). Music group’s mean score rose from 206.8 to 214.6, while control group’s mean score fell from 188.5 to 177.9
Zhong and Gang, 2001, RCTa [77]
Adult cancer patients receiving chemotherapy
MM: twice daily 60-min sessions for 20 days
Standard care
124
136
Significant improvement in QOL detected using QOL Questionnaire for Chinese patients (P < 0.01). Music group’s mean score fell slightly from 49.2 to 47.2, while control group’s mean score fell from 49.9 to 34.5
MM music medicine, MT music therapy
aIncluded in 2011 Cochrane Review [13]
Clearly, more research is needed to investigate the impact of music on QOL. Given the crucial importance of this outcome to cancer patients in palliative care settings, future studies investigating the effect of music-based interventions on pain, anxiety, or mood disturbance in this patient population should incorporate QOL measurements into their outcome assessment.

Relevant advances in neurobiology

Previous speculations regarding the potential mechanisms of music-based interventions may have drastically oversimplified an extremely complex set of possible neurobiological processes [78]. Many investigators have proposed that music may compete with noxious stimuli and thereby close neurological gates of pain signal transmission, or that it may distract patients from threats that cause them to feel anxious, and/or that it may promote a sense of well-being in patients with an otherwise depressed mood. While these may all be valid theories, advances in neuroscience, and functional neuroimaging studies in particular, are providing dramatic new insights into the findings from clinical trials involving music-based interventions (Table 5).
Table 5
Individual studies and review articles investigating the neurobiology of music, pain, anxiety, and depression
Author, year
Description
Findings
Becerra et al., 2001 [79]
fMRI was used to examine changes in neural activation due to painful thermal stimuli (delivered to the skin of the left hand through a Peltier-based thermode at 46 °C) in 8 healthy male subjects, who rated their pain levels using a Visual Analog Scale
Two temporal phases of pain response were observed: early and late. During the early phase, increased signal was seen in reward regions such as the left anterior nucleus acccumbens (NAc), the ventral tegmentum (VT), the periaqueductal gray (PAG), the sublenticular extended amygdala (SLEA) of the basal forebrain, and the orbital gyrus. In the late response, decreased signal was seen in the left posterior NAc, while increased signal was seen in classical pain regions such as the thalamus, S1, insula, and anterior cingulate gyrus
Blood et al., 1999 [110]
PET was used to examine changes in regional cerebral blood flow (rCBF) related to emotional responses to music. Ten musicians were exposed to 6 versions of a novel musical passage varying systematically in degree of dissonance
Subjective pleasantness and unpleasantness ratings were correlated with consonance and dissonance, respectively. Increasing consonance was correlated with increasing activity in the orbitofrontal cortex, frontal polar cortex, and the subcallosal cingulate gyrus. Increasing dissonance was correlated with increasing activity in the precuneus region and the right parahippocampal gyrus
Blood and Zatorre, 2001 [97]
PET was used to examine changes in rCBF related to “intensely pleasant emotional responses to music” manifesting as piloerective chills measured by electrodermal monitoring. Ten musicians were exposed to self-selected music, control music, amplitude-matched noise, and silence. rCBF values were extracted from individual scans and plotted against chill intensity
Increasing chill intensity was correlated with increasing activity in the left ventral striatum (including the NAc) and dorsomedial midbrain (including the PAG), and decreasing activity in the right amygdala, left hippocampus, and ventral medial prefrontal cortex
Engel et al., 2009 [82]
This article reviews findings from multiple neuroimaging studies using fMRI, PET, and radioligand binding experiments to investigate anxiety in healthy subjects as well as patients with panic disorder, generalized anxiety disorder, social anxiety disorder, and specific phobias
Enhancement of activity in the amygdala was a very common finding. Enhanced activity was also commonly found in the prefrontal cortex, insula, and the anterior cingulate cortex
Menon and Levitin, 2005 [98]
High-resolution fMRI was used to examine changes in neural activation due to “passive music listening.” Fourteen non-musicians were exposed to 10 intact samples of music and 10 scrambled samples for control stimuli. Hemodynamic changes were subject to statistical, functional connectivity, and effective connectivity analyses
Passive listening to music resulted in significant activation of multiple specific structures including the NAc, the VTA, and the hypothalamus. Functional connectivity analysis showed that responses in the NAc and the VTA were highly correlated, “suggesting an association between dopamine release and NAc response to pleasant music”
Nestler and Carlezon, 2005 [85]
This article reviews the mesolimbic dopamine reward circuit in depression. Data from animal studies and some human studies are discussed
The authors discuss how abnormalities in the VTA and NAc may be related to depressive symptoms such as anhedonia, reduced motivation, decreased energy level, etc. Roles of specific proteins, such as the transcription factor cAMP response element binding protein (CREB) and the endogenous kappa-opioid receptor agonist Dynorphin are reviewed
Pereira, 2011 [106]
fMRI was used to investigate blood oxygenation level dependence (BOLD) responses to musical stimuli that varied according to participant familiarity and preference. Fourteen non-musicians underwent a listening test which consisted of 15 s excerpts from 110 pop/rock songs which they rated by degree of familiarity and preference. During fMRI, the participants were then exposed to 48 excerpts, with 12 excerpts from each of the following categories based upon the listening test results: familiar liked, familiar unliked, unfamiliar liked, and unfamiliar unliked
Familiarity was found to have a greater impact than preference in triggering BOLD responses in the following emotion-related regions: putamen, amygdala, NAc, anterior cingulate cortex, and thalamus
Salimpoor et al., 2011 [100]
Ligand-based PET was used to estimate dopamine release in the striatum based on the competition between endogenous dopamine and [11C] raclopride for binding to D2 dopamine receptors. Information about the dynamics of dopamine release over time was collected using fMRI. Eight participants were exposed to self-selected pleasurable musical excerpts versus neutral musical excerpts. Electrodermal skin conductance was used to measure piloerective chills while participants provided subjective feedback about degree of listening pleasure
Compared to neutral musical excerpts, pleasurable musical stimuli (concurrently measured by chill intensity and subjective participant ratings) resulted in distinct striatal responses detectable by PET and fMRI. Ligand-based PET data revealed increased endogenous dopamine transmission, as indicated by decreased [11C] raclopride binding potential in the right NAc. fMRI showed increased BOLD response in the right NAc during peak pleasure experience epochs
Multiple studies have explored changes in activity within the brains of healthy, asymptomatic adults upon exposure to music. Broadly speaking, functional imaging data have shown that music modulates the activity of multiple limbic and paralimbic brain structures, but especially the ventral striatum (including the nucleus accumbens), the dorsomedial midbrain (including the ventral tegmental area and periaqueductal gray), the amygdala, and the hippocampus (Fig. 1a, b). This particular neuroanatomic distribution is striking for at least two reasons. The first is that functional abnormalities in these same structures are implicated in the pathophysiology of pain [7981], anxiety [8284], and depression [8587]. The second is that these same structures are known to be densely populated by receptors of ligands associated with pain, anxiety, and depression—namely, endogenous opioids [88, 89], GABA [90, 91], and dopamine [92, 93].
