Skip to main content
Erschienen in: Journal of Natural Medicines 4/2019

Open Access 15.05.2019 | Review

Computationally-assisted discovery and structure elucidation of natural products

verfasst von: Alfarius Eko Nugroho, Hiroshi Morita

Erschienen in: Journal of Natural Medicines | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Computer hardware development coupled with the development of quantum chemistry, new computational models and algorithms, and user-friendly interfaces have lowered the barriers to the use of computation in the discovery and structure elucidation of natural products. Consequently, the use of computational chemistry software as a tool to discover and determine the structure of natural products has become more common in recent years. In this review, we provide several examples of recent studies that used computer technology to facilitate the discovery and structure determination of various natural products.
Literatur
1.
Zurück zum Zitat Quinn RA, Nothias L-F, Vining O, Meehan M, Esquenazi E, Dorrestein PC (2017) Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci 38:143–154PubMed Quinn RA, Nothias L-F, Vining O, Meehan M, Esquenazi E, Dorrestein PC (2017) Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci 38:143–154PubMed
2.
Zurück zum Zitat Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu C-C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L, Humpf H-U, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya PCA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O’Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard P-M, Phapale P, Nothias L-F, Alexandrov T, Litaudon M, Wolfender J-L, Kyle JE, Metz TO, Peryea T, Nguyen D-T, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BØ, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828PubMedPubMedCentral Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, Nguyen DD, Watrous J, Kapono CA, Luzzatto-Knaan T, Porto C, Bouslimani A, Melnik AV, Meehan MJ, Liu W-T, Crüsemann M, Boudreau PD, Esquenazi E, Sandoval-Calderón M, Kersten RD, Pace LA, Quinn RA, Duncan KR, Hsu C-C, Floros DJ, Gavilan RG, Kleigrewe K, Northen T, Dutton RJ, Parrot D, Carlson EE, Aigle B, Michelsen CF, Jelsbak L, Sohlenkamp C, Pevzner P, Edlund A, McLean J, Piel J, Murphy BT, Gerwick L, Liaw C-C, Yang Y-L, Humpf H-U, Maansson M, Keyzers RA, Sims AC, Johnson AR, Sidebottom AM, Sedio BE, Klitgaard A, Larson CB, Boya PCA, Torres-Mendoza D, Gonzalez DJ, Silva DB, Marques LM, Demarque DP, Pociute E, O’Neill EC, Briand E, Helfrich EJN, Granatosky EA, Glukhov E, Ryffel F, Houson H, Mohimani H, Kharbush JJ, Zeng Y, Vorholt JA, Kurita KL, Charusanti P, McPhail KL, Nielsen KF, Vuong L, Elfeki M, Traxler MF, Engene N, Koyama N, Vining OB, Baric R, Silva RR, Mascuch SJ, Tomasi S, Jenkins S, Macherla V, Hoffman T, Agarwal V, Williams PG, Dai J, Neupane R, Gurr J, Rodríguez AMC, Lamsa A, Zhang C, Dorrestein K, Duggan BM, Almaliti J, Allard P-M, Phapale P, Nothias L-F, Alexandrov T, Litaudon M, Wolfender J-L, Kyle JE, Metz TO, Peryea T, Nguyen D-T, VanLeer D, Shinn P, Jadhav A, Müller R, Waters KM, Shi W, Liu X, Zhang L, Knight R, Jensen PR, Palsson BØ, Pogliano K, Linington RG, Gutiérrez M, Lopes NP, Gerwick WH, Moore BS, Dorrestein PC, Bandeira N (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828PubMedPubMedCentral
3.
Zurück zum Zitat da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics. Proc Natl Acad Sci USA 112:12549PubMedPubMedCentral da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics. Proc Natl Acad Sci USA 112:12549PubMedPubMedCentral
4.
Zurück zum Zitat Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, de Felicio R, Fenner A, Wong WR, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC (2013) Molecular networking as a dereplication strategy. J Nat Prod 76:1686–1699PubMedPubMedCentral Yang JY, Sanchez LM, Rath CM, Liu X, Boudreau PD, Bruns N, Glukhov E, Wodtke A, de Felicio R, Fenner A, Wong WR, Linington RG, Zhang L, Debonsi HM, Gerwick WH, Dorrestein PC (2013) Molecular networking as a dereplication strategy. J Nat Prod 76:1686–1699PubMedPubMedCentral
5.
Zurück zum Zitat Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA 109:E1743–E1752PubMedPubMedCentral Watrous J, Roach P, Alexandrov T, Heath BS, Yang JY, Kersten RD, van der Voort M, Pogliano K, Gross H, Raaijmakers JM, Moore BS, Laskin J, Bandeira N, Dorrestein PC (2012) Mass spectral molecular networking of living microbial colonies. Proc Natl Acad Sci USA 109:E1743–E1752PubMedPubMedCentral
6.
