Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2007

01.09.2007

Persistent Alterations to the Gene Expression Profile of the Heart Subsequent to Chronic Doxorubicin Treatment

verfasst von: Jessica M. Berthiaume, Kendall B. Wallace

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2007

Einloggen, um Zugang zu erhalten

Abstract

Doxorubicin (DOX, Adriamycin®) is a potent antineoplastic agent used to treat a number of cancers. Despite its utility, DOX causes a cumulative, irreversible cardiomyopathy that may become apparent shortly after treatment or years subsequent to therapy. Numerous studies have been conducted to elucidate the basis of DOX cardiotoxicity, but the precise mechanism responsible remains elusive. This investigation was designed to assess global gene expression using microarrays in order to identify the full spectrum of potential molecular targets of DOX cardiotoxicity to further delineate the underlying pathological mechanism(s) responsible for this dose-limiting cardiomyopathy. Male, Sprague-Dawley rats received 6 weekly injections of 2 mg/kg (s.c.) DOX followed by a 5 week drug-free period prior to analysis of cardiac tissue transcripts. Ontological evaluation in terms of subcellular targets identified gene products involved in mitochondrial processes are significantly suppressed, consistent with the well-established persistent mitochondrial dysfunction. Further classification of genes into biochemical networks revealed several pathways modulated by DOX, including glycolysis and fatty acid metabolism, supporting the notion that mitochondria are key targets in DOX toxicity. In conclusion, this comprehensive transcript profile provides important insights into critical targets and molecular adaptations that characterize the persistent cardiomyopathy associated with long-term exposure to DOX.
Literatur
1.
Zurück zum Zitat Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMedCrossRef Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMedCrossRef
2.
Zurück zum Zitat al-Shabanah, O. A., Badary, O. A., Nagi, M. N., al-Gharably, N. M., al-Rikabi, A. C., & al-Bekairi, A. M. (1998). Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. Journal of Experimental and Clinical Cancer Research, 17, 193–198. al-Shabanah, O. A., Badary, O. A., Nagi, M. N., al-Gharably, N. M., al-Rikabi, A. C., & al-Bekairi, A. M. (1998). Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. Journal of Experimental and Clinical Cancer Research, 17, 193–198.
3.
Zurück zum Zitat Bodley, A., Liu, L. F., Israel, M., Seshadri, R., Koseki, Y., Giuliani, F. C., Kirschenbaum, S., Silber, R., & Potmesil, M. (1989). DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Research, 49, 5969–5978.PubMed Bodley, A., Liu, L. F., Israel, M., Seshadri, R., Koseki, Y., Giuliani, F. C., Kirschenbaum, S., Silber, R., & Potmesil, M. (1989). DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Research, 49, 5969–5978.PubMed
4.
Zurück zum Zitat Mettler, F. P., Young, D. M., & Ward, J. M. (1977). Adriamycin-induced cardiotoxicity (cardiomyopathy and congestive heart failure) in rats. Cancer Research, 37, 2705–2713.PubMed Mettler, F. P., Young, D. M., & Ward, J. M. (1977). Adriamycin-induced cardiotoxicity (cardiomyopathy and congestive heart failure) in rats. Cancer Research, 37, 2705–2713.PubMed
5.
Zurück zum Zitat Von Hoff, D. D., Layard, M. W., Basa, P., Davis, H. L. Jr., Von Hoff, A. L., Rozencweig, M., & Muggia, F. M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717.PubMed Von Hoff, D. D., Layard, M. W., Basa, P., Davis, H. L. Jr., Von Hoff, A. L., Rozencweig, M., & Muggia, F. M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717.PubMed
6.