Listening to music has long been known to evoke strong emotional responses which can sometimes be accompanied by physical manifestations, e.g., piloerection, more commonly known as “goosebumps” or “chills” [94, 95]. The suppression of this response with the mu-opioid receptor agonist nalaxolone provided early evidence that endogenous opioid activity might underlie pleasurable responses to music [96]. Positron emission tomography experiments subsequently showed that piloerection in response to music may be associated with increased regional cerebral blood flow to the ventral striatum and the dorsomedial midbrain but decreased regional cerebral blood flow (rCBF) to the hippocampus and amygdala [97]. Even in the absence of piloerective responses, fMRI evidence suggested that consonant musical excerpts may increase activity in the ventral striatum and the anterior insula [98, 99], while dissonant excerpts may increase activity in the amygdala and hippocampus [99]. Data collected from [11C] raclopride PET demonstrated that intensely pleasurable responses to music may be associated with dopamine release in the striatal system [100]. This dopaminergic activity in the NAc following exposure to music (and other pleasurable stimuli, e.g., sex, food, and drugs of abuse) may itself be modulated by endogenous opioids [101]. Furthermore, evidence from animal models suggests that opioid efferent projections from the NAc may directly mediate reward-related behavior [102]. Within the dorsomedial midbrain (which was found to receive increased rCBF during highly pleasurable musical experiences as shown in [97]), the substructure known as the periaqueductal gray has been shown to be densely populated with endogenous opioid receptors and may be involved in both opioid-mediated reward [103] and analgesia [79, 104]. Preliminary research suggests that the action of endogenous opioids in the PAG may be influenced by the hormone oxytocin [105]; the blood concentrations of which was found to be increased (along with subjective relaxation) in perioperative patients exposed to soothing music [106]. Although multiple functional imaging studies have shown music to modulate the activity of the amygdala [97, 107], and multiple functional imaging studies have demonstrated an association between anxiety and enhanced amygdalar activity [82, 83, 108, 109], no radioligand binding experiments have specifically investigated the effect of music on gamma amino-butyric acid activity in the brain. With regard to mood disturbance, it is worth noting that music has been shown to modulate the activity of the subcallosal cingulate region [107, 110], an area which has been shown to have decreased rCBF in patients with depression [111]. Furthermore, deep brain stimulation of the subcallosal cingulate region has been shown to be an effective treatment for severe depression [86]. Finally, platelet concentrations of serotonin, which may correlate with neuronal concentrations of serotonin [112, 113], were found to be increased in humans exposed to euphonic music, but decreased in humans exposed to cacophonic music [114].
Overall, these advances in neurobiology suggest that music may affect specific neuronal pathways that are implicated in the pathophysiology of pain, anxiety, and depression. Thus, future neurobiological studies may provide objective insight into the mechanisms by which music may affect these subjective symptoms that commonly afflict patients with cancer.

Conclusions

In 2002, the WHO approved the following definition of palliative care: “An approach that improves the quality of life of patients and their families facing the problems associated with life-threatening illness, through the prevention and relief of suffering by means of early identification and impeccable assessment and treatment of pain and other problems, physical, psychosocial and spiritual” [115]. In the future, music-based interventions may prove to become valuable tools in the “relief of suffering” of cancer patients. Specifically, music may help alleviate pain, anxiety, and mood disturbance, all of which commonly occur in cancer, and all of which may be associated with impaired QOL. The potential of music to reduce the need for analgesics and/or anxiolytics, even if only by a small amount, may still have major clinical implications, especially given the frequency with which advanced age and hepato-renal dysfunction coexist in the palliative cancer care population (and hence their predisposition to pharmacologic toxicity). Furthermore, when the only pharmacologic agents available for mood disturbance take weeks to months to take effect, interventions that provide more immediate benefits, even if modest, may warrant further investigation.
It is not difficult to imagine how, for cancer patients unfamiliar with the standard inpatient healthcare environment, the hospital setting could be associated with unexpected pain (e.g., from repeated injections, blood draws, and other invasive procedures), anxiety (e.g., from loud equipment alarms and time-constrained conversations regarding prognosis often clouded by medical jargon), and even depression (e.g., related to the existential issues of having a life-threatening illness, limited social interaction, frequently interrupted sleep, etc.). The capacity of music to restore a sense of familiarity, and the therapeutic value of such a reassuring stimulus (regardless of where a patient may be in his or her disease trajectory), may be underestimated. Such reassuring familiarity could be provided in the form of a playlist of favorite songs on a portable mp3 player with headphones or even through melodic arrangement by a live music therapist that actually incorporates tones from the surrounding environment [116]. It should not necessarily be assumed that the benefits of music are limited to the relief of symptoms; that is to say, that music merely counteracts the negative consequences of disease (Fig. 2). The need for beauty (and for some, spiritual solace) may be particularly great toward the end of life for many patients. In this respect, music may exceed where standard pharmacologic means fall short. Many qualitative studies support both the potential symptom-alleviating and wellness-promoting effects of music [3, 10, 117125]. However, quantitative data in these areas still remain limited.
In the absence of more RCTs with larger sample sizes, meta-analyses [13, 20, 126] can provide useful quantitative assessments of impact. However, controlling for variation in study design, study population, specific intervention(s), and outcome assessment methods, presents enormous challenges. For example, different music therapists can introduce variability in outcomes, even when the same specific interventions are used [127]. The data presented in the individual trials and the meta-analyses discussed in this review should therefore be considered preliminary and interpreted with caution. The statistical quality of the data in question remains diminished by high risk of bias, which almost invariably arises from the inherent difficulties associated with conventional blinding in music-based intervention studies. Furthermore, without reliable biomarkers for pain, anxiety, and depression, defining the “gold standard” in quantitative assessment of these outcomes remains formidable. Fortunately, the cost of music-based interventions remains relatively low [128], and breakthroughs in the field of neurobiology continue to advance our understanding of the anatomical and biochemical basis of how music works in the brain, and why symptoms such as pain, anxiety, and mood disturbance might be influenced.
Further investigation is warranted to determine (1) if certain subpopulations of cancer patients are more likely to respond to music-based interventions than others, (2) what interventions are most effective for such responsive patients, and (3) what measurement parameters best gauge their effectiveness. Greater collaboration between the fields of music therapy and music neuroscience may accelerate the pursuit of these objectives. Finally, given the emerging evidence that earlier involvement of palliative care may improve outcomes in certain cancer patients [129], and that psychological stress may be linked to up-regulation of inflammatory processes that promote tumor growth and angiogenesis [130133], it follows that research into the potential of music to specifically promote relaxation and reduce stress [134], perhaps earlier in cancer’s trajectory, may also be warranted.

Acknowledgments

Thanks to David Aten of MDACC Medical Graphics & Photography for illustrating all figures and to Mei Dong and Biquan Luo for the help with translation.

Conflict of Interest

I have no financial relationships to disclose. I have full control over the content of this article. I submit the entirety of this manuscript for review by Supportive Care in Cancer.
Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Smith EM, Gomm SA (2003) Assessing the independent contribution to quality of life from anxiety and depression in patients with advanced cancer. Palliat Med 17(6):509–509PubMedCrossRef Smith EM, Gomm SA (2003) Assessing the independent contribution to quality of life from anxiety and depression in patients with advanced cancer. Palliat Med 17(6):509–509PubMedCrossRef
2.
Zurück zum Zitat Ferrell BR (1995) The impact of pain on quality of life. A decade of research. Nurs Clin N Am 30(4):609–624 Ferrell BR (1995) The impact of pain on quality of life. A decade of research. Nurs Clin N Am 30(4):609–624
3.
Zurück zum Zitat O’Callaghan C (2009) Objectivist and constructivist music therapy research in oncology and palliative care. Music Med 1(1):41–60CrossRef O’Callaghan C (2009) Objectivist and constructivist music therapy research in oncology and palliative care. Music Med 1(1):41–60CrossRef
4.