Zurück zum Zitat Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci 112:12580PubMedPubMedCentral Dührkop K, Shen H, Meusel M, Rousu J, Böcker S (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci 112:12580PubMedPubMedCentral
7.
Zurück zum Zitat Rasche F, Böcker S (2008) Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24:i49–i55PubMed Rasche F, Böcker S (2008) Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics 24:i49–i55PubMed
8.
Zurück zum Zitat Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M (2016) Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem 88:7946–7958PubMedPubMedCentral Tsugawa H, Kind T, Nakabayashi R, Yukihira D, Tanaka W, Cajka T, Saito K, Fiehn O, Arita M (2016) Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal Chem 88:7946–7958PubMedPubMedCentral
9.
Zurück zum Zitat Bauer CA, Grimme S (2016) How to compute electron ionization mass spectra from first principles. J Phys Chem A 120:3755–3766PubMed Bauer CA, Grimme S (2016) How to compute electron ionization mass spectra from first principles. J Phys Chem A 120:3755–3766PubMed
10.
Zurück zum Zitat Grimme S (2013) Towards first principles calculation of electron impact mass spectra of molecules. Angew Chem 52:6306–6312 Grimme S (2013) Towards first principles calculation of electron impact mass spectra of molecules. Angew Chem 52:6306–6312
11.
Zurück zum Zitat Allen F, Greiner R, Wishart D (2015) Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11:98–110 Allen F, Greiner R, Wishart D (2015) Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11:98–110
12.
Zurück zum Zitat Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform 11:148 Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform 11:148
13.
Zurück zum Zitat Guthals A, Watrous JD, Dorrestein PC, Bandeira N (2012) The spectral networks paradigm in high throughput mass spectrometry. Mol BioSyst 8:2535–2544PubMedPubMedCentral Guthals A, Watrous JD, Dorrestein PC, Bandeira N (2012) The spectral networks paradigm in high throughput mass spectrometry. Mol BioSyst 8:2535–2544PubMedPubMedCentral
14.
Zurück zum Zitat Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentral Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504PubMedPubMedCentral
15.
Zurück zum Zitat Olivon F, Apel C, Retailleau P, Allard PM, Wolfender JL, Touboul D, Roussi F, Litaudon M, Desrat S (2018) Searching for original natural products by molecular networking: detection, isolation and total synthesis of chloroaustralasines. Org Chem Front 5:2171–2178 Olivon F, Apel C, Retailleau P, Allard PM, Wolfender JL, Touboul D, Roussi F, Litaudon M, Desrat S (2018) Searching for original natural products by molecular networking: detection, isolation and total synthesis of chloroaustralasines. Org Chem Front 5:2171–2178
16.
Zurück zum Zitat Olivon F, Allard P-M, Koval A, Righi D, Genta-Jouve G, Neyts J, Apel C, Pannecouque C, Nothias L-F, Cachet X, Marcourt L, Roussi F, Katanaev VL, Touboul D, Wolfender J-L, Litaudon M (2017) Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem Biol 12:2644–2651PubMed Olivon F, Allard P-M, Koval A, Righi D, Genta-Jouve G, Neyts J, Apel C, Pannecouque C, Nothias L-F, Cachet X, Marcourt L, Roussi F, Katanaev VL, Touboul D, Wolfender J-L, Litaudon M (2017) Bioactive natural products prioritization using massive multi-informational molecular networks. ACS Chem Biol 12:2644–2651PubMed
17.
Zurück zum Zitat Nothias L-F, Nothias-Esposito M, da Silva R, Wang M, Protsyuk I, Zhang Z, Sarvepalli A, Leyssen P, Touboul D, Costa J, Paolini J, Alexandrov T, Litaudon M, Dorrestein PC (2018) Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod 81:758–767PubMed Nothias L-F, Nothias-Esposito M, da Silva R, Wang M, Protsyuk I, Zhang Z, Sarvepalli A, Leyssen P, Touboul D, Costa J, Paolini J, Alexandrov T, Litaudon M, Dorrestein PC (2018) Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod 81:758–767PubMed
18.
Zurück zum Zitat Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH (2015) Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J Nat Prod 78:1671–1682PubMedPubMedCentral Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH (2015) Combining mass spectrometric metabolic profiling with genomic analysis: a powerful approach for discovering natural products from cyanobacteria. J Nat Prod 78:1671–1682PubMedPubMedCentral
19.