Zurück zum Zitat Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. The New England Journal of Medicine, 324, 808–815.PubMedCrossRef Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. The New England Journal of Medicine, 324, 808–815.PubMedCrossRef
7.
Zurück zum Zitat Sorensen, K., Levitt, G., Bull, C., Chessells, J., & Sullivan, I. (1997). Anthracycline dose in childhood acute lymphoblastic leukemia: Issues of early survival versus late cardiotoxicity. Journal of Clinical Oncology, 15, 61–68.PubMed Sorensen, K., Levitt, G., Bull, C., Chessells, J., & Sullivan, I. (1997). Anthracycline dose in childhood acute lymphoblastic leukemia: Issues of early survival versus late cardiotoxicity. Journal of Clinical Oncology, 15, 61–68.PubMed
8.
Zurück zum Zitat Joyner, D. E., Bastar, J. D., & Randall, R. L. (2006). Doxorubicin induces cell senescence preferentially over apoptosis in the FU-SY-1 synovial sarcoma cell line. Journal of Orthopaedic Research, 24, 1163–1169.PubMedCrossRef Joyner, D. E., Bastar, J. D., & Randall, R. L. (2006). Doxorubicin induces cell senescence preferentially over apoptosis in the FU-SY-1 synovial sarcoma cell line. Journal of Orthopaedic Research, 24, 1163–1169.PubMedCrossRef
9.
Zurück zum Zitat Singal, P. K., Li, T., Kumar, D., Danelisen, I., & Iliskovic, N. (2000). Adriamycin-induced heart failure: Mechanism and modulation. Molecular and Cellular Biochemistry, 207, 77–86.PubMedCrossRef Singal, P. K., Li, T., Kumar, D., Danelisen, I., & Iliskovic, N. (2000). Adriamycin-induced heart failure: Mechanism and modulation. Molecular and Cellular Biochemistry, 207, 77–86.PubMedCrossRef
10.
Zurück zum Zitat Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology & Toxicology, 93, 105–115.CrossRef Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology & Toxicology, 93, 105–115.CrossRef
11.
Zurück zum Zitat Jung, K., & Reszka, R. (2001). Mitochondria as subcellular targets for clinically useful anthracyclines. Advanced Drug Delivery Reviews, 49, 87–105.PubMedCrossRef Jung, K., & Reszka, R. (2001). Mitochondria as subcellular targets for clinically useful anthracyclines. Advanced Drug Delivery Reviews, 49, 87–105.PubMedCrossRef
12.
Zurück zum Zitat Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. The Journal of Biological Chemistry, 261, 3060–3067.PubMed Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. The Journal of Biological Chemistry, 261, 3060–3067.PubMed
13.
Zurück zum Zitat Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. The Journal of Biological Chemistry, 261, 3068–3074.PubMed Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. The Journal of Biological Chemistry, 261, 3068–3074.PubMed
14.
Zurück zum Zitat Fielden, M. R., & Zacharewski, T. R. (2001). Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology. Toxicological Sciences, 60, 6–10.PubMedCrossRef Fielden, M. R., & Zacharewski, T. R. (2001). Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology. Toxicological Sciences, 60, 6–10.PubMedCrossRef
15.
Zurück zum Zitat Efferth T., & Oesch, F. (2004). Oxidative stress response of tumor cells: Microarray-based comparison between artemisinins and anthracyclines. Biochemical Pharmacology, 68, 3–10.PubMedCrossRef Efferth T., & Oesch, F. (2004). Oxidative stress response of tumor cells: Microarray-based comparison between artemisinins and anthracyclines. Biochemical Pharmacology, 68, 3–10.PubMedCrossRef
16.
Zurück zum Zitat Lien, Y. C., Noel, T., Liu, H., Stromberg, A. J., Chen, K. C., & St Clair, D. K. (2006). Phospholipase C-delta1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. Cancer Research, 66, 4329–4338.PubMedCrossRef Lien, Y. C., Noel, T., Liu, H., Stromberg, A. J., Chen, K. C., & St Clair, D. K. (2006). Phospholipase C-delta1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. Cancer Research, 66, 4329–4338.PubMedCrossRef
17.
