Skip to main content
Erschienen in: Inflammation 1/2023

05.08.2022 | Original Article

PCSK9 Promotes Endothelial Dysfunction During Sepsis Via the TLR4/MyD88/NF-κB and NLRP3 Pathways

verfasst von: Longxiang Huang, Yuanjing Li, Zhe Cheng, Zi Lv, Suxin Luo, Yong Xia

Erschienen in: Inflammation | Ausgabe 1/2023

Einloggen, um Zugang zu erhalten

Abstract

Endothelial dysfunction often accompanies sepsis. We aimed to explore the role of PCSK9 in septic endothelial dysfunction. Sepsis was induced by lipopolysaccharide (LPS) treatment of human umbilical vein endothelial cells (HUVECs) in vitro and cecal ligation and puncture (CLP) surgery in mice in vivo. Evolocumab (EVC) and Pep 2–8, PCSK9 inhibitors, were subsequently used to determine the role of PCSK9 in sepsis-induced endothelial dysfunction in vitro and in vivo, respectively. In addition, the TLR4 agonist, Kdo2-Lipid A ammonium (KLA), was used to determine the related mechanism. Protein expression of eNOS, VE-cadherin, PCSK9, TLR4, MyD88, p-p65, p65, NLRP3, ASC, and caspase-1 p20 in mice aortas and HUVECs was measured by western blotting, while mRNA expression of TNFα, IL-1β, and IL-18 was determined by qRT-PCR. The level of inflammatory cytokines of mouse aortas was visualized by immunohistochemistry. Vasodilation of the aorta was detected by vascular reactivity experiments. The 96-h survival rate after CLP was assessed. Our findings showed that the expression of eNOS and VE-cadherin decreased, and PCSK9 expression increased, in septic HUVECs or mice. Inhibition of PCSK9 increased eNOS and VE-cadherin expression. Activation of the TLR4/MyD88/NF-κB and NLRP3 pathways may be responsible for PCSK9-induced endothelial dysfunction in sepsis. Vascular reactivity tests and survival studies showed that inhibition of PCSK9 could prevent the decrease in endothelium-dependent vasodilation function and improve the survival rates of septic mice. In summary, our results suggested that increased PCSK9 expression during sepsis activated the TLR4/MyD88/NF-κB and NLRP3 pathways to induce inflammation, which resulted in vascular endothelial dysfunction and decreased survival rates. Thus, inhibition of PCSK9 may be a potential clinical therapeutic target to improve vascular endothelial function in sepsis.
Literatur
1.
Zurück zum Zitat Hollenberg, S.M., and M. Singer. 2021. Pathophysiology of sepsis-induced cardiomyopathy. Nature Reviews. Cardiology 18: 424–434.CrossRefPubMed Hollenberg, S.M., and M. Singer. 2021. Pathophysiology of sepsis-induced cardiomyopathy. Nature Reviews. Cardiology 18: 424–434.CrossRefPubMed
2.
Zurück zum Zitat Lelubre, C., and J.L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews. Nephrology 14: 417–427.CrossRefPubMed Lelubre, C., and J.L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews. Nephrology 14: 417–427.CrossRefPubMed
3.
Zurück zum Zitat Bernardin, G., C. Pradier, F. Tiger, P. Deloffre, and M. Mattei. 1996. Blood pressure and arterial lactate level are early indicators of short-term survival in human septic shock. Intensive Care Medicine 22: 17–25.CrossRefPubMed Bernardin, G., C. Pradier, F. Tiger, P. Deloffre, and M. Mattei. 1996. Blood pressure and arterial lactate level are early indicators of short-term survival in human septic shock. Intensive Care Medicine 22: 17–25.CrossRefPubMed
4.