Zurück zum Zitat Duncan Katherine R, Crüsemann M, Lechner A, Sarkar A, Li J, Ziemert N, Wang M, Bandeira N, Moore Bradley S, Dorrestein Pieter C, Jensen Paul R (2015) Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 22:460–471PubMedPubMedCentral Duncan Katherine R, Crüsemann M, Lechner A, Sarkar A, Li J, Ziemert N, Wang M, Bandeira N, Moore Bradley S, Dorrestein Pieter C, Jensen Paul R (2015) Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem Biol 22:460–471PubMedPubMedCentral
21.
Zurück zum Zitat Elyashberg ME, Williams A, Blinov K (2012) Contemporary computer-assisted approaches to molecular structure elucidation. Royal Society of Chemistry, London Elyashberg ME, Williams A, Blinov K (2012) Contemporary computer-assisted approaches to molecular structure elucidation. Royal Society of Chemistry, London
22.
Zurück zum Zitat Elyashberg M, Williams AJ, Blinov K (2010) Structural revisions of natural products by computer-assisted structure elucidation (CASE) systems. Nat Prod Rep 27:1296–1328PubMed Elyashberg M, Williams AJ, Blinov K (2010) Structural revisions of natural products by computer-assisted structure elucidation (CASE) systems. Nat Prod Rep 27:1296–1328PubMed
23.
Zurück zum Zitat Nuzillard J-M (2014) Automated interpretation of NMR spectra for small organic molecules in solution. eMagRes 3:1–7 Nuzillard J-M (2014) Automated interpretation of NMR spectra for small organic molecules in solution. eMagRes 3:1–7
24.
Zurück zum Zitat Foroozandeh M, Morris GA, Nilsson M (2018) PSYCHE pure shift NMR spectroscopy. Chem Eur J 24:13988–14000PubMed Foroozandeh M, Morris GA, Nilsson M (2018) PSYCHE pure shift NMR spectroscopy. Chem Eur J 24:13988–14000PubMed
25.
Zurück zum Zitat Zangger K (2015) Pure shift NMR. Prog Nucl Magn Reson Spectrosc 86–87:1–20PubMed Zangger K (2015) Pure shift NMR. Prog Nucl Magn Reson Spectrosc 86–87:1–20PubMed
26.
Zurück zum Zitat Smurnyy YD, Elyashberg ME, Blinov KA, Lefebvre BA, Martin GE, Williams AJ (2005) Computer-aided determination of relative stereochemistry and 3D models of complex organic molecules from 2D NMR spectra. Tetrahedron 61:9980–9989 Smurnyy YD, Elyashberg ME, Blinov KA, Lefebvre BA, Martin GE, Williams AJ (2005) Computer-aided determination of relative stereochemistry and 3D models of complex organic molecules from 2D NMR spectra. Tetrahedron 61:9980–9989
27.
Zurück zum Zitat Troche-Pesqueira E, Anklin C, Gil RR, Navarro-Vázquez A (2017) Computer-assisted 3D structure elucidation of natural products using residual dipolar couplings. Angew Chem 56:3660–3664 Troche-Pesqueira E, Anklin C, Gil RR, Navarro-Vázquez A (2017) Computer-assisted 3D structure elucidation of natural products using residual dipolar couplings. Angew Chem 56:3660–3664
28.
Zurück zum Zitat Navarro-Vázquez A, Gil RR, Blinov K (2018) Computer-assisted 3D structure elucidation (CASE-3D) of natural products combining isotropic and anisotropic NMR parameters. J Nat Prod 81:203–210PubMed Navarro-Vázquez A, Gil RR, Blinov K (2018) Computer-assisted 3D structure elucidation (CASE-3D) of natural products combining isotropic and anisotropic NMR parameters. J Nat Prod 81:203–210PubMed
29.
Zurück zum Zitat Castro SJ, García ME, Padrón JM, Navarro-Vázquez A, Gil RR, Nicotra VE (2018) Phytochemical study of Senecio volckmannii assisted by CASE-3D with residual dipolar couplings and isotropic 1H/13C NMR chemical shifts. J Nat Prod 81:2329–2337PubMed Castro SJ, García ME, Padrón JM, Navarro-Vázquez A, Gil RR, Nicotra VE (2018) Phytochemical study of Senecio volckmannii assisted by CASE-3D with residual dipolar couplings and isotropic 1H/13C NMR chemical shifts. J Nat Prod 81:2329–2337PubMed
30.