Zurück zum Zitat Olofsson A, Fossum B (2009) Perspectives on music therapy in adult cancer care: a hermeneutic study. Oncol Nurs Forum 36(4):1–10CrossRef Olofsson A, Fossum B (2009) Perspectives on music therapy in adult cancer care: a hermeneutic study. Oncol Nurs Forum 36(4):1–10CrossRef
7.
Zurück zum Zitat Trondalen G, Bonde LO (2012) Music therapy: models and interventions. In: MacDonald R, Kreutz G, Mitchell L (eds) Music, health, and wellbeing. Oxford University Press, New York, pp 40–64 Trondalen G, Bonde LO (2012) Music therapy: models and interventions. In: MacDonald R, Kreutz G, Mitchell L (eds) Music, health, and wellbeing. Oxford University Press, New York, pp 40–64
8.
Zurück zum Zitat Dileo C (1999) Music therapy and medicine: theoretical and clinical applications. American Music Therapy Association, Silver Spring Dileo C (1999) Music therapy and medicine: theoretical and clinical applications. American Music Therapy Association, Silver Spring
9.
Zurück zum Zitat Bruscia K (1998) Defining music therapy, 2nd edn. Barcelona, Gilsum Bruscia K (1998) Defining music therapy, 2nd edn. Barcelona, Gilsum
11.
Zurück zum Zitat van den Beuken-van EM, de Rijke J, Kessels A, Schouten H, van Kleef M, Patijn J (2007) Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol 18(9):1437–1449CrossRef van den Beuken-van EM, de Rijke J, Kessels A, Schouten H, van Kleef M, Patijn J (2007) Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol 18(9):1437–1449CrossRef
12.
Zurück zum Zitat Higginson IJ, Murtagh F (2010) Cancer pain epidemiology. In: Bruera E, Portenoy RK (eds) Cancer pain: assessment and management, vol 2. Cambridge University Press, New York, pp 37–52 Higginson IJ, Murtagh F (2010) Cancer pain epidemiology. In: Bruera E, Portenoy RK (eds) Cancer pain: assessment and management, vol 2. Cambridge University Press, New York, pp 37–52
13.
Zurück zum Zitat Bradt J, Dileo C, Grocke D, Magill L (2011) Music interventions for improving psychological and physical outcomes in cancer patients. Cochrane Database of Systematic Reviews (8). doi:10.1002/14651858 Bradt J, Dileo C, Grocke D, Magill L (2011) Music interventions for improving psychological and physical outcomes in cancer patients. Cochrane Database of Systematic Reviews (8). doi:10.​1002/​14651858
14.
Zurück zum Zitat Binns-Turner P (2008) Perioperative music and its effects on anxiety, hemodynamics, and pain in women undergoing mastectomy. University of Alabama, Birmingham Binns-Turner P (2008) Perioperative music and its effects on anxiety, hemodynamics, and pain in women undergoing mastectomy. University of Alabama, Birmingham
15.
Zurück zum Zitat Danhauer SC, Vishnevsky BA, Campbell CR, McCory TP, Tooze JA, Kanipe KN, Arrington SA, Holland EK, Lynch MB, Hurd DD, Cruz J (2010) Music for patients with hematological malignancies undergoing bone marrow biopsy: a randomized controlled study of anxiety, perceived pain, and patient satisfaction. J Soc Integr Oncol 8(4):140–147PubMedPubMedCentral Danhauer SC, Vishnevsky BA, Campbell CR, McCory TP, Tooze JA, Kanipe KN, Arrington SA, Holland EK, Lynch MB, Hurd DD, Cruz J (2010) Music for patients with hematological malignancies undergoing bone marrow biopsy: a randomized controlled study of anxiety, perceived pain, and patient satisfaction. J Soc Integr Oncol 8(4):140–147PubMedPubMedCentral
16.
Zurück zum Zitat Huang S (2006) The effects of music on cancer pain. Case Western Reserve University, Cleveland Huang S (2006) The effects of music on cancer pain. Case Western Reserve University, Cleveland
17.
Zurück zum Zitat Nguyen TN, Nilsson S, Hellstrom A, Bengtson A (2010) Music therapy to reduce pain and anxiety in children with cancer undergoing lumbar puncture: a randomized clinical trial. J Pediatr Oncol Nurs 27:146–155PubMedCrossRef Nguyen TN, Nilsson S, Hellstrom A, Bengtson A (2010) Music therapy to reduce pain and anxiety in children with cancer undergoing lumbar puncture: a randomized clinical trial. J Pediatr Oncol Nurs 27:146–155PubMedCrossRef
18.
Zurück zum Zitat Yonghui W, Zongfu M, Yanru Q (2009) Influence of music therapy on anxiety, depression and pain of cancer patients. Chin Nurs Res 13:1172–1175 Yonghui W, Zongfu M, Yanru Q (2009) Influence of music therapy on anxiety, depression and pain of cancer patients. Chin Nurs Res 13:1172–1175
19.
Zurück zum Zitat Cepeda MS, Carr DB, Lau J, Alvarez H (2006) Music for pain relief. Cochrane Database of Systematic Reviews 2:CD004843 Cepeda MS, Carr DB, Lau J, Alvarez H (2006) Music for pain relief. Cochrane Database of Systematic Reviews 2:CD004843
20.
Zurück zum Zitat Rudin D, Kiss A, Wetz RV, Sottile VM (2007) Music in the endoscopy suite: a meta-analysis of randomized controlled studies. Endoscopy 39:507–510PubMedCrossRef Rudin D, Kiss A, Wetz RV, Sottile VM (2007) Music in the endoscopy suite: a meta-analysis of randomized controlled studies. Endoscopy 39:507–510PubMedCrossRef
22.
Zurück zum Zitat Lee DWH, Chan K-W, Poon C-M, Ko C-W, Chan K-H, Sin K-S, Sze T-S, Chan ACW (2002) Relaxation music decreases the dose of patient-controlled sedation during colonoscopy: a prospective randomized controlled trial. Gastrointest Endosc 55(1):33–36. doi:10.1067/mge.2002.120387 PubMedCrossRef Lee DWH, Chan K-W, Poon C-M, Ko C-W, Chan K-H, Sin K-S, Sze T-S, Chan ACW (2002) Relaxation music decreases the dose of patient-controlled sedation during colonoscopy: a prospective randomized controlled trial. Gastrointest Endosc 55(1):33–36. doi:10.​1067/​mge.​2002.​120387 PubMedCrossRef
23.
Zurück zum Zitat Schiemann U, Gross M, Reuter R (2002) Improved procedure of colonoscopy under accompanying music therapy. Eur J Med Res 7:131–134PubMed Schiemann U, Gross M, Reuter R (2002) Improved procedure of colonoscopy under accompanying music therapy. Eur J Med Res 7:131–134PubMed
24.
Zurück zum Zitat Stark D, Kiely M, Smith A, Velikova G, House A, Selby P (2002) Anxiety disorders in cancer patients: their nature, associations, and relation to quality of life. J Clin Oncol 20(14):3137–3148PubMedCrossRef Stark D, Kiely M, Smith A, Velikova G, House A, Selby P (2002) Anxiety disorders in cancer patients: their nature, associations, and relation to quality of life. J Clin Oncol 20(14):3137–3148PubMedCrossRef
25.