Zurück zum Zitat Angé, M., J. De Poortere, A. Ginion, S. Battault, M. Dechamps, G.G. Muccioli, M. Roumain, J. Morelle, S. Druart, T. Mathivet, L. Bertrand, D. Castanares-Zapatero, S. Horman, and C. Beauloye. 2021. Canagliflozin protects against sepsis capillary leak syndrome by activating endothelial α1AMPK. Scientific Reports 11: 13700.CrossRefPubMedPubMedCentral Angé, M., J. De Poortere, A. Ginion, S. Battault, M. Dechamps, G.G. Muccioli, M. Roumain, J. Morelle, S. Druart, T. Mathivet, L. Bertrand, D. Castanares-Zapatero, S. Horman, and C. Beauloye. 2021. Canagliflozin protects against sepsis capillary leak syndrome by activating endothelial α1AMPK. Scientific Reports 11: 13700.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Pi, Q.Z., X.W. Wang, Z.L. Jian, D. Chen, C. Zhang, and Q.C. Wu. 2021. Melatonin alleviates cardiac dysfunction via increasing Sirt1-mediated beclin-1 deacetylation and autophagy during sepsis. Inflammation 44: 1184–1193.CrossRefPubMed Pi, Q.Z., X.W. Wang, Z.L. Jian, D. Chen, C. Zhang, and Q.C. Wu. 2021. Melatonin alleviates cardiac dysfunction via increasing Sirt1-mediated beclin-1 deacetylation and autophagy during sepsis. Inflammation 44: 1184–1193.CrossRefPubMed
6.
Zurück zum Zitat Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 840–851.CrossRefPubMed Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 840–851.CrossRefPubMed
7.
Zurück zum Zitat Rajendran, P., T. Rengarajan, J. Thangavel, Y. Nishigaki, D. Sakthisekaran, G. Sethi, and I. Nishigaki. 2013. The vascular endothelium and human diseases. International Journal of Biological Sciences 9: 1057–1069.CrossRefPubMedPubMedCentral Rajendran, P., T. Rengarajan, J. Thangavel, Y. Nishigaki, D. Sakthisekaran, G. Sethi, and I. Nishigaki. 2013. The vascular endothelium and human diseases. International Journal of Biological Sciences 9: 1057–1069.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Ince, C., P.R. Mayeux, T. Nguyen, H. Gomez, J.A. Kellum, G.A. Ospina-Tascón, G. Hernandez, P. Murray, D. De Backer, and A.D.Q.I.X.I.V. Workgroup. 2016. The endothelium in sepsis. Shock 45: 259–270.CrossRefPubMedPubMedCentral Ince, C., P.R. Mayeux, T. Nguyen, H. Gomez, J.A. Kellum, G.A. Ospina-Tascón, G. Hernandez, P. Murray, D. De Backer, and A.D.Q.I.X.I.V. Workgroup. 2016. The endothelium in sepsis. Shock 45: 259–270.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Joffre, J., J. Hellman, C. Ince, and H. Ait-Oufella. 2020. Endothelial responses in sepsis. American Journal of Respiratory and Critical Care Medicine 202: 361–370.CrossRefPubMed Joffre, J., J. Hellman, C. Ince, and H. Ait-Oufella. 2020. Endothelial responses in sepsis. American Journal of Respiratory and Critical Care Medicine 202: 361–370.CrossRefPubMed
10.
Zurück zum Zitat Li, Z., M. Yin, H. Zhang, W. Ni, R.W. Pierce, H.J. Zhou, and W. Min. 2020. BMX represses thrombin-PAR1-mediated endothelial permeability and vascular leakage during early sepsis. Circulation Research 126: 471–485.CrossRefPubMedPubMedCentral Li, Z., M. Yin, H. Zhang, W. Ni, R.W. Pierce, H.J. Zhou, and W. Min. 2020. BMX represses thrombin-PAR1-mediated endothelial permeability and vascular leakage during early sepsis. Circulation Research 126: 471–485.CrossRefPubMedPubMedCentral
11.
12.
Zurück zum Zitat Ragusa, R., G. Basta, D. Neglia, R. De Caterina, S. Del Turco, and C. Caselli. 2021. PCSK9 and atherosclerosis: Looking beyond LDL regulation. European Journal of Clinical Investigation 51: e13459.CrossRefPubMed Ragusa, R., G. Basta, D. Neglia, R. De Caterina, S. Del Turco, and C. Caselli. 2021. PCSK9 and atherosclerosis: Looking beyond LDL regulation. European Journal of Clinical Investigation 51: e13459.CrossRefPubMed
13.