Zurück zum Zitat Gayathri C, Tsarevsky NV, Gil RR (2010) Residual dipolar couplings (RDCs) analysis of small molecules made easy: fast and tuneable alignment by reversible compression/relaxation of reusable PMMA gels. Chem Eur J 16:3622–3626PubMed Gayathri C, Tsarevsky NV, Gil RR (2010) Residual dipolar couplings (RDCs) analysis of small molecules made easy: fast and tuneable alignment by reversible compression/relaxation of reusable PMMA gels. Chem Eur J 16:3622–3626PubMed
31.
Zurück zum Zitat Gil-Silva LF, Santamaría-Fernández R, Navarro-Vázquez A, Gil RR (2016) Collection of NMR scalar and residual dipolar couplings using a single experiment. Chem Eur J 22:472–476PubMed Gil-Silva LF, Santamaría-Fernández R, Navarro-Vázquez A, Gil RR (2016) Collection of NMR scalar and residual dipolar couplings using a single experiment. Chem Eur J 22:472–476PubMed
32.
Zurück zum Zitat Li G-W, Liu H, Qiu F, Wang X-J, Lei X-X (2018) Residual dipolar couplings in structure determination of natural products. Nat Prod Bioprospect 8:279–295PubMedPubMedCentral Li G-W, Liu H, Qiu F, Wang X-J, Lei X-X (2018) Residual dipolar couplings in structure determination of natural products. Nat Prod Bioprospect 8:279–295PubMedPubMedCentral
33.
Zurück zum Zitat Thiele CM (2008) Residual dipolar couplings (RDCs) in organic structure determination. Eur J Org Chem 2008:5673–5685 Thiele CM (2008) Residual dipolar couplings (RDCs) in organic structure determination. Eur J Org Chem 2008:5673–5685
34.
Zurück zum Zitat Thiele CM (2007) Use of RDCs in rigid organic compounds and some practical considerations concerning alignment media. Concept Magn Reson Part A 30A:65–80 Thiele CM (2007) Use of RDCs in rigid organic compounds and some practical considerations concerning alignment media. Concept Magn Reson Part A 30A:65–80
35.
Zurück zum Zitat Liu Y, Saurí J, Mevers E, Peczuh MW, Hiemstra H, Clardy J, Martin GE, Williamson RT (2017) Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science 356:eaam5349PubMedPubMedCentral Liu Y, Saurí J, Mevers E, Peczuh MW, Hiemstra H, Clardy J, Martin GE, Williamson RT (2017) Unequivocal determination of complex molecular structures using anisotropic NMR measurements. Science 356:eaam5349PubMedPubMedCentral
36.
Zurück zum Zitat Nath N, Schmidt M, Gil RR, Williamson RT, Martin GE, Navarro-Vázquez A, Griesinger C, Liu Y (2016) Determination of relative configuration from residual chemical shift anisotropy. J Am Chem Soc 138:9548–9556PubMed Nath N, Schmidt M, Gil RR, Williamson RT, Martin GE, Navarro-Vázquez A, Griesinger C, Liu Y (2016) Determination of relative configuration from residual chemical shift anisotropy. J Am Chem Soc 138:9548–9556PubMed
37.
Zurück zum Zitat Hallwass F, Schmidt M, Sun H, Mazur A, Kummerlöwe G, Luy B, Navarro-Vázquez A, Griesinger C, Reinscheid UM (2011) Residual chemical shift anisotropy (RCSA): a tool for the analysis of the configuration of small molecules. Angew Chem 50:9487–9490 Hallwass F, Schmidt M, Sun H, Mazur A, Kummerlöwe G, Luy B, Navarro-Vázquez A, Griesinger C, Reinscheid UM (2011) Residual chemical shift anisotropy (RCSA): a tool for the analysis of the configuration of small molecules. Angew Chem 50:9487–9490
38.
Zurück zum Zitat Liu Y, Navarro-Vázquez A, Gil RR, Griesinger C, Martin GE, Williamson RT (2019) Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat Protoc 14:217–247PubMed Liu Y, Navarro-Vázquez A, Gil RR, Griesinger C, Martin GE, Williamson RT (2019) Application of anisotropic NMR parameters to the confirmation of molecular structure. Nat Protoc 14:217–247PubMed
39.
Zurück zum Zitat Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys 19:32184–32215PubMed Goerigk L, Hansen A, Bauer C, Ehrlich S, Najibi A, Grimme S (2017) A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys Chem Chem Phys 19:32184–32215PubMed
40.
Zurück zum Zitat Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104PubMed Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104PubMed
41.
Zurück zum Zitat Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465PubMed Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465PubMed
42.
Zurück zum Zitat Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517 Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517
43.
Zurück zum Zitat Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041 Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041
44.
Zurück zum Zitat Cancès E, Mennucci B (1998) New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals. J Math Chem 23:309–326 Cancès E, Mennucci B (1998) New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals. J Math Chem 23:309–326
45.