Zurück zum Zitat Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193.PubMedCrossRef Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193.PubMedCrossRef
18.
Zurück zum Zitat Doniger, S. W., Salomonis, N., Dahlquist, K. D., Vranizan, K., Lawlor, S. C., & Conklin, B. R. (2003). MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biology, 4, R7.PubMedCrossRef Doniger, S. W., Salomonis, N., Dahlquist, K. D., Vranizan, K., Lawlor, S. C., & Conklin, B. R. (2003). MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biology, 4, R7.PubMedCrossRef
19.
Zurück zum Zitat Tabibiazar, R., Wagner, R. A., Liao, A., & Quertermous, T. (2003). Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circulation Research, 93, 1193–1201.PubMedCrossRef Tabibiazar, R., Wagner, R. A., Liao, A., & Quertermous, T. (2003). Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circulation Research, 93, 1193–1201.PubMedCrossRef
20.
Zurück zum Zitat Sharma, U. C., Pokharel, S., Evelo, C. T., & Maessen, J. G. (2005). A systematic review of large scale and heterogeneous gene array data in heart failure. Journal of Molecular and Cellular Cardiology, 38, 425–432.PubMedCrossRef Sharma, U. C., Pokharel, S., Evelo, C. T., & Maessen, J. G. (2005). A systematic review of large scale and heterogeneous gene array data in heart failure. Journal of Molecular and Cellular Cardiology, 38, 425–432.PubMedCrossRef
21.
Zurück zum Zitat Ueno, S., Ohki, R., Hashimoto, T., Takizawa, T., Takeuchi, K., Yamashita, Y., Ota, J., Choi, Y. L., Wada, T., Koinuma, K., Yamamoto, K., Ikeda, U., Shimada, K., & Mano, H. (2003). DNA microarray analysis of in vivo progression mechanism of heart failure. Biochemical and Biophysical Research Communications, 307, 771–777.PubMedCrossRef Ueno, S., Ohki, R., Hashimoto, T., Takizawa, T., Takeuchi, K., Yamashita, Y., Ota, J., Choi, Y. L., Wada, T., Koinuma, K., Yamamoto, K., Ikeda, U., Shimada, K., & Mano, H. (2003). DNA microarray analysis of in vivo progression mechanism of heart failure. Biochemical and Biophysical Research Communications, 307, 771–777.PubMedCrossRef
22.
Zurück zum Zitat Kong, S. W., Bodyak, N., Yue, P., Liu, Z., Brown, J., Izumo, S., & Kang, P. M. (2005). Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiological Genomics, 21, 34–42.PubMedCrossRef Kong, S. W., Bodyak, N., Yue, P., Liu, Z., Brown, J., Izumo, S., & Kang, P. M. (2005). Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiological Genomics, 21, 34–42.PubMedCrossRef
23.
Zurück zum Zitat Barth, A. S., Kuner, R., Buness, A., Ruschhaupt, M., Merk, S., Zwermann, L., Kaab, S., Kreuzer, E., Steinbeck, G., Mansmann, U., Poustka, A., Nabauer, M., & Sultmann, H. (2006). Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies. Journal of the American College of Cardiology, 48, 1610–1617.PubMedCrossRef Barth, A. S., Kuner, R., Buness, A., Ruschhaupt, M., Merk, S., Zwermann, L., Kaab, S., Kreuzer, E., Steinbeck, G., Mansmann, U., Poustka, A., Nabauer, M., & Sultmann, H. (2006). Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies. Journal of the American College of Cardiology, 48, 1610–1617.PubMedCrossRef
24.
Zurück zum Zitat Stanley, W. C., Recchia, F. A., & Lopaschuk, G. D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews, 85, 1093–1129.PubMedCrossRef Stanley, W. C., Recchia, F. A., & Lopaschuk, G. D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews, 85, 1093–1129.PubMedCrossRef
25.
Zurück zum Zitat Huss, J. M., & Kelly, D. P. (2005). Mitochondrial energy metabolism in heart failure: A question of balance. The Journal of Clinical Investigation, 115, 547–555.PubMedCrossRef Huss, J. M., & Kelly, D. P. (2005). Mitochondrial energy metabolism in heart failure: A question of balance. The Journal of Clinical Investigation, 115, 547–555.PubMedCrossRef
26.
