Skip to main content
Erschienen in: Annals of Nuclear Medicine 4/2016

11.02.2016 | Original Article

Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via 18F-FDG PET/CT

verfasst von: Hyo Sang Lee, Jungsu S. Oh, Young Soo Park, Se Jin Jang, Ik Soo Choi, Jin-Sook Ryu

Erschienen in: Annals of Nuclear Medicine | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Objective

We aimed to explore the ability of textural heterogeneity indices determined by 18F-FDG PET/CT for grading the malignancy of thymic epithelial tumors (TETs).

Methods

We retrospectively enrolled 47 patients with pathologically proven TETs who underwent pre-treatment 18F-FDG PET/CT. TETs were classified by pathological results into three subgroups with increasing grades of malignancy: low-risk thymoma (LRT; WHO classification A, AB and B1), high-risk thymoma (B2 and B3), and thymic carcinoma (TC). Using 18F-FDG PET/CT, we obtained conventional imaging indices including SUVmax and 20 intratumoral heterogeneity indices: i.e., four local-scale indices derived from the neighborhood gray-tone difference matrix (NGTDM), eight regional-scale indices from the gray-level run-length matrix (GLRLM), and eight regional-scale indices from the gray-level size zone matrix (GLSZM). Area under the receiver operating characteristic curve (AUC) was used to demonstrate the abilities of the imaging indices for differentiating subgroups. Multivariable logistic regression analysis was performed to show the independent significance of the textural indices. Combined criteria using optimal cutoff values of the SUVmax and a best-performing heterogeneity index were applied to investigate whether they improved differentiation between the subgroups.

Results

Most of the GLRLM and GLSZM indices and the SUVmax showed good or fair discrimination (AUC >0.7) with best performance for some of the GLRLM indices and the SUVmax, whereas the NGTDM indices showed relatively inferior performance. The discriminative ability of some of the GLSZM indices was independent from that of SUVmax in multivariate analysis. Combined use of the SUVmax and a GLSZM index improved positive predictive values for LRT and TC.