Zurück zum Zitat Klamt A, Schuurmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805 Klamt A, Schuurmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805
46.
Zurück zum Zitat Benassi E (2017) Benchmarking of density functionals for a soft but accurate prediction and assignment of 1H and 13C NMR chemical shifts in organic and biological molecules. J Comput Chem 38:87–92PubMed Benassi E (2017) Benchmarking of density functionals for a soft but accurate prediction and assignment of 1H and 13C NMR chemical shifts in organic and biological molecules. J Comput Chem 38:87–92PubMed
47.
Zurück zum Zitat Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112:1839–1862PubMed Lodewyk MW, Siebert MR, Tantillo DJ (2012) Computational prediction of 1H and 13C chemical shifts: a useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem Rev 112:1839–1862PubMed
48.
Zurück zum Zitat Tantillo Group (2017). CHESHIRE CCAT, the chemical shift repository for computed NMR scaling factors, with coupling constants added too. http://cheshirenmr.info/. Accessed 1 Apr 2019 Tantillo Group (2017). CHESHIRE CCAT, the chemical shift repository for computed NMR scaling factors, with coupling constants added too. http://​cheshirenmr.​info/​. Accessed 1 Apr 2019
49.
Zurück zum Zitat Sarotti AM, Pellegrinet SC (2009) A Multi-standard approach for GIAO 13C NMR calculations. J Org Chem 74:7254–7260PubMed Sarotti AM, Pellegrinet SC (2009) A Multi-standard approach for GIAO 13C NMR calculations. J Org Chem 74:7254–7260PubMed
50.
Zurück zum Zitat Andrews KG, Spivey AC (2013) Improving the accuracy of computed 13C NMR shift predictions by specific environment error correction: fragment referencing. J Org Chem 78:11302–11317PubMed Andrews KG, Spivey AC (2013) Improving the accuracy of computed 13C NMR shift predictions by specific environment error correction: fragment referencing. J Org Chem 78:11302–11317PubMed
51.
Zurück zum Zitat Sarotti AM, Pellegrinet SC (2012) Application of the multi-standard methodology for calculating 1H NMR chemical shifts. J Org Chem 77:6059–6065PubMed Sarotti AM, Pellegrinet SC (2012) Application of the multi-standard methodology for calculating 1H NMR chemical shifts. J Org Chem 77:6059–6065PubMed
52.
Zurück zum Zitat Hoffmann F, Li D-W, Sebastiani D, Brüschweiler R (2017) Improved quantum chemical NMR chemical shift prediction of metabolites in aqueous solution toward the validation of unknowns. J Phys Chem A 121:3071–3078PubMedPubMedCentral Hoffmann F, Li D-W, Sebastiani D, Brüschweiler R (2017) Improved quantum chemical NMR chemical shift prediction of metabolites in aqueous solution toward the validation of unknowns. J Phys Chem A 121:3071–3078PubMedPubMedCentral
53.
Zurück zum Zitat Smith SG, Goodman JM (2009) Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation. J Org Chem 74:4597–4607PubMed Smith SG, Goodman JM (2009) Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation. J Org Chem 74:4597–4607PubMed
54.
Zurück zum Zitat Smith SG, Goodman JM (2010) Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc 132:12946–12959PubMed Smith SG, Goodman JM (2010) Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J Am Chem Soc 132:12946–12959PubMed
55.
Zurück zum Zitat Grimblat N, Zanardi MM, Sarotti AM (2015) Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem 80:12526–12534PubMed Grimblat N, Zanardi MM, Sarotti AM (2015) Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J Org Chem 80:12526–12534PubMed
56.
Zurück zum Zitat Sarotti AM (2013) Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments. Org Biomol Chem 11:4847–4859PubMed Sarotti AM (2013) Successful combination of computationally inexpensive GIAO 13C NMR calculations and artificial neural network pattern recognition: a new strategy for simple and rapid detection of structural misassignments. Org Biomol Chem 11:4847–4859PubMed
57.
Zurück zum Zitat Willoughby PH, Jansma MJ, Hoye TR (2014) A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nat Protoc 9:643PubMed Willoughby PH, Jansma MJ, Hoye TR (2014) A guide to small-molecule structure assignment through computation of (1H and 13C) NMR chemical shifts. Nat Protoc 9:643PubMed
58.
Zurück zum Zitat Saielli G, Nicolaou KC, Ortiz A, Zhang H, Bagno A (2011) Addressing the stereochemistry of complex organic molecules by density functional Theory-NMR: Vannusal B in retrospective. J Am Chem Soc 133:6072–6077PubMedPubMedCentral Saielli G, Nicolaou KC, Ortiz A, Zhang H, Bagno A (2011) Addressing the stereochemistry of complex organic molecules by density functional Theory-NMR: Vannusal B in retrospective. J Am Chem Soc 133:6072–6077PubMedPubMedCentral
59.