Zurück zum Zitat Lehman, J. J., & Kelly, D. P. (2002). Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Failure Reviews, 7, 175–185.PubMedCrossRef Lehman, J. J., & Kelly, D. P. (2002). Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Failure Reviews, 7, 175–185.PubMedCrossRef
27.
Zurück zum Zitat Ozawa, T., Tanaka, M., Sugiyama, S., Hattori, K., Ito, T., Ohno K., Takahashi, A., Sato, W., Takada, G., Mayumi B, et al. (1990). Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 170, 830–836.PubMedCrossRef Ozawa, T., Tanaka, M., Sugiyama, S., Hattori, K., Ito, T., Ohno K., Takahashi, A., Sato, W., Takada, G., Mayumi B, et al. (1990). Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 170, 830–836.PubMedCrossRef
28.
Zurück zum Zitat Arbustini, E., Diegoli, M., Fasani, R., Grasso, M., Morbini, P., Banchieri, N., Bellini, O., Dal Bello, B., Pilotto, A., Magrini, G., Campana, C., Fortina, P., Gavazzi, A., Narula, J., & Vigano, M. (1998). Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. American Journal of Pathology, 153, 1501–1510.PubMed Arbustini, E., Diegoli, M., Fasani, R., Grasso, M., Morbini, P., Banchieri, N., Bellini, O., Dal Bello, B., Pilotto, A., Magrini, G., Campana, C., Fortina, P., Gavazzi, A., Narula, J., & Vigano, M. (1998). Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. American Journal of Pathology, 153, 1501–1510.PubMed
29.
Zurück zum Zitat Sack, M. N., Rader, T. A., Park, S., Bastin, J., McCune, S. A., & Kelly, D. P. (1996). Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation, 94, 2837–2842.PubMed Sack, M. N., Rader, T. A., Park, S., Bastin, J., McCune, S. A., & Kelly, D. P. (1996). Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation, 94, 2837–2842.PubMed
30.
Zurück zum Zitat Merante, F., Myint, T., Tein, I., Benson, L., & Robinson, B. H. (1996). An additional mitochondrial tRNA(Ile) point mutation (A-to-G at nucleotide 4295) causing hypertrophic cardiomyopathy. Human Mutation, 8, 216–22.PubMedCrossRef Merante, F., Myint, T., Tein, I., Benson, L., & Robinson, B. H. (1996). An additional mitochondrial tRNA(Ile) point mutation (A-to-G at nucleotide 4295) causing hypertrophic cardiomyopathy. Human Mutation, 8, 216–22.PubMedCrossRef
31.
Zurück zum Zitat Merante, F., Tein, I., Benson, L., & Robinson, B. H. (1994). Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene. American Journal of Human Genetics, 55, 437–446.PubMed Merante, F., Tein, I., Benson, L., & Robinson, B. H. (1994). Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene. American Journal of Human Genetics, 55, 437–446.PubMed
32.
Zurück zum Zitat Zeviani, M., Gellera, C., Antozzi, C., Rimoldi, M., Morandi, L., Villani, F., Tiranti, V., & DiDonato, S. (1991). Maternally inherited myopathy and cardiomyopathy: Association with mutation in mitochondrial DNA tRNA(Leu)(UUR). Lancet, 338, 143–147.PubMedCrossRef Zeviani, M., Gellera, C., Antozzi, C., Rimoldi, M., Morandi, L., Villani, F., Tiranti, V., & DiDonato, S. (1991). Maternally inherited myopathy and cardiomyopathy: Association with mutation in mitochondrial DNA tRNA(Leu)(UUR). Lancet, 338, 143–147.PubMedCrossRef
33.
Zurück zum Zitat Nojiri, H., Shimizu, T., Funakoshi, M., Yamaguchi, O., Zhou, H., Kawakami, S., Ohta, Y., Sami, M., Tachibana, T., Ishikawa, H., Kurosawa, H., Kahn, R. C., Otsu, K., & Shirasawa, T. (2006). Oxidative stress causes heart failure with impaired mitochondrial respiration. Journal of Biological Chemistry, 281, 33789–33801.PubMedCrossRef Nojiri, H., Shimizu, T., Funakoshi, M., Yamaguchi, O., Zhou, H., Kawakami, S., Ohta, Y., Sami, M., Tachibana, T., Ishikawa, H., Kurosawa, H., Kahn, R. C., Otsu, K., & Shirasawa, T. (2006). Oxidative stress causes heart failure with impaired mitochondrial respiration. Journal of Biological Chemistry, 281, 33789–33801.PubMedCrossRef
34.