Zurück zum Zitat Zimmerman L, Story KT, Gaston-Johansson F, Rowles JR (1996) Psychological variables and cancer pain. Cancer Nurs 19:44–53PubMedCrossRef Zimmerman L, Story KT, Gaston-Johansson F, Rowles JR (1996) Psychological variables and cancer pain. Cancer Nurs 19:44–53PubMedCrossRef
26.
Zurück zum Zitat Mystakidou K, Tsilika E, Parpa E, Katsouda E, Galanos A, Vlahos L (2006) Psychological distress of patients with advanced cancer: influence and contribution of pain severity and pain interference. Cancer Nurs 29:400–405PubMedCrossRef Mystakidou K, Tsilika E, Parpa E, Katsouda E, Galanos A, Vlahos L (2006) Psychological distress of patients with advanced cancer: influence and contribution of pain severity and pain interference. Cancer Nurs 29:400–405PubMedCrossRef
27.
Zurück zum Zitat Lin C-C, Lai Y-L, Ward SE (2003) Effect of cancer pain on performance status, mood states, and level of hope among Taiwanese cancer patients. J Pain Symptom Manag 25(1):29–37CrossRef Lin C-C, Lai Y-L, Ward SE (2003) Effect of cancer pain on performance status, mood states, and level of hope among Taiwanese cancer patients. J Pain Symptom Manag 25(1):29–37CrossRef
28.
Zurück zum Zitat Dahl A, Haaland C, Mykletun A, Bremnes R, Dahl O, Klepp O, Wist E, Fosså S (2005) Study of anxiety disorder and depression in long-term survivors of testicular cancer. J Clin Oncol 23(10):2389–2395PubMedCrossRef Dahl A, Haaland C, Mykletun A, Bremnes R, Dahl O, Klepp O, Wist E, Fosså S (2005) Study of anxiety disorder and depression in long-term survivors of testicular cancer. J Clin Oncol 23(10):2389–2395PubMedCrossRef
29.
Zurück zum Zitat Brintzenhofe-Szoc KM, Levin TT, Li Y, Kissane DW, Zabora JR (2009) Mixed anxiety/depression symptoms in a large cancer cohort: prevalence by cancer type. Psychosomatics 50(4):383–391PubMedCrossRef Brintzenhofe-Szoc KM, Levin TT, Li Y, Kissane DW, Zabora JR (2009) Mixed anxiety/depression symptoms in a large cancer cohort: prevalence by cancer type. Psychosomatics 50(4):383–391PubMedCrossRef
30.
Zurück zum Zitat Kolva E, Rosenfeld B, Pessin H, Breitbart W, Brescia R (2011) Anxiety in terminally ill cancer patients. J Pain Symptom Manag 42(5):691–701CrossRef Kolva E, Rosenfeld B, Pessin H, Breitbart W, Brescia R (2011) Anxiety in terminally ill cancer patients. J Pain Symptom Manag 42(5):691–701CrossRef
31.
Zurück zum Zitat Teunissen SCCM, de Graeff A, Voest EE, de Haes JCJM (2007) Are anxiety and depressed mood related to physical symptom burden? A study in hospitalized advanced cancer patients. Palliat Med 21(4):341–346. doi:10.1177/0269216307079067 PubMedCrossRef Teunissen SCCM, de Graeff A, Voest EE, de Haes JCJM (2007) Are anxiety and depressed mood related to physical symptom burden? A study in hospitalized advanced cancer patients. Palliat Med 21(4):341–346. doi:10.​1177/​0269216307079067​ PubMedCrossRef
32.
Zurück zum Zitat Spencer R, Nilsson M, Wright A, Pirl W, Prigerson H (2010) Anxiety disorders in advanced cancer patients. Cancer 116(7):1810–1819PubMedCrossRef Spencer R, Nilsson M, Wright A, Pirl W, Prigerson H (2010) Anxiety disorders in advanced cancer patients. Cancer 116(7):1810–1819PubMedCrossRef
33.
Zurück zum Zitat Wilson KGC HM, Graham SM, Allard P, Chary S, Gagnon P, Macmillan K, De Luca M, O'Shea F, Kuhl D, Fainsinger RL, Clinch JJ (2007) Depression and anxiety disorders in palliative cancer care. J Pain Symptom Manag 33(2):118–129CrossRef Wilson KGC HM, Graham SM, Allard P, Chary S, Gagnon P, Macmillan K, De Luca M, O'Shea F, Kuhl D, Fainsinger RL, Clinch JJ (2007) Depression and anxiety disorders in palliative cancer care. J Pain Symptom Manag 33(2):118–129CrossRef
34.
Zurück zum Zitat Bufalini A (2009) Role of interactive music in oncological pediatric patients undergoing painful procedures. Minerva Pediatr 61(4):379–389PubMed Bufalini A (2009) Role of interactive music in oncological pediatric patients undergoing painful procedures. Minerva Pediatr 61(4):379–389PubMed
35.
Zurück zum Zitat Bulfone T, Quattrin R, Zanotti R, Regattin L, Brusaferro S (2009) Effectiveness of music therapy for anxiety reduction in women with breast cancer in chemotherapy treatment. Holist Nurs Pract 23(4):238–242PubMedCrossRef Bulfone T, Quattrin R, Zanotti R, Regattin L, Brusaferro S (2009) Effectiveness of music therapy for anxiety reduction in women with breast cancer in chemotherapy treatment. Holist Nurs Pract 23(4):238–242PubMedCrossRef
36.
Zurück zum Zitat Harper EI (2001) Reducing treatment-related anxiety in cancer patients: comparison of psychological interventions. Southern Methodist University, Dallas Harper EI (2001) Reducing treatment-related anxiety in cancer patients: comparison of psychological interventions. Southern Methodist University, Dallas
37.
Zurück zum Zitat Smith M, Casey L, Johnson D, Gwede C, Riggin OZ (2001) Music as a therapeutic intervention for anxiety in patients receiving radiation therapy. Oncol Nurs Forum 28(5):855–862PubMed Smith M, Casey L, Johnson D, Gwede C, Riggin OZ (2001) Music as a therapeutic intervention for anxiety in patients receiving radiation therapy. Oncol Nurs Forum 28(5):855–862PubMed
38.
Zurück zum Zitat Cooke M, Chaboyer W, Schluter P, Hiratos M (2005) The effect of music on preoperative anxiety in day surgery. J Adv Nurs 52(1):47–55PubMedCrossRef Cooke M, Chaboyer W, Schluter P, Hiratos M (2005) The effect of music on preoperative anxiety in day surgery. J Adv Nurs 52(1):47–55PubMedCrossRef
39.
Zurück zum Zitat Nilsson U, Rawal N, Unosson M (2003) A comparison of intra-operative or postoperative exposure to music—a controlled trial of the effects on postoperative pain. Anaesthesia 58(7):699–703PubMedCrossRef Nilsson U, Rawal N, Unosson M (2003) A comparison of intra-operative or postoperative exposure to music—a controlled trial of the effects on postoperative pain. Anaesthesia 58(7):699–703PubMedCrossRef
40.
Zurück zum Zitat Nilsson U, Unosson M, Rawal N (2005) Stress reduction and analgesia in patients exposed to calming music postoperatively: a randomized controlled trial. Eur J Anaesthesiol 22(2):96–102PubMedCrossRef Nilsson U, Unosson M, Rawal N (2005) Stress reduction and analgesia in patients exposed to calming music postoperatively: a randomized controlled trial. Eur J Anaesthesiol 22(2):96–102PubMedCrossRef
41.