Conclusions

Texture analysis of 18F-FDG PET/CT scans has the potential to differentiate between TET tumor grades; regional-scale indices from GLRLM and GLSZM perform better than local-scale indices from the NGTDM. The SUVmax and heterogeneity indices may have complementary value in differentiating TET subgroups.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Riedel RF, Burfeind WR Jr. Thymoma: benign appearance, malignant potential. Oncologist. 2006;11:887–94.CrossRefPubMed Riedel RF, Burfeind WR Jr. Thymoma: benign appearance, malignant potential. Oncologist. 2006;11:887–94.CrossRefPubMed
2.
Zurück zum Zitat Detterbeck FC, Zeeshan A. Thymoma: current diagnosis and treatment. Chin Med J. 2013;126:2186–91.PubMed Detterbeck FC, Zeeshan A. Thymoma: current diagnosis and treatment. Chin Med J. 2013;126:2186–91.PubMed
4.
Zurück zum Zitat Rosai J, Sobin LH. Histological typing of tumours of the thymus. 2nd ed. Berlin: Springer-Verlag; 1999.CrossRef Rosai J, Sobin LH. Histological typing of tumours of the thymus. 2nd ed. Berlin: Springer-Verlag; 1999.CrossRef
5.
Zurück zum Zitat Chen G, Marx A, Chen WH, Yong J, Puppe B, Stroebel P, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China. Cancer. 2002;95:420–9.CrossRefPubMed Chen G, Marx A, Chen WH, Yong J, Puppe B, Stroebel P, et al. New WHO histologic classification predicts prognosis of thymic epithelial tumors: a clinicopathologic study of 200 thymoma cases from China. Cancer. 2002;95:420–9.CrossRefPubMed
6.
Zurück zum Zitat Strobel P, Bauer A, Puppe B, Kraushaar T, Krein A, Toyka K, et al. Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis. J Clin Oncol. 2004;22:1501–9.CrossRefPubMed Strobel P, Bauer A, Puppe B, Kraushaar T, Krein A, Toyka K, et al. Tumor recurrence and survival in patients treated for thymomas and thymic squamous cell carcinomas: a retrospective analysis. J Clin Oncol. 2004;22:1501–9.CrossRefPubMed
7.
Zurück zum Zitat Endo M, Nakagawa K, Ohde Y, Okumura T, Kondo H, Igawa S, et al. Utility of 18FDG-PET for differentiating the grade of malignancy in thymic epithelial tumors. Lung Cancer. 2008;61:350–5.CrossRefPubMed Endo M, Nakagawa K, Ohde Y, Okumura T, Kondo H, Igawa S, et al. Utility of 18FDG-PET for differentiating the grade of malignancy in thymic epithelial tumors. Lung Cancer. 2008;61:350–5.CrossRefPubMed
8.
Zurück zum Zitat Jeong YJ, Lee KS, Kim J, Shim YM, Han J, Kwon OJ. Does CT of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis? AJR Am J Roentgenol. 2004;183:283–9.CrossRefPubMed Jeong YJ, Lee KS, Kim J, Shim YM, Han J, Kwon OJ. Does CT of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis? AJR Am J Roentgenol. 2004;183:283–9.CrossRefPubMed
9.
Zurück zum Zitat Kumar A, Regmi SK, Dutta R, Kumar R, Gupta SD, Das P, et al. Characterization of thymic masses using (18)F-FDG PET-CT. Ann Nucl Med. 2009;23:569–77.CrossRefPubMed Kumar A, Regmi SK, Dutta R, Kumar R, Gupta SD, Das P, et al. Characterization of thymic masses using (18)F-FDG PET-CT. Ann Nucl Med. 2009;23:569–77.CrossRefPubMed
10.
Zurück zum Zitat Sung YM, Lee KS, Kim BT, Choi JY, Shim YM, Yi CA. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. J Nucl Med. 2006;47:1628–34.PubMed Sung YM, Lee KS, Kim BT, Choi JY, Shim YM, Yi CA. 18F-FDG PET/CT of thymic epithelial tumors: usefulness for distinguishing and staging tumor subgroups. J Nucl Med. 2006;47:1628–34.PubMed
11.
Zurück zum Zitat Detterbeck FC. Clinical value of the WHO classification system of thymoma. Ann Thorac Surg. 2006;81:2328–34.CrossRefPubMed Detterbeck FC. Clinical value of the WHO classification system of thymoma. Ann Thorac Surg. 2006;81:2328–34.CrossRefPubMed
12.
Zurück zum Zitat Kim JY, Kim HO, Kim JS, Moon DH, Kim YH, Kim DK, et al. 18F-FDG PET/CT is useful for pretreatment assessment of the histopathologic type of thymic epithelial tumors. Nucl Med Mol Imaging. 2010;2010(44):177–84.CrossRef Kim JY, Kim HO, Kim JS, Moon DH, Kim YH, Kim DK, et al. 18F-FDG PET/CT is useful for pretreatment assessment of the histopathologic type of thymic epithelial tumors. Nucl Med Mol Imaging. 2010;2010(44):177–84.CrossRef
13.
Zurück zum Zitat Liu Y. Characterization of thymic lesions with F-18 FDG PET-CT: an emphasis on epithelial tumors. Nucl Med Commun. 2011;32:554–62.CrossRefPubMed Liu Y. Characterization of thymic lesions with F-18 FDG PET-CT: an emphasis on epithelial tumors. Nucl Med Commun. 2011;32:554–62.CrossRefPubMed
14.