Zurück zum Zitat Tarazona G, Benedit G, Fernández R, Pérez M, Rodríguez J, Jiménez C, Cuevas C (2018) Can stereoclusters separated by two methylene groups be related by DFT studies? the case of the cytotoxic meroditerpenes halioxepines. J Nat Prod 81:343–348PubMed Tarazona G, Benedit G, Fernández R, Pérez M, Rodríguez J, Jiménez C, Cuevas C (2018) Can stereoclusters separated by two methylene groups be related by DFT studies? the case of the cytotoxic meroditerpenes halioxepines. J Nat Prod 81:343–348PubMed
60.
Zurück zum Zitat Li W-S, Mándi A, Liu J-J, Shen L, Kurtán T, Wu J (2019) Xylomolones A–D from the Thai mangrove Xylocarpus moluccensis: assignment of absolute stereostructures and unveiling a convergent strategy for limonoid biosynthesis. J Org Chem 84:2596–2606PubMed Li W-S, Mándi A, Liu J-J, Shen L, Kurtán T, Wu J (2019) Xylomolones A–D from the Thai mangrove Xylocarpus moluccensis: assignment of absolute stereostructures and unveiling a convergent strategy for limonoid biosynthesis. J Org Chem 84:2596–2606PubMed
61.
Zurück zum Zitat Nugroho AE, Zhang W, Hirasawa Y, Tang Y, Wong CP, Kaneda T, Hadi AHA, Morita H (2018) Bisleuconothines B–D, modified Eburnane-Aspidosperma bisindole alkaloids from Leuconotis griffithii. J Nat Prod 81:2600–2604PubMed Nugroho AE, Zhang W, Hirasawa Y, Tang Y, Wong CP, Kaneda T, Hadi AHA, Morita H (2018) Bisleuconothines B–D, modified Eburnane-Aspidosperma bisindole alkaloids from Leuconotis griffithii. J Nat Prod 81:2600–2604PubMed
62.
Zurück zum Zitat Nugroho AE, Hashimoto A, Wong C-P, Yokoe H, Tsubuki M, Kaneda T, Hadi AHA, Morita H (2018) Ceramicines M–P from Chisocheton ceramicus: isolation and structure–activity relationship study. J Nat Med 72:64–72PubMed Nugroho AE, Hashimoto A, Wong C-P, Yokoe H, Tsubuki M, Kaneda T, Hadi AHA, Morita H (2018) Ceramicines M–P from Chisocheton ceramicus: isolation and structure–activity relationship study. J Nat Med 72:64–72PubMed
63.
Zurück zum Zitat Nugroho AE, Okuda M, Yamamoto Y, Hirasawa Y, Wong C-P, Kaneda T, Shirota O, Hadi AHA, Morita H (2013) Walsogynes B–G, limonoids from Walsura chrysogyne. Tetrahedron 69:4139–4145 Nugroho AE, Okuda M, Yamamoto Y, Hirasawa Y, Wong C-P, Kaneda T, Shirota O, Hadi AHA, Morita H (2013) Walsogynes B–G, limonoids from Walsura chrysogyne. Tetrahedron 69:4139–4145
64.
Zurück zum Zitat Nugroho AE, Morita H (2014) Circular dichroism calculation for natural products. J Nat Med 68:1–10PubMed Nugroho AE, Morita H (2014) Circular dichroism calculation for natural products. J Nat Med 68:1–10PubMed
65.
Zurück zum Zitat Superchi S, Scafato P, Gorecki M, Pescitelli G (2018) Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: basics and applications to fungal metabolites. Curr Med Chem 25:287–320PubMed Superchi S, Scafato P, Gorecki M, Pescitelli G (2018) Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: basics and applications to fungal metabolites. Curr Med Chem 25:287–320PubMed
66.
Zurück zum Zitat Pescitelli G, Bruhn T (2016) Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality 28:466–474PubMed Pescitelli G, Bruhn T (2016) Good computational practice in the assignment of absolute configurations by TDDFT calculations of ECD spectra. Chirality 28:466–474PubMed
67.
Zurück zum Zitat Polavarapu PL (2012) Molecular structure determination using chiroptical spectroscopy: where we may go wrong? Chirality 24:909–920PubMed Polavarapu PL (2012) Molecular structure determination using chiroptical spectroscopy: where we may go wrong? Chirality 24:909–920PubMed
68.