Zurück zum Zitat Voss J, Good M, Yates B, Baun M, Thompson A, Hertzog M (2004) Sedative music reduces anxiety and pain during chair rest after open-heart surgery. Pain 112(1–2):197–203PubMedCrossRef Voss J, Good M, Yates B, Baun M, Thompson A, Hertzog M (2004) Sedative music reduces anxiety and pain during chair rest after open-heart surgery. Pain 112(1–2):197–203PubMedCrossRef
42.
Zurück zum Zitat Horne-Thompson A, Grocke D (2008) The effect of music therapy on anxiety in patients who are terminally ill. J Palliat Med 11(4):582–590PubMedCrossRef Horne-Thompson A, Grocke D (2008) The effect of music therapy on anxiety in patients who are terminally ill. J Palliat Med 11(4):582–590PubMedCrossRef
44.
Zurück zum Zitat McHugh P, Lewis S, Ford S, Newlands E, Rustin G, Coombes C, Smith D, O'Reilly S, Fallowfield L (1995) The efficacy of audiotapes in promoting psychological well-being in cancer patients: a randomised, controlled trial. Br J Cancer 71(2):388–392PubMedPubMedCentralCrossRef McHugh P, Lewis S, Ford S, Newlands E, Rustin G, Coombes C, Smith D, O'Reilly S, Fallowfield L (1995) The efficacy of audiotapes in promoting psychological well-being in cancer patients: a randomised, controlled trial. Br J Cancer 71(2):388–392PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Noyes RJ, Holt C, Massie M (1998) Anxiety disorders. In: Holland J (ed) Psycho-oncology. Oxford University Press, New York, pp 548–563 Noyes RJ, Holt C, Massie M (1998) Anxiety disorders. In: Holland J (ed) Psycho-oncology. Oxford University Press, New York, pp 548–563
47.
Zurück zum Zitat Bukberg JB, Holland JC (1980) A prevalence study of depression in a cancer hospital population. Proc Am Assoc Cancer Res 21:382 Bukberg JB, Holland JC (1980) A prevalence study of depression in a cancer hospital population. Proc Am Assoc Cancer Res 21:382
48.
Zurück zum Zitat Derogatis L, Morrow G, Fetting J, Penman D, Piasetsky S, Schmale A, Henrichs M, Carnicke C (1983) The prevalence of psychiatric disorders among cancer patients. JAMA: J Am Med Assoc 249(6):751–757CrossRef Derogatis L, Morrow G, Fetting J, Penman D, Piasetsky S, Schmale A, Henrichs M, Carnicke C (1983) The prevalence of psychiatric disorders among cancer patients. JAMA: J Am Med Assoc 249(6):751–757CrossRef
49.
Zurück zum Zitat Chochinov H, Wilson K, Enns M (1994) Prevalence of depression in the terminally ill: effects of diagnostic criteria and symptom threshold judgements. Am J Psychiatry 151:537–540PubMedCrossRef Chochinov H, Wilson K, Enns M (1994) Prevalence of depression in the terminally ill: effects of diagnostic criteria and symptom threshold judgements. Am J Psychiatry 151:537–540PubMedCrossRef
50.
Zurück zum Zitat Craig TJ, Abeloff MD (1974) Psychiatric symptomatology among hospitalized cancer patients. Am J Psychiatr 131(12):1323–1327PubMedCrossRef Craig TJ, Abeloff MD (1974) Psychiatric symptomatology among hospitalized cancer patients. Am J Psychiatr 131(12):1323–1327PubMedCrossRef
51.
Zurück zum Zitat Achute K, Vauhkonen ML (1970) Cancer and psyche. Kunnallispaino, Helsinki Achute K, Vauhkonen ML (1970) Cancer and psyche. Kunnallispaino, Helsinki
52.
Zurück zum Zitat Peck A (1972) Emotional reactions to having cancer. Am J Roentgenol 114(3):591–599CrossRef Peck A (1972) Emotional reactions to having cancer. Am J Roentgenol 114(3):591–599CrossRef
53.
Zurück zum Zitat Mitchell AJ, Chan M, Bhatti H, Halton M, Grassi L, Johansen C, Meader N (2011) Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncol 12(2):160–174PubMedCrossRef Mitchell AJ, Chan M, Bhatti H, Halton M, Grassi L, Johansen C, Meader N (2011) Prevalence of depression, anxiety, and adjustment disorder in oncological, haematological, and palliative-care settings: a meta-analysis of 94 interview-based studies. Lancet Oncol 12(2):160–174PubMedCrossRef
54.
Zurück zum Zitat Guangrong C, Yi Q, Peiwen L (2001) Music therapy in treatment of cancer patients. Chin Ment Heal J 15(3):179–181 Guangrong C, Yi Q, Peiwen L (2001) Music therapy in treatment of cancer patients. Chin Ment Heal J 15(3):179–181
55.
Zurück zum Zitat Cassileth BR, Vickers AJ, Magill LA (2003) Music therapy for mood disturbance during hospitalization for autologous stem cell transplantation. Cancer 98(12):2723–2729PubMedCrossRef Cassileth BR, Vickers AJ, Magill LA (2003) Music therapy for mood disturbance during hospitalization for autologous stem cell transplantation. Cancer 98(12):2723–2729PubMedCrossRef
56.
Zurück zum Zitat Clark M, Isaacks-Downton G, Wells N, Redlin-Frazier S, Eck C, Hepworth J, Chakravarthy B (2006) Use of preferred music to reduce emotional distress and symptom activity during radiation therapy. J Music Ther 43(3):247–265PubMedCrossRef Clark M, Isaacks-Downton G, Wells N, Redlin-Frazier S, Eck C, Hepworth J, Chakravarthy B (2006) Use of preferred music to reduce emotional distress and symptom activity during radiation therapy. J Music Ther 43(3):247–265PubMedCrossRef
57.
Zurück zum Zitat Hanser SB (2006) Effects of a music therapy intervention on quality of life and distress in women with metastatic breast cancer. J Soc Integr Oncol 4(3):116–124PubMedCrossRef Hanser SB (2006) Effects of a music therapy intervention on quality of life and distress in women with metastatic breast cancer. J Soc Integr Oncol 4(3):116–124PubMedCrossRef
58.
Zurück zum Zitat Beck S (1989) The effect of therapeutic use of music on cancer related pain. PhD thesis, University of Utah, Salt Lake City Beck S (1989) The effect of therapeutic use of music on cancer related pain. PhD thesis, University of Utah, Salt Lake City
59.
Zurück zum Zitat Duocastella AC (1999) Effect of music on children with cancer. Revista de Enfermeria 22(4):293–298 Duocastella AC (1999) Effect of music on children with cancer. Revista de Enfermeria 22(4):293–298
60.
Zurück zum Zitat de Haes JC, Van Knippenberg FC (1985) The quality of life of cancer patients: a review of the literature. Soc Sci Med 20(8):809–817PubMedCrossRef de Haes JC, Van Knippenberg FC (1985) The quality of life of cancer patients: a review of the literature. Soc Sci Med 20(8):809–817PubMedCrossRef
61.
62.