Zurück zum Zitat Feng, Q., W.Q. Wei, S. Chaugai, B.G. Carranza Leon, V. Kawai, D.A. Carranza Leon, L. Jiang, X. Zhong, G. Liu, A. Ihegword, C.M. Shaffer, M.F. Linton, C.P. Chung, and C.M. Stein. 2019. A genetic approach to the association between PCSK9 and sepsis. JAMA Network Open 2: e1911130.CrossRefPubMedPubMedCentral Feng, Q., W.Q. Wei, S. Chaugai, B.G. Carranza Leon, V. Kawai, D.A. Carranza Leon, L. Jiang, X. Zhong, G. Liu, A. Ihegword, C.M. Shaffer, M.F. Linton, C.P. Chung, and C.M. Stein. 2019. A genetic approach to the association between PCSK9 and sepsis. JAMA Network Open 2: e1911130.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Berger, J.M., A. Loza Valdes, J. Gromada, N. Anderson, and J.D. Horton. 2017. Inhibition of PCSK9 does not improve lipopolysaccharide-induced mortality in mice. Journal of Lipid Research 58: 1661–1669.CrossRefPubMedPubMedCentral Berger, J.M., A. Loza Valdes, J. Gromada, N. Anderson, and J.D. Horton. 2017. Inhibition of PCSK9 does not improve lipopolysaccharide-induced mortality in mice. Journal of Lipid Research 58: 1661–1669.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Ding, Z., N. Pothineni, A. Goel, T.F. Lüscher, and J.L. Mehta. 2020. PCSK9 and inflammation: Role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovascular Research 116: 908–915.CrossRefPubMed Ding, Z., N. Pothineni, A. Goel, T.F. Lüscher, and J.L. Mehta. 2020. PCSK9 and inflammation: Role of shear stress, pro-inflammatory cytokines, and LOX-1. Cardiovascular Research 116: 908–915.CrossRefPubMed
16.
Zurück zum Zitat Yuan, Y., W. Wu, S. Sun, Y. Zhang, and Z. Chen. 2020. PCSK9: A potential therapeutic target for sepsis. Journal of Immunology Research 2020: 2687692.CrossRefPubMedPubMedCentral Yuan, Y., W. Wu, S. Sun, Y. Zhang, and Z. Chen. 2020. PCSK9: A potential therapeutic target for sepsis. Journal of Immunology Research 2020: 2687692.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Yu, H., Q. Liu, G. Chen, L. Huang, M. Luo, D. Lv, and S. Luo. 2022. SIRT3-AMPK signaling pathway as a protective target in endothelial dysfunction of early sepsis. International Immunopharmacology 106: 108600.CrossRefPubMed Yu, H., Q. Liu, G. Chen, L. Huang, M. Luo, D. Lv, and S. Luo. 2022. SIRT3-AMPK signaling pathway as a protective target in endothelial dysfunction of early sepsis. International Immunopharmacology 106: 108600.CrossRefPubMed
18.
Zurück zum Zitat Tourki, B., L.M. Black, V. Kain, and G.V. Halade. 2021. Lipoxygenase inhibitor ML351 dysregulated an innate inflammatory response leading to impaired cardiac repair in acute heart failure. Biomedicine & Pharmacotherapy = Biomédecine & Pharmacothérapie 139: 111574. Tourki, B., L.M. Black, V. Kain, and G.V. Halade. 2021. Lipoxygenase inhibitor ML351 dysregulated an innate inflammatory response leading to impaired cardiac repair in acute heart failure. Biomedicine & Pharmacotherapy = Biomédecine & Pharmacothérapie 139: 111574.
19.
Zurück zum Zitat Palee, S., C.M. McSweeney, C. Maneechote, D.M. Moisescu, T. Jaiwongkam, S. Kerdphoo, S.C. Chattipakorn, and N. Chattipakorn. 2019. PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with ischaemia/reperfusion injury: Benefits beyond lipid-lowering effects. Journal of Cellular and Molecular Medicine 23: 7310–7319.CrossRefPubMedPubMedCentral Palee, S., C.M. McSweeney, C. Maneechote, D.M. Moisescu, T. Jaiwongkam, S. Kerdphoo, S.C. Chattipakorn, and N. Chattipakorn. 2019. PCSK9 inhibitor improves cardiac function and reduces infarct size in rats with ischaemia/reperfusion injury: Benefits beyond lipid-lowering effects. Journal of Cellular and Molecular Medicine 23: 7310–7319.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat You, Y., W. Tan, Y. Guo, M. Luo, F.F. Shang, Y. Xia, and S. Luo. 2020. Progesterone promotes endothelial nitric oxide synthase expression through enhancing nuclear progesterone receptor-SP-1 formation. American Journal of Physiology. Heart and Circulatory Physiology 319: H341–H348.CrossRefPubMed You, Y., W. Tan, Y. Guo, M. Luo, F.F. Shang, Y. Xia, and S. Luo. 2020. Progesterone promotes endothelial nitric oxide synthase expression through enhancing nuclear progesterone receptor-SP-1 formation. American Journal of Physiology. Heart and Circulatory Physiology 319: H341–H348.CrossRefPubMed
21.