Zurück zum Zitat He Y, Wang B, Dukor RK, Nafie LA (2011) Determination of absolute configuration of chiral molecules using vibrational optical activity: a review. Appl Spectrosc 65:699–723PubMed He Y, Wang B, Dukor RK, Nafie LA (2011) Determination of absolute configuration of chiral molecules using vibrational optical activity: a review. Appl Spectrosc 65:699–723PubMed
69.
Zurück zum Zitat Bringmann G, Bruhn T, Maksimenka K, Hemberger Y (2009) The assignment of absolute stereostructures through quantum chemical circular dichroism calculations. Eur J Org Chem 2009:2717–2727 Bringmann G, Bruhn T, Maksimenka K, Hemberger Y (2009) The assignment of absolute stereostructures through quantum chemical circular dichroism calculations. Eur J Org Chem 2009:2717–2727
70.
Zurück zum Zitat Diedrich C, Grimme S (2003) Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A 107:2524–2539 Diedrich C, Grimme S (2003) Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A 107:2524–2539
71.
Zurück zum Zitat Pecul M, Ruud K, Helgaker T (2004) Density functional theory calculation of electronic circular dichroism using London orbitals. Chem Phys Lett 388:110–119 Pecul M, Ruud K, Helgaker T (2004) Density functional theory calculation of electronic circular dichroism using London orbitals. Chem Phys Lett 388:110–119
74.
Zurück zum Zitat Nugroho AE, Sasaki T, Kaneda T, Hadi AHA, Morita H (2017) Calofolic acids A–F, chromanones from the bark of Calophyllum scriblitifolium with vasorelaxation activity. Bioorg Med Chem Lett 27:2124–2128PubMed Nugroho AE, Sasaki T, Kaneda T, Hadi AHA, Morita H (2017) Calofolic acids A–F, chromanones from the bark of Calophyllum scriblitifolium with vasorelaxation activity. Bioorg Med Chem Lett 27:2124–2128PubMed
75.
Zurück zum Zitat Nagakura Y, Nugroho AE, Hirasawa Y, Hosoya T, Rahman A, Kusumawati I, Zaini NC, Morita H (2013) Sanjecumins A and B: new limonoids from Sandoricum koetjape. J Nat Med 67:381–385PubMed Nagakura Y, Nugroho AE, Hirasawa Y, Hosoya T, Rahman A, Kusumawati I, Zaini NC, Morita H (2013) Sanjecumins A and B: new limonoids from Sandoricum koetjape. J Nat Med 67:381–385PubMed
76.
Zurück zum Zitat He F, Nugroho AE, Wong CP, Hirasawa Y, Shirota O, Morita H, Aisa HA (2012) Rupestines F–M, New guaipyridine sesquiterpene alkaloids from Artemisia rupestris. Chem Pharm Bull 60:213–218 He F, Nugroho AE, Wong CP, Hirasawa Y, Shirota O, Morita H, Aisa HA (2012) Rupestines F–M, New guaipyridine sesquiterpene alkaloids from Artemisia rupestris. Chem Pharm Bull 60:213–218
77.
Zurück zum Zitat Motegi M, Nugroho AE, Hirasawa Y, Arai T, Hadi AHA, Morita H (2012) Leucomidines A–C, novel alkaloids from Leuconotis griffithii. Tetrahedron Lett 53:1227–1230 Motegi M, Nugroho AE, Hirasawa Y, Arai T, Hadi AHA, Morita H (2012) Leucomidines A–C, novel alkaloids from Leuconotis griffithii. Tetrahedron Lett 53:1227–1230
78.
Zurück zum Zitat Najmuldeen IA, Hadi AHA, Awang K, Mohamad K, Ketuly KA, Mukhtar MR, Chong S-L, Chan G, Nafiah MA, Weng NS, Shirota O, Hosoya T, Nugroho AE, Morita H (2011) Chisomicines A–C, Limonoids from Chisocheton ceramicus. J Nat Prod 74:1313–1317PubMed Najmuldeen IA, Hadi AHA, Awang K, Mohamad K, Ketuly KA, Mukhtar MR, Chong S-L, Chan G, Nafiah MA, Weng NS, Shirota O, Hosoya T, Nugroho AE, Morita H (2011) Chisomicines A–C, Limonoids from Chisocheton ceramicus. J Nat Prod 74:1313–1317PubMed
79.
Zurück zum Zitat Nugroho AE, Hirasawa Y, Hosoya T, Awang K, Hadi AHA, Morita H (2010) Bisleucocurine A, a novel bisindole alkaloid from Leuconotis griffithii. Tetrahedron Lett 51:2589–2592 Nugroho AE, Hirasawa Y, Hosoya T, Awang K, Hadi AHA, Morita H (2010) Bisleucocurine A, a novel bisindole alkaloid from Leuconotis griffithii. Tetrahedron Lett 51:2589–2592
80.