Zurück zum Zitat Hammerlid E, Taft C (2001) Health-related quality of life in long-term head and neck cancer survivors: a comparison with general population norms. Br J Cancer 84(2):149–156PubMedPubMedCentralCrossRef Hammerlid E, Taft C (2001) Health-related quality of life in long-term head and neck cancer survivors: a comparison with general population norms. Br J Cancer 84(2):149–156PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Donovan KA, Thompson LM, Jacobsen PB (2012) Pain, depression, and anxiety in cancer. In: Moore RJ (ed) Handbook of pain and palliative care: biobehavioral approaches for the life course. Springer, Heidelberg, pp 615–637 Donovan KA, Thompson LM, Jacobsen PB (2012) Pain, depression, and anxiety in cancer. In: Moore RJ (ed) Handbook of pain and palliative care: biobehavioral approaches for the life course. Springer, Heidelberg, pp 615–637
64.
Zurück zum Zitat Padilla GV, Ferrell B, Grant MM, Rhiner M (1990) Defining the content domain of quality of life for cancer patients with pain. Cancer Nurs 13:108–115PubMedCrossRef Padilla GV, Ferrell B, Grant MM, Rhiner M (1990) Defining the content domain of quality of life for cancer patients with pain. Cancer Nurs 13:108–115PubMedCrossRef
65.
Zurück zum Zitat Wang XS, Cleeland CS, Mendoza TR, Engstrom MC, Liu S, Xu G, Hao X, Wang Y, Ren XS (1999) The effects of pain severity on health-related quality of life. Cancer 86(9):1848–1855PubMedCrossRef Wang XS, Cleeland CS, Mendoza TR, Engstrom MC, Liu S, Xu G, Hao X, Wang Y, Ren XS (1999) The effects of pain severity on health-related quality of life. Cancer 86(9):1848–1855PubMedCrossRef
66.
Zurück zum Zitat Berthold DR, Pond GR, Roessner M, de Wit R, Eisenberger M, Tannock I (2008) Treatment of hormone-refractory prostate cancer with docetaxel or mitoxantrone: relationships between prostate-specific antigen, pain, and quality of life response and survival in the TAX-327 Study. Clin Cancer Res 14(9):2763–2767. doi:10.1158/1078-0432.ccr-07-0944 PubMedCrossRef Berthold DR, Pond GR, Roessner M, de Wit R, Eisenberger M, Tannock I (2008) Treatment of hormone-refractory prostate cancer with docetaxel or mitoxantrone: relationships between prostate-specific antigen, pain, and quality of life response and survival in the TAX-327 Study. Clin Cancer Res 14(9):2763–2767. doi:10.​1158/​1078-0432.​ccr-07-0944 PubMedCrossRef
67.
Zurück zum Zitat Breivik H, Cherny N, Collett B, de Conno F, Filbet M, Foubert A, Cohen R, Dow L (2009) Cancer-related pain: a pan-European survey of prevalence, treatment, and patient attitudes. Ann Oncol 20(8):1420–1433PubMedCrossRef Breivik H, Cherny N, Collett B, de Conno F, Filbet M, Foubert A, Cohen R, Dow L (2009) Cancer-related pain: a pan-European survey of prevalence, treatment, and patient attitudes. Ann Oncol 20(8):1420–1433PubMedCrossRef
68.
Zurück zum Zitat So W, Marsh G, Ling W, Leung F, Lo J, Yeung M, Li G (2009) The symptom cluster of fatigue, pain, anxiety, and depression and the effect on the quality of life of women receiving treatment for breast cancer: a multicenter study. Oncol Nurs Forum 36(4):E205–E214PubMedCrossRef So W, Marsh G, Ling W, Leung F, Lo J, Yeung M, Li G (2009) The symptom cluster of fatigue, pain, anxiety, and depression and the effect on the quality of life of women receiving treatment for breast cancer: a multicenter study. Oncol Nurs Forum 36(4):E205–E214PubMedCrossRef
69.
Zurück zum Zitat Skarstein J, Aass N, Fosså S, Skovlund E, Dahl A (2000) Anxiety and depression in cancer patients: relation between the Hospital Anxiety and Depression Scale and the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire. J Psychosom Res 49(1):27–34PubMedCrossRef Skarstein J, Aass N, Fosså S, Skovlund E, Dahl A (2000) Anxiety and depression in cancer patients: relation between the Hospital Anxiety and Depression Scale and the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire. J Psychosom Res 49(1):27–34PubMedCrossRef
70.
Zurück zum Zitat Saevarsdottir T, Fridriksdottir N, Gunnarsdottir S (2010) Quality of life and symptoms of anxiety and depression of patients receiving cancer chemotherapy: longitudinal study. Cancer Nurs 33(1):E1–E10PubMedCrossRef Saevarsdottir T, Fridriksdottir N, Gunnarsdottir S (2010) Quality of life and symptoms of anxiety and depression of patients receiving cancer chemotherapy: longitudinal study. Cancer Nurs 33(1):E1–E10PubMedCrossRef
71.
Zurück zum Zitat Pereira MG, Figueiredo AP, Fincham FD (2012) Anxiety, depression, traumatic stress and quality of life in colorectal cancer after different treatments: a study with Portuguese patients and their partners. Eur J Oncol Nurs 16(3):227–232CrossRef Pereira MG, Figueiredo AP, Fincham FD (2012) Anxiety, depression, traumatic stress and quality of life in colorectal cancer after different treatments: a study with Portuguese patients and their partners. Eur J Oncol Nurs 16(3):227–232CrossRef
72.
Zurück zum Zitat Payne S (1992) A study of quality of life in cancer patients receiving palliative chemotherapy. Soc Sci Med 35(12):1505–1509PubMedCrossRef Payne S (1992) A study of quality of life in cancer patients receiving palliative chemotherapy. Soc Sci Med 35(12):1505–1509PubMedCrossRef
73.
Zurück zum Zitat Grassi L, Indelli M, Marzola M, Maestri A, Santini A, Piva E, Boccalon M (1996) Depressive symptoms and quality of life in home-care-assisted cancer patients. J Pain Symptom Manag 12(5):300–307CrossRef Grassi L, Indelli M, Marzola M, Maestri A, Santini A, Piva E, Boccalon M (1996) Depressive symptoms and quality of life in home-care-assisted cancer patients. J Pain Symptom Manag 12(5):300–307CrossRef
74.
Zurück zum Zitat Brown L, Kroenke K, Theobald D, Wu J, Tu W (2010) The association of depression and anxiety with health-related quality of life in cancer patients with depression and/or pain. Psycho-Oncology 19(7):734–741PubMedPubMedCentralCrossRef Brown L, Kroenke K, Theobald D, Wu J, Tu W (2010) The association of depression and anxiety with health-related quality of life in cancer patients with depression and/or pain. Psycho-Oncology 19(7):734–741PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Burns D (2001) The effect of the bonny method of guided imagery and music on the mood and life quality of cancer patients. J Music Ther 38(1):51–65PubMedCrossRef Burns D (2001) The effect of the bonny method of guided imagery and music on the mood and life quality of cancer patients. J Music Ther 38(1):51–65PubMedCrossRef
76.
Zurück zum Zitat Hilliard R (2003) The effects of music therapy on the quality and length of life of people diagnosed with terminal cancer. J Music Ther 40(2):113–137PubMedCrossRef Hilliard R (2003) The effects of music therapy on the quality and length of life of people diagnosed with terminal cancer. J Music Ther 40(2):113–137PubMedCrossRef
77.
Zurück zum Zitat Zhong X, Gang H (2001) Effect of music therapy and relaxation inner image on quality of life in cancer patients receiving chemotherapy. Chinese Mental Health J 15(3):176–178 Zhong X, Gang H (2001) Effect of music therapy and relaxation inner image on quality of life in cancer patients receiving chemotherapy. Chinese Mental Health J 15(3):176–178
78.