Zurück zum Zitat Luo, M., J. Meng, J. Yan, F. Shang, T. Zhang, D. Lv, C. Li, X. Yang, and S. Luo. 2020. Role of the nucleotide-binding domain-like receptor protein 3 inflammasome in the endothelial dysfunction of early sepsis. Inflammation 43: 1561–1571.CrossRefPubMed Luo, M., J. Meng, J. Yan, F. Shang, T. Zhang, D. Lv, C. Li, X. Yang, and S. Luo. 2020. Role of the nucleotide-binding domain-like receptor protein 3 inflammasome in the endothelial dysfunction of early sepsis. Inflammation 43: 1561–1571.CrossRefPubMed
22.
Zurück zum Zitat Tang, Z.H., J. Peng, Z. Ren, J. Yang, T.T. Li, T.H. Li, Z. Wang, D.H. Wei, L.S. Liu, X.L. Zheng, and Z.S. Jiang. 2017. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis 262: 113–122.CrossRefPubMed Tang, Z.H., J. Peng, Z. Ren, J. Yang, T.T. Li, T.H. Li, Z. Wang, D.H. Wei, L.S. Liu, X.L. Zheng, and Z.S. Jiang. 2017. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis 262: 113–122.CrossRefPubMed
23.
Zurück zum Zitat Esposito, S., G. De Simone, G. Boccia, F. De Caro, and P. Pagliano. 2017. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. Journal of Global Antimicrobial Resistance 10: 204–212.CrossRefPubMed Esposito, S., G. De Simone, G. Boccia, F. De Caro, and P. Pagliano. 2017. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. Journal of Global Antimicrobial Resistance 10: 204–212.CrossRefPubMed
24.
Zurück zum Zitat Rello, J., F. Valenzuela-Sánchez, M. Ruiz-Rodriguez, and S. Moyano. 2017. Sepsis: A review of advances in management. Advances in Therapy 34: 2393–2411.CrossRefPubMedPubMedCentral Rello, J., F. Valenzuela-Sánchez, M. Ruiz-Rodriguez, and S. Moyano. 2017. Sepsis: A review of advances in management. Advances in Therapy 34: 2393–2411.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Pool, R., H. Gomez, and J.A. Kellum. 2018. Mechanisms of organ dysfunction in sepsis. Critical Care Clinicss 34: 63–80.CrossRefPubMed Pool, R., H. Gomez, and J.A. Kellum. 2018. Mechanisms of organ dysfunction in sepsis. Critical Care Clinicss 34: 63–80.CrossRefPubMed
26.
Zurück zum Zitat Evans, L., A. Rhodes, W. Alhazzani, M. Antonelli, C.M. Coopersmith, C. French, F.R. Machado, L. Mcintyre, M. Ostermann, H.C. Prescott, C. Schorr, S. Simpson, W.J. Wiersinga, F. Alshamsi, D.C. Angus, Y. Arabi, L. Azevedo, R. Beale, G. Beilman, E. Belley-Cote, L. Burry, M. Cecconi, J. Centofanti, A. Coz Yataco, J. De Waele, R.P. Dellinger, K. Doi, B. Du, E. Estenssoro, R. Ferrer, C. Gomersall, C. Hodgson, M.H. Møller, T. Iwashyna, S. Jacob, R. Kleinpell, M. Klompas, Y. Koh, A. Kumar, A. Kwizera, S. Lobo, H. Masur, S. McGloughlin, S. Mehta, Y. Mehta, M. Mer, M. Nunnally, S. Oczkowski, T. Osborn, E. Papathanassoglou, A. Perner, M. Puskarich, J. Roberts, W. Schweickert, M. Seckel, J. Sevransky, C.L. Sprung, T. Welte, J. Zimmerman, and M. Levy. 2021. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Medicine 47: 1181–1247.CrossRefPubMedPubMedCentral Evans, L., A. Rhodes, W. Alhazzani, M. Antonelli, C.M. Coopersmith, C. French, F.R. Machado, L. Mcintyre, M. Ostermann, H.C. Prescott, C. Schorr, S. Simpson, W.J. Wiersinga, F. Alshamsi, D.C. Angus, Y. Arabi, L. Azevedo, R. Beale, G. Beilman, E. Belley-Cote, L. Burry, M. Cecconi, J. Centofanti, A. Coz Yataco, J. De Waele, R.P. Dellinger, K. Doi, B. Du, E. Estenssoro, R. Ferrer, C. Gomersall, C. Hodgson, M.H. Møller, T. Iwashyna, S. Jacob, R. Kleinpell, M. Klompas, Y. Koh, A. Kumar, A. Kwizera, S. Lobo, H. Masur, S. McGloughlin, S. Mehta, Y. Mehta, M. Mer, M. Nunnally, S. Oczkowski, T. Osborn, E. Papathanassoglou, A. Perner, M. Puskarich, J. Roberts, W. Schweickert, M. Seckel, J. Sevransky, C.L. Sprung, T. Welte, J. Zimmerman, and M. Levy. 2021. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Medicine 47: 1181–1247.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Lipinska-Gediga, M. 2016. Sepsis and septic shock-is a microcirculation a main player. Anaesthesiology Intensive Therapy 48: 261–265.CrossRefPubMed Lipinska-Gediga, M. 2016. Sepsis and septic shock-is a microcirculation a main player. Anaesthesiology Intensive Therapy 48: 261–265.CrossRefPubMed
28.