Zurück zum Zitat Fukumoto K, Taniguchi T, Ishikawa Y, Kawaguchi K, Fukui T, Kato K, et al. The utility of [18F]-fluorodeoxyglucose positron emission tomography-computed tomography in thymic epithelial tumours. Eur J Cardiothorac Surg. 2012;42:e152–6.CrossRefPubMed Fukumoto K, Taniguchi T, Ishikawa Y, Kawaguchi K, Fukui T, Kato K, et al. The utility of [18F]-fluorodeoxyglucose positron emission tomography-computed tomography in thymic epithelial tumours. Eur J Cardiothorac Surg. 2012;42:e152–6.CrossRefPubMed
15.
Zurück zum Zitat Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.CrossRefPubMed Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.CrossRefPubMed
16.
Zurück zum Zitat Ha SG, Choi HY, Cheon GJ, Kang KW, Chung JK, Kim EE, et al. Autoclustering of non-small cell lung carcinoma subtypes on 18F-FDG PET using texture analysis: a preliminary result. Nucl Med Mol Imaging. 2014;48:278–86.CrossRefPubMedPubMedCentral Ha SG, Choi HY, Cheon GJ, Kang KW, Chung JK, Kim EE, et al. Autoclustering of non-small cell lung carcinoma subtypes on 18F-FDG PET using texture analysis: a preliminary result. Nucl Med Mol Imaging. 2014;48:278–86.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.CrossRefPubMed Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26.CrossRefPubMed
18.
Zurück zum Zitat Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 2013;266:326–36.CrossRefPubMed Ganeshan B, Goh V, Mandeville HC, Ng QS, Hoskin PJ, Miles KA. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology. 2013;266:326–36.CrossRefPubMed
19.
Zurück zum Zitat Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200.CrossRefPubMedPubMedCentral Boellaard R, O’Doherty MJ, Weber WA, Mottaghy FM, Lonsdale MN, Stroobants SG, et al. FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging. 2010;37:181–200.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Lasnon C, Desmonts C, Quak E, Gervais R, Do P, Dubos-Arvis C, et al. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2013;40:985–96.CrossRefPubMedPubMedCentral Lasnon C, Desmonts C, Quak E, Gervais R, Do P, Dubos-Arvis C, et al. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2013;40:985–96.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Oh JS, Kang BC, Roh JL, Kim JS, Cho KJ, Lee SW, et al. Intratumor textural heterogeneity on pretreatment F-FDG PET images predicts response and survival after chemoradiotherapy for hypopharyngeal cancer. Ann Surg Oncol. 2015;22:2746–54.CrossRefPubMed Oh JS, Kang BC, Roh JL, Kim JS, Cho KJ, Lee SW, et al. Intratumor textural heterogeneity on pretreatment F-FDG PET images predicts response and survival after chemoradiotherapy for hypopharyngeal cancer. Ann Surg Oncol. 2015;22:2746–54.CrossRefPubMed
22.
Zurück zum Zitat Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19:1264–74.CrossRef Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19:1264–74.CrossRef
23.
Zurück zum Zitat Loh HH, Leu JG, Luo RC. The analysis of natural textures using run length features. Ind Electron IEEE Trans. 1988;35:323–8.CrossRef Loh HH, Leu JG, Luo RC. The analysis of natural textures using run length features. Ind Electron IEEE Trans. 1988;35:323–8.CrossRef
24.
Zurück zum Zitat Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture indexes and gray level size zone matrix application to cell nuclei classification. In: Krasnoproshin V, Ablameyko S, Sadykhov R, editors. 10th International Conference on Pattern Recognition and Information Processing PRIP’ 2009. Minsk: Belarusian State University Publishing Center; 2009. p. 140–5. Thibault G, Fertil B, Navarro C, Pereira S, Cau P, Levy N, et al. Texture indexes and gray level size zone matrix application to cell nuclei classification. In: Krasnoproshin V, Ablameyko S, Sadykhov R, editors. 10th International Conference on Pattern Recognition and Information Processing PRIP’ 2009. Minsk: Belarusian State University Publishing Center; 2009. p. 140–5.
25.
Zurück zum Zitat Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.CrossRefPubMed Orlhac F, Soussan M, Maisonobe JA, Garcia CA, Vanderlinden B, Buvat I. Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med. 2014;55:414–22.CrossRefPubMed
26.
Zurück zum Zitat Oh JS, Oh M, Chung SJ, Kim JS. Cerebellum-specific 18F-FDG PET analysis for the detection of subregional glucose metabolism changes in spinocerebellar ataxia. Neuroreport. 2014;25:1198–202.CrossRefPubMed Oh JS, Oh M, Chung SJ, Kim JS. Cerebellum-specific 18F-FDG PET analysis for the detection of subregional glucose metabolism changes in spinocerebellar ataxia. Neuroreport. 2014;25:1198–202.CrossRefPubMed
27.