Zurück zum Zitat Koelsch S (2009) A neuroscientific perspective on music therapy. Ann N Y Acad Sci 1169(1):374–384PubMedCrossRef Koelsch S (2009) A neuroscientific perspective on music therapy. Ann N Y Acad Sci 1169(1):374–384PubMedCrossRef
79.
Zurück zum Zitat Becerra L, Breiter HC, Wise R, Gonzalez RG, Borsook D (2001) Reward circuitry activation by noxious thermal stimuli. Neuron 32(5):927PubMedCrossRef Becerra L, Breiter HC, Wise R, Gonzalez RG, Borsook D (2001) Reward circuitry activation by noxious thermal stimuli. Neuron 32(5):927PubMedCrossRef
80.
Zurück zum Zitat Chen A (2001) New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain. Int J Psychophysiol 42(2):147–159PubMedCrossRef Chen A (2001) New perspectives in EEG/MEG brain mapping and PET/fMRI neuroimaging of human pain. Int J Psychophysiol 42(2):147–159PubMedCrossRef
82.
Zurück zum Zitat Engel K, Bandelow B, Gruber O, Wedekind D (2009) Neuroimaging in anxiety disorders. J Neural transm 116(6):703–716PubMedCrossRef Engel K, Bandelow B, Gruber O, Wedekind D (2009) Neuroimaging in anxiety disorders. J Neural transm 116(6):703–716PubMedCrossRef
83.
Zurück zum Zitat Stein MB, Simmons AN, Feinstein JS, Paulus MP (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 164:318–327PubMedCrossRef Stein MB, Simmons AN, Feinstein JS, Paulus MP (2007) Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry 164:318–327PubMedCrossRef
84.
Zurück zum Zitat Martin EI, Ressler KJ, Binder E, Nemeroff CB (2009) The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin N Am 32:549–575CrossRef Martin EI, Ressler KJ, Binder E, Nemeroff CB (2009) The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin N Am 32:549–575CrossRef
85.
Zurück zum Zitat Nestler EJ, Carlezon WA (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59(12):1151–1159PubMedCrossRef Nestler EJ, Carlezon WA (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59(12):1151–1159PubMedCrossRef
86.
Zurück zum Zitat Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481PubMedCrossRef Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481PubMedCrossRef
87.
Zurück zum Zitat Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME (2002) Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71(3):431–447PubMedCrossRef Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME (2002) Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71(3):431–447PubMedCrossRef
88.
Zurück zum Zitat Koneru A, Satyanarayana S, Rizwan S (2009) Endogenous opioids: their physiological role and receptors. Global J Pharmacol 3(3):149–153 Koneru A, Satyanarayana S, Rizwan S (2009) Endogenous opioids: their physiological role and receptors. Global J Pharmacol 3(3):149–153
90.
Zurück zum Zitat McDonald AJ, Mascagni F, Muller JF (2004) Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala. Brain Res 1018(2):147–158PubMedCrossRef McDonald AJ, Mascagni F, Muller JF (2004) Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala. Brain Res 1018(2):147–158PubMedCrossRef
91.
Zurück zum Zitat Gray JA, McNaughton N (2003) The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system. Oxford Psychology Series, vol 33, 2nd edn. Oxford University Press, New YorkCrossRef Gray JA, McNaughton N (2003) The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system. Oxford Psychology Series, vol 33, 2nd edn. Oxford University Press, New YorkCrossRef
92.
Zurück zum Zitat Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90(19):8861–8865PubMedPubMedCentralCrossRef Levey AI, Hersch SM, Rye DB, Sunahara RK, Niznik HB, Kitt CA, Price DL, Maggio R, Brann MR, Ciliax BJ (1993) Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A 90(19):8861–8865PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Panksepp J (1995) The emotional sources of “chills” induced by music. Music Percept 13(2):171–207CrossRef Panksepp J (1995) The emotional sources of “chills” induced by music. Music Percept 13(2):171–207CrossRef
95.
Zurück zum Zitat Khalfa S, Peretz I, Blondin J, Manon R (2002) Event-related skin conductance responses to musical emotions in humans. Neurosci Lett 328(2):145–149PubMedCrossRef Khalfa S, Peretz I, Blondin J, Manon R (2002) Event-related skin conductance responses to musical emotions in humans. Neurosci Lett 328(2):145–149PubMedCrossRef
96.
Zurück zum Zitat Goldstein A (1980) Thrills in response to music and other stimuli. Physiol Psychol 8(1):126–129CrossRef Goldstein A (1980) Thrills in response to music and other stimuli. Physiol Psychol 8(1):126–129CrossRef
97.
Zurück zum Zitat Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci 98(20):11818–11823PubMedPubMedCentralCrossRef Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci 98(20):11818–11823PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Menon V, Levitin DJ (2005) The rewards of music listening: response and physiological connectivity of the mesolimbic system. NeuroImage 28(1):175–184PubMedCrossRef Menon V, Levitin DJ (2005) The rewards of music listening: response and physiological connectivity of the mesolimbic system. NeuroImage 28(1):175–184PubMedCrossRef
99.
Zurück zum Zitat Koelsch S, Fritz T, Müller K, Friederici AD (2005) Investigating emotion with music: an fMRI study. Human Brain Mapp 27(3):239–250CrossRef Koelsch S, Fritz T, Müller K, Friederici AD (2005) Investigating emotion with music: an fMRI study. Human Brain Mapp 27(3):239–250CrossRef
100.
Zurück zum Zitat Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14(2):257–262PubMedCrossRef Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14(2):257–262PubMedCrossRef
101.
Zurück zum Zitat Bardo M (1998) Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 12:37–67PubMedCrossRef Bardo M (1998) Neuropharmacological mechanisms of drug reward: beyond dopamine in the nucleus accumbens. Crit Rev Neurobiol 12:37–67PubMedCrossRef
102.
Zurück zum Zitat Gardner EL, Vorel SR (1998) Cannabinoid transmission and reward-related events. Neurobiol Dis 5(6):502–533PubMedCrossRef Gardner EL, Vorel SR (1998) Cannabinoid transmission and reward-related events. Neurobiol Dis 5(6):502–533PubMedCrossRef
103.
Zurück zum Zitat Olmstead MC, Franklin KBJ (1997) The development of a conditioned place preference to morphine: effects of micro-injections into various CNS sites. Behav Neurosci 111:1324–1334PubMedCrossRef Olmstead MC, Franklin KBJ (1997) The development of a conditioned place preference to morphine: effects of micro-injections into various CNS sites. Behav Neurosci 111:1324–1334PubMedCrossRef
104.
Zurück zum Zitat Pavlovic ZW, Bodnar RJ (1998) Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats. Brain Res 779(1–2):158–169PubMedCrossRef Pavlovic ZW, Bodnar RJ (1998) Opioid supraspinal analgesic synergy between the amygdala and periaqueductal gray in rats. Brain Res 779(1–2):158–169PubMedCrossRef
107.
108.
Zurück zum Zitat Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16(2):331PubMedCrossRef Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16(2):331PubMedCrossRef
109.
Zurück zum Zitat Somerville LH, Kim H, Johnstone T, Alexander AL, Whalen PJ (2004) Human amygdala responses during presentation of happy and neutral faces: correlations with state anxiety. Biol Psychiatry 55(9):897–903PubMedCrossRef Somerville LH, Kim H, Johnstone T, Alexander AL, Whalen PJ (2004) Human amygdala responses during presentation of happy and neutral faces: correlations with state anxiety. Biol Psychiatry 55(9):897–903PubMedCrossRef
110.