Zurück zum Zitat Sharawy, N., and C. Lehmann. 2015. New directions for sepsis and septic shock research. The Journal of Surgical Research 194: 520–527.CrossRefPubMed Sharawy, N., and C. Lehmann. 2015. New directions for sepsis and septic shock research. The Journal of Surgical Research 194: 520–527.CrossRefPubMed
30.
Zurück zum Zitat Godo, S., and H. Shimokawa. 2017. Endothelial functions. Arteriosclerosis, Thrombosis, and Vascular Biology 37: e108–e114.CrossRefPubMed Godo, S., and H. Shimokawa. 2017. Endothelial functions. Arteriosclerosis, Thrombosis, and Vascular Biology 37: e108–e114.CrossRefPubMed
31.
Zurück zum Zitat Volk, T., and W.J. Kox. 2000. Endothelium function in sepsis. Inflammation Research: Official Journal of the European Histamine Research Society 49: 185–198. Volk, T., and W.J. Kox. 2000. Endothelium function in sepsis. Inflammation Research: Official Journal of the European Histamine Research Society 49: 185–198.
32.
Zurück zum Zitat Wu, W., P. Geng, J. Zhu, J. Li, L. Zhang, W. Chen, D. Zhang, Y. Lu, and X. Xu. 2019. KLF2 regulates eNOS uncoupling via Nrf2/HO-1 in endothelial cells under hypoxia and reoxygenation. Chemico-biological Interactions 305: 105–111.CrossRefPubMed Wu, W., P. Geng, J. Zhu, J. Li, L. Zhang, W. Chen, D. Zhang, Y. Lu, and X. Xu. 2019. KLF2 regulates eNOS uncoupling via Nrf2/HO-1 in endothelial cells under hypoxia and reoxygenation. Chemico-biological Interactions 305: 105–111.CrossRefPubMed
33.
Zurück zum Zitat Vestweber, D. 2008. VE-cadherin: The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 223–232.CrossRefPubMed Vestweber, D. 2008. VE-cadherin: The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 223–232.CrossRefPubMed
34.
Zurück zum Zitat Pasta, A., A.L. Cremonini, L. Pisciotta, A. Buscaglia, I. Porto, F. Barra, S. Ferrero, C. Brunelli, and G.M. Rosa. 2020. PCSK9 inhibitors for treating hypercholesterolemia. Expert Opinion On Pharmacotherapy 21: 353–363.CrossRefPubMed Pasta, A., A.L. Cremonini, L. Pisciotta, A. Buscaglia, I. Porto, F. Barra, S. Ferrero, C. Brunelli, and G.M. Rosa. 2020. PCSK9 inhibitors for treating hypercholesterolemia. Expert Opinion On Pharmacotherapy 21: 353–363.CrossRefPubMed
35.
Zurück zum Zitat Innocenti, F., A.M. Gori, B. Giusti, C. Tozzi, C. Donnini, F. Meo, I. Giacomelli, M.L. Ralli, A. Sereni, E. Sticchi, I. Tassinari, R. Marcucci, and R. Pini. 2021. Plasma PCSK9 levels and sepsis severity: An early assessment in the emergency department. Clinical and Experimental Medicine 21: 101–107.CrossRefPubMed Innocenti, F., A.M. Gori, B. Giusti, C. Tozzi, C. Donnini, F. Meo, I. Giacomelli, M.L. Ralli, A. Sereni, E. Sticchi, I. Tassinari, R. Marcucci, and R. Pini. 2021. Plasma PCSK9 levels and sepsis severity: An early assessment in the emergency department. Clinical and Experimental Medicine 21: 101–107.CrossRefPubMed
36.