Zurück zum Zitat Oh JS, Kang BC, Roh JL, Kim JS, Cho KJ, Lee SW, et al. Intratumor textural heterogeneity on pretreatment (18)F-FDG PET images predicts response and survival after chemoradiotherapy for hypopharyngeal cancer. Ann Surg Oncol. 2015;22:2746–54.CrossRefPubMed Oh JS, Kang BC, Roh JL, Kim JS, Cho KJ, Lee SW, et al. Intratumor textural heterogeneity on pretreatment (18)F-FDG PET images predicts response and survival after chemoradiotherapy for hypopharyngeal cancer. Ann Surg Oncol. 2015;22:2746–54.CrossRefPubMed
28.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRefPubMed
29.
Zurück zum Zitat Brooks FJ, Grigsby PW. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement. Radiat Oncol. 2013;8:294.CrossRefPubMedPubMedCentral Brooks FJ, Grigsby PW. FDG uptake heterogeneity in FIGO IIb cervical carcinoma does not predict pelvic lymph node involvement. Radiat Oncol. 2013;8:294.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Marchevsky AM, Gupta R, McKenna RJ, Wick M, Moran C, Zakowski MF, et al. Evidence-based pathology and the pathologic evaluation of thymomas: the World Health Organization classification can be simplified into only 3 categories other than thymic carcinoma. Cancer. 2008;112:2780–8.CrossRefPubMed Marchevsky AM, Gupta R, McKenna RJ, Wick M, Moran C, Zakowski MF, et al. Evidence-based pathology and the pathologic evaluation of thymomas: the World Health Organization classification can be simplified into only 3 categories other than thymic carcinoma. Cancer. 2008;112:2780–8.CrossRefPubMed
31.
Zurück zum Zitat Sakakura N, Tateyama H, Nakamura S, Taniguchi T, Usami N, Ishikawa Y, et al. Diagnostic reproducibility of thymic epithelial tumors using the World Health Organization classification: note for thoracic clinicians. Gen Thorac Cardiovasc Surg. 2013;61:89–95.CrossRefPubMed Sakakura N, Tateyama H, Nakamura S, Taniguchi T, Usami N, Ishikawa Y, et al. Diagnostic reproducibility of thymic epithelial tumors using the World Health Organization classification: note for thoracic clinicians. Gen Thorac Cardiovasc Surg. 2013;61:89–95.CrossRefPubMed
32.
Zurück zum Zitat Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.CrossRefPubMedPubMedCentral Tixier F, Hatt M, Le Rest CC, Le Pogam A, Corcos L, Visvikis D. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med. 2012;53:693–700.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.CrossRefPubMed Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.CrossRefPubMed
34.
35.
Zurück zum Zitat Zettl A, Strobel P, Wagner K, Katzenberger T, Ott G, Rosenwald A, et al. Recurrent genetic aberrations in thymoma and thymic carcinoma. Am J Pathol. 2000;157:257–66.CrossRefPubMedPubMedCentral Zettl A, Strobel P, Wagner K, Katzenberger T, Ott G, Rosenwald A, et al. Recurrent genetic aberrations in thymoma and thymic carcinoma. Am J Pathol. 2000;157:257–66.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.CrossRefPubMedPubMedCentral Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Cook GJR, Siddique M, Taylor BP, Yip C, Chicklore S, Goh V. Radiomics in PET: principles and applications. Clin Transl Imaging. 2014;2:269–76.CrossRef Cook GJR, Siddique M, Taylor BP, Yip C, Chicklore S, Goh V. Radiomics in PET: principles and applications. Clin Transl Imaging. 2014;2:269–76.CrossRef
38.
Zurück zum Zitat Turin GL. An introduction to matched filters. IEEE Trans Inf Theory. 1960;6:311–29.CrossRef Turin GL. An introduction to matched filters. IEEE Trans Inf Theory. 1960;6:311–29.CrossRef
39.
Zurück zum Zitat Lee JE, Chung MK, Lazar M, DuBray MB, Kim J, Bigler ED, et al. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage. 2009;44:870–83.CrossRefPubMedPubMedCentral Lee JE, Chung MK, Lazar M, DuBray MB, Kim J, Bigler ED, et al. A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis. Neuroimage. 2009;44:870–83.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRefPubMed Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRefPubMed
41.
Zurück zum Zitat Detterbeck FC, Nicholson AG, Kondo K, Van Schil P, Moran C. The Masaoka-Koga stage classification for thymic malignancies: clarification and definition of terms. J Thorac Oncol. 2011;6:S1710–6.CrossRefPubMed Detterbeck FC, Nicholson AG, Kondo K, Van Schil P, Moran C. The Masaoka-Koga stage classification for thymic malignancies: clarification and definition of terms. J Thorac Oncol. 2011;6:S1710–6.CrossRefPubMed
Metadaten
Titel
Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via 18F-FDG PET/CT
verfasst von
Hyo Sang Lee
Jungsu S. Oh
Young Soo Park
Se Jin Jang
Ik Soo Choi
Jin-Sook Ryu
Publikationsdatum
11.02.2016
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 4/2016
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-016-1062-2

Weitere Artikel der Ausgabe 4/2016

Annals of Nuclear Medicine 4/2016 Zur Ausgabe