Zurück zum Zitat Blood AJ, Zatorre RJ, Bermudez P, Evans AC (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2(4):382–382PubMedCrossRef Blood AJ, Zatorre RJ, Bermudez P, Evans AC (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2(4):382–382PubMedCrossRef
111.
Zurück zum Zitat Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386(6627):824–827PubMedCrossRef Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386(6627):824–827PubMedCrossRef
112.
Zurück zum Zitat Stahl SM (1977) The human platelet: a diagnostic research tool for the study of biogenic amines in psychiatric and neurologic disorders. Arch Gen Psychiatry 34:509–516PubMedCrossRef Stahl SM (1977) The human platelet: a diagnostic research tool for the study of biogenic amines in psychiatric and neurologic disorders. Arch Gen Psychiatry 34:509–516PubMedCrossRef
113.
Zurück zum Zitat Pletscher A (1978) Platelets as models for monoaminergic neurons. In: Youdim MBH (ed) Essays in neurochemistry and neuropharmacology, vol 3. Wiley, London, pp 49–101 Pletscher A (1978) Platelets as models for monoaminergic neurons. In: Youdim MBH (ed) Essays in neurochemistry and neuropharmacology, vol 3. Wiley, London, pp 49–101
114.
116.
Zurück zum Zitat Rosetti A (2011) Treating stress, speech disorders with music. NPR Science Friday (December 16) Rosetti A (2011) Treating stress, speech disorders with music. NPR Science Friday (December 16)
117.
Zurück zum Zitat Magill L (2001) The use of music therapy to address the suffering in advanced cancer pain. J Palliat Care 17(3):167PubMed Magill L (2001) The use of music therapy to address the suffering in advanced cancer pain. J Palliat Care 17(3):167PubMed
118.
Zurück zum Zitat Daykin N, Bunt L, McClean S (2006) Music and healing in cancer care: a survey of supportive care providers. Arts Psychother 33(5):402–413CrossRef Daykin N, Bunt L, McClean S (2006) Music and healing in cancer care: a survey of supportive care providers. Arts Psychother 33(5):402–413CrossRef
119.
Zurück zum Zitat Magill-Levreault L (1993) Music therapy in pain and symptom management. J Palliat Care 9(4):42–48PubMedCrossRef Magill-Levreault L (1993) Music therapy in pain and symptom management. J Palliat Care 9(4):42–48PubMedCrossRef
120.
Zurück zum Zitat O'Kelly J, Koffman J (2007) Multidisciplinary perspectives of music therapy in adult palliative care. Palliat Med 21(3):235–241PubMedCrossRef O'Kelly J, Koffman J (2007) Multidisciplinary perspectives of music therapy in adult palliative care. Palliat Med 21(3):235–241PubMedCrossRef
121.
Zurück zum Zitat Mandel SE (1993) The role of the music therapist on the hospice/palliative care team. J Palliat Care 9(4):37–39PubMedCrossRef Mandel SE (1993) The role of the music therapist on the hospice/palliative care team. J Palliat Care 9(4):37–39PubMedCrossRef
122.
Zurück zum Zitat Munro S (1984) Music therapy in palliative/hospice care. Magnamusic-Baton, New York Munro S (1984) Music therapy in palliative/hospice care. Magnamusic-Baton, New York
123.
Zurück zum Zitat Hilliard RE (2001) The use of music therapy in meeting the multidimensional needs of hospice patients and families. J Palliat Care 17(3):161–166PubMed Hilliard RE (2001) The use of music therapy in meeting the multidimensional needs of hospice patients and families. J Palliat Care 17(3):161–166PubMed
124.
Zurück zum Zitat Dileo C, Loewy JV (2005) Music therapy at the end of life. Jeffrey, Cherry Hill Dileo C, Loewy JV (2005) Music therapy at the end of life. Jeffrey, Cherry Hill
125.
Zurück zum Zitat Von Hodenberg F (1995) Music therapy with patients undergoing radiation and chemotherapy. Lonely waters. Sobell, Oxford, pp 61–67 Von Hodenberg F (1995) Music therapy with patients undergoing radiation and chemotherapy. Lonely waters. Sobell, Oxford, pp 61–67
128.
Zurück zum Zitat Romo R, Gifford L (2007) A cost-benefit analysis of music therapy in a home hospice. Nurs Econ 25(6):353–358PubMed Romo R, Gifford L (2007) A cost-benefit analysis of music therapy in a home hospice. Nurs Econ 25(6):353–358PubMed
129.
Zurück zum Zitat Temel J, Greer J, Muzikansky A, Gallagher E, Admane SJ VA, Dahlin C, Blinderman C, Jacobsen J, Pirl W, Billings J, Lynch T (2010) Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med 363(8):733–742PubMedCrossRef Temel J, Greer J, Muzikansky A, Gallagher E, Admane SJ VA, Dahlin C, Blinderman C, Jacobsen J, Pirl W, Billings J, Lynch T (2010) Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med 363(8):733–742PubMedCrossRef
130.
Zurück zum Zitat Thaker P, Han L, Kamat A, Arevalo J, Takahashi R, Lu C, Jennings N, Armaiz-Pena G, Bankson J, Ravoori M, Merritt W, Lin Y, Mangala L, Kim T, Coleman R, Landen C, Li Y, Felix E, Sanguino A, Newman R, Lloyd M, Gershenson D, Kundra V, Lopez-Berestein G, Lutgendorf S, Cole S, Sood A (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12(8):939–944PubMedCrossRef Thaker P, Han L, Kamat A, Arevalo J, Takahashi R, Lu C, Jennings N, Armaiz-Pena G, Bankson J, Ravoori M, Merritt W, Lin Y, Mangala L, Kim T, Coleman R, Landen C, Li Y, Felix E, Sanguino A, Newman R, Lloyd M, Gershenson D, Kundra V, Lopez-Berestein G, Lutgendorf S, Cole S, Sood A (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12(8):939–944PubMedCrossRef
131.
Zurück zum Zitat Cohen L, Cole SW, Sood AK, Prinsloo S, Kirschbaum C, Arevalo JMG, Jennings NB, Scott S, Vence L, Wei Q, Kentor D, Radvanyi L, Tannir N, Jonasch E, Tamboli P, Pisters L (2012) Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: role of inflammatory signaling. PLoS One 7(8):e42324. doi:10.1371/journal.pone.0042324 PubMedPubMedCentralCrossRef Cohen L, Cole SW, Sood AK, Prinsloo S, Kirschbaum C, Arevalo JMG, Jennings NB, Scott S, Vence L, Wei Q, Kentor D, Radvanyi L, Tannir N, Jonasch E, Tamboli P, Pisters L (2012) Depressive symptoms and cortisol rhythmicity predict survival in patients with renal cell carcinoma: role of inflammatory signaling. PLoS One 7(8):e42324. doi:10.​1371/​journal.​pone.​0042324 PubMedPubMedCentralCrossRef
134.
Metadaten
Titel
Music-based interventions in palliative cancer care: a review of quantitative studies and neurobiological literature
verfasst von
Patrick Archie
Eduardo Bruera
Lorenzo Cohen
Publikationsdatum
01.09.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Supportive Care in Cancer / Ausgabe 9/2013
Print ISSN: 0941-4355
Elektronische ISSN: 1433-7339
DOI
https://doi.org/10.1007/s00520-013-1841-4

Weitere Artikel der Ausgabe 9/2013

Supportive Care in Cancer 9/2013 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.