Zurück zum Zitat Dwivedi, D.J., P.M. Grin, M. Khan, A. Prat, J. Zhou, A.E. Fox-Robichaud, N.G. Seidah, and P.C. Liaw. 2016. Differential expression of PCSK9 modulates infection, inflammation, and coagulation in a murine model of sepsis. Shock 46: 672–680.CrossRefPubMed Dwivedi, D.J., P.M. Grin, M. Khan, A. Prat, J. Zhou, A.E. Fox-Robichaud, N.G. Seidah, and P.C. Liaw. 2016. Differential expression of PCSK9 modulates infection, inflammation, and coagulation in a murine model of sepsis. Shock 46: 672–680.CrossRefPubMed
37.
Zurück zum Zitat Zusso, M., V. Lunardi, D. Franceschini, A. Pagetta, R. Lo, S. Stifani, A.C. Frigo, P. Giusti, and S. Moro. 2019. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. Journal of Neuroinflammation 16: 148.CrossRefPubMedPubMedCentral Zusso, M., V. Lunardi, D. Franceschini, A. Pagetta, R. Lo, S. Stifani, A.C. Frigo, P. Giusti, and S. Moro. 2019. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. Journal of Neuroinflammation 16: 148.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Ye, M., Y. Tang, J. He, Y. Yang, X. Cao, S. Kou, L. Wang, L. Sheng, and J. Xue. 2021. Alleviation of non-alcoholic fatty liver disease by Huazhi Fugan Granules is associated with suppression of TLR4/NF-κB signaling pathway. Clínica e investigación en arteriosclerosis : Publicación oficial de la Sociedad Española de Arteriosclerosis 33: 257–266.CrossRefPubMed Ye, M., Y. Tang, J. He, Y. Yang, X. Cao, S. Kou, L. Wang, L. Sheng, and J. Xue. 2021. Alleviation of non-alcoholic fatty liver disease by Huazhi Fugan Granules is associated with suppression of TLR4/NF-κB signaling pathway. Clínica e investigación en arteriosclerosis : Publicación oficial de la Sociedad Española de Arteriosclerosis 33: 257–266.CrossRefPubMed
40.
Zurück zum Zitat Lv, D., M. Luo, J. Yan, X. Yang, and S. Luo. 2021. Protective effect of sirtuin 3 on CLP-induced endothelial dysfunction of early sepsis by inhibiting NF-κB and NLRP3 signaling pathways. Inflammation 44: 1782–1792.CrossRefPubMed Lv, D., M. Luo, J. Yan, X. Yang, and S. Luo. 2021. Protective effect of sirtuin 3 on CLP-induced endothelial dysfunction of early sepsis by inhibiting NF-κB and NLRP3 signaling pathways. Inflammation 44: 1782–1792.CrossRefPubMed
41.
Zurück zum Zitat Sutterwala, F.S., S. Haasken, and S.L. Cassel. 2014. Mechanism of NLRP3 inflammasome activation. Annals of the New York Academy of Sciences 1319: 82–95.CrossRefPubMedPubMedCentral Sutterwala, F.S., S. Haasken, and S.L. Cassel. 2014. Mechanism of NLRP3 inflammasome activation. Annals of the New York Academy of Sciences 1319: 82–95.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Sharif, H., L. Wang, W.L. Wang, V.G. Magupalli, L. Andreeva, Q. Qiao, A.V. Hauenstein, Z. Wu, G. Núñez, Y. Mao, and H. Wu. 2019. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570: 338–343.CrossRefPubMedPubMedCentral Sharif, H., L. Wang, W.L. Wang, V.G. Magupalli, L. Andreeva, Q. Qiao, A.V. Hauenstein, Z. Wu, G. Núñez, Y. Mao, and H. Wu. 2019. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570: 338–343.CrossRefPubMedPubMedCentral
Metadaten
Titel
PCSK9 Promotes Endothelial Dysfunction During Sepsis Via the TLR4/MyD88/NF-κB and NLRP3 Pathways
verfasst von
Longxiang Huang
Yuanjing Li
Zhe Cheng
Zi Lv
Suxin Luo
Yong Xia
Publikationsdatum
05.08.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01715-z

Weitere Artikel der Ausgabe 1/2023

Inflammation 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.