Zurück zum Zitat Hirasawa Y, Hara M, Nugroho AE, Sugai M, Zaima K, Kawahara N, Goda Y, Awang K, Hadi AHA, Litaudon M, Morita H (2010) Bisnicalaterines B and C, atropisomeric bisindole alkaloids from Hunteria zeylanica, showing Vasorelaxant activity. J Org Chem 75:4218–4223PubMed Hirasawa Y, Hara M, Nugroho AE, Sugai M, Zaima K, Kawahara N, Goda Y, Awang K, Hadi AHA, Litaudon M, Morita H (2010) Bisnicalaterines B and C, atropisomeric bisindole alkaloids from Hunteria zeylanica, showing Vasorelaxant activity. J Org Chem 75:4218–4223PubMed
81.
Zurück zum Zitat Deguchi J, Shoji T, Nugroho AE, Hirasawa Y, Hosoya T, Shirota O, Awang K, Hadi AHA, Morita H (2010) Eucophylline, a tetracyclic vinylquinoline alkaloid from Leuconotis eugenifolius. J Nat Prod 73:1727–1729PubMed Deguchi J, Shoji T, Nugroho AE, Hirasawa Y, Hosoya T, Shirota O, Awang K, Hadi AHA, Morita H (2010) Eucophylline, a tetracyclic vinylquinoline alkaloid from Leuconotis eugenifolius. J Nat Prod 73:1727–1729PubMed
82.
Zurück zum Zitat Zou Y, Wang X, Sims J, Wang B, Pandey P, Welsh CL, Stone RP, Avery MA, Doerksen RJ, Ferreira D, Anklin C, Valeriote FA, Kelly M, Hamann MT (2019) Computationally Assisted discovery and assignment of a highly strained and PANC-1 selective alkaloid from Alaska’s deep ocean. J Am Chem Soc 141:4338–4344PubMed Zou Y, Wang X, Sims J, Wang B, Pandey P, Welsh CL, Stone RP, Avery MA, Doerksen RJ, Ferreira D, Anklin C, Valeriote FA, Kelly M, Hamann MT (2019) Computationally Assisted discovery and assignment of a highly strained and PANC-1 selective alkaloid from Alaska’s deep ocean. J Am Chem Soc 141:4338–4344PubMed
83.
Zurück zum Zitat McAlpine JB, Chen S-N, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji N-Y, Johnson TA, Kingston DGI, Koshino H, Lee H-W, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam J-W, Neupane RP, Niemitz M, Nuzillard J-M, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault J-H, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang B-G, Williams CM, Williams PG, Wist J, Yue J-M, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF (2019) The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 36:35–107PubMed McAlpine JB, Chen S-N, Kutateladze A, MacMillan JB, Appendino G, Barison A, Beniddir MA, Biavatti MW, Bluml S, Boufridi A, Butler MS, Capon RJ, Choi YH, Coppage D, Crews P, Crimmins MT, Csete M, Dewapriya P, Egan JM, Garson MJ, Genta-Jouve G, Gerwick WH, Gross H, Harper MK, Hermanto P, Hook JM, Hunter L, Jeannerat D, Ji N-Y, Johnson TA, Kingston DGI, Koshino H, Lee H-W, Lewin G, Li J, Linington RG, Liu M, McPhail KL, Molinski TF, Moore BS, Nam J-W, Neupane RP, Niemitz M, Nuzillard J-M, Oberlies NH, Ocampos FMM, Pan G, Quinn RJ, Reddy DS, Renault J-H, Rivera-Chávez J, Robien W, Saunders CM, Schmidt TJ, Seger C, Shen B, Steinbeck C, Stuppner H, Sturm S, Taglialatela-Scafati O, Tantillo DJ, Verpoorte R, Wang B-G, Williams CM, Williams PG, Wist J, Yue J-M, Zhang C, Xu Z, Simmler C, Lankin DC, Bisson J, Pauli GF (2019) The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 36:35–107PubMed
Metadaten
Titel
Computationally-assisted discovery and structure elucidation of natural products
verfasst von
Alfarius Eko Nugroho
Hiroshi Morita
Publikationsdatum
15.05.2019
Verlag
Springer Singapore
Erschienen in
Journal of Natural Medicines / Ausgabe 4/2019
Print ISSN: 1340-3443
Elektronische ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-019-01321-8

Weitere Artikel der Ausgabe 4/2019

Journal of Natural Medicines 4/2019 Zur Ausgabe