Zurück zum Zitat Hansson, A., Hance, N., Dufour, E., Rantanen, A., Hultenby, K., Clayton, D. A., Wibom, R., & Larsson, N. G. (2004). A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proceedings of the National Academy of Sciences of USA, 101, 3136–3141.CrossRef Hansson, A., Hance, N., Dufour, E., Rantanen, A., Hultenby, K., Clayton, D. A., Wibom, R., & Larsson, N. G. (2004). A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proceedings of the National Academy of Sciences of USA, 101, 3136–3141.CrossRef
35.
Zurück zum Zitat Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.PubMedCrossRef Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.PubMedCrossRef
36.
Zurück zum Zitat Palmeira, C. M., Serrano, J., Kuehl, D. W., & Wallace, K. B. (1997). Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochimica et Biophysica Acta, 1321, 101–106.PubMedCrossRef Palmeira, C. M., Serrano, J., Kuehl, D. W., & Wallace, K. B. (1997). Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochimica et Biophysica Acta, 1321, 101–106.PubMedCrossRef
37.
Zurück zum Zitat Serrano, J., Palmeira, C. M., Kuehl, D. W., & Wallace, K. B. (1999). Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochimica et Biophysica Acta, 1411, 201–205.PubMedCrossRef Serrano, J., Palmeira, C. M., Kuehl, D. W., & Wallace, K. B. (1999). Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochimica et Biophysica Acta, 1411, 201–205.PubMedCrossRef
38.
Zurück zum Zitat Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biologies, 329, 657–668.PubMedCrossRef Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biologies, 329, 657–668.PubMedCrossRef
39.
Zurück zum Zitat Tokarska-Schlattner, M., Zaugg, M., da Silva, R., Lucchinetti E., Schaub, M. C., Wallimann, T., & Schlattner, U. (2005). Acute toxicity of doxorubicin on isolated perfused heart: Response of kinases regulating energy supply. American Journal of Physiology. Heart and Circulatory Physiology, 289, H37–H47.PubMedCrossRef Tokarska-Schlattner, M., Zaugg, M., da Silva, R., Lucchinetti E., Schaub, M. C., Wallimann, T., & Schlattner, U. (2005). Acute toxicity of doxorubicin on isolated perfused heart: Response of kinases regulating energy supply. American Journal of Physiology. Heart and Circulatory Physiology, 289, H37–H47.PubMedCrossRef
40.
Zurück zum Zitat Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.PubMedCrossRef Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.PubMedCrossRef
41.
Zurück zum Zitat Kiyomiya, K., Matsuo, S., & Kurebe, M. (2001). Differences in intracellular sites of action of Adriamycin in neoplastic and normal differentiated cells. Cancer Chemotherapy and Pharmacology, 47, 51–56.PubMedCrossRef Kiyomiya, K., Matsuo, S., & Kurebe, M. (2001). Differences in intracellular sites of action of Adriamycin in neoplastic and normal differentiated cells. Cancer Chemotherapy and Pharmacology, 47, 51–56.PubMedCrossRef
42.
Zurück zum Zitat Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A. M., Mariggio, M. A., Mordente, A., Gianni, L., & Minotti, G. (2006). Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. Journal of Biological Chemistry, 281, 10990–11001.PubMedCrossRef Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A. M., Mariggio, M. A., Mordente, A., Gianni, L., & Minotti, G. (2006). Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. Journal of Biological Chemistry, 281, 10990–11001.PubMedCrossRef
Metadaten
Titel
Persistent Alterations to the Gene Expression Profile of the Heart Subsequent to Chronic Doxorubicin Treatment
verfasst von
Jessica M. Berthiaume
Kendall B. Wallace
Publikationsdatum
01.09.2007
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2007
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-007-0026-0

Weitere Artikel der Ausgabe 3/2007

Cardiovascular Toxicology 3/2007 Zur Ausgabe