Skip to main content
Erschienen in: Annals of Nuclear Medicine 1/2020

28.10.2019 | Original Article

Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on 18F FDG-PET/CT

verfasst von: Sho Koyasu, Mizuho Nishio, Hiroyoshi Isoda, Yuji Nakamoto, Kaori Togashi

Erschienen in: Annals of Nuclear Medicine | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Objective

To develop and evaluate a radiomics approach for classifying histological subtypes and epidermal growth factor receptor (EGFR) mutation status in lung cancer on PET/CT images.

Methods

PET/CT images of lung cancer patients were obtained from public databases and used to establish two datasets, respectively to classify histological subtypes (156 adenocarcinomas and 32 squamous cell carcinomas) and EGFR mutation status (38 mutant and 100 wild-type samples). Seven types of imaging features were obtained from PET/CT images of lung cancer. Two types of machine learning algorithms were used to predict histological subtypes and EGFR mutation status: random forest (RF) and gradient tree boosting (XGB). The classifiers used either a single type or multiple types of imaging features. In the latter case, the optimal combination of the seven types of imaging features was selected by Bayesian optimization. Receiver operating characteristic analysis, area under the curve (AUC), and tenfold cross validation were used to assess the performance of the approach.

Results

In the classification of histological subtypes, the AUC values of the various classifiers were as follows: RF, single type: 0.759; XGB, single type: 0.760; RF, multiple types: 0.720; XGB, multiple types: 0.843. In the classification of EGFR mutation status, the AUC values were: RF, single type: 0.625; XGB, single type: 0.617; RF, multiple types: 0.577; XGB, multiple types: 0.659.

Conclusions

The radiomics approach to PET/CT images, together with XGB and Bayesian optimization, is useful for classifying histological subtypes and EGFR mutation status in lung cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRef
2.
Zurück zum Zitat Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.CrossRef Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.CrossRef
3.
Zurück zum Zitat Cook GJ, O’Brien ME, Siddique M, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.CrossRef Cook GJ, O’Brien ME, Siddique M, et al. Non-small cell lung cancer treated with erlotinib: heterogeneity of (18)F-FDG uptake at PET-association with treatment response and prognosis. Radiology. 2015;276:883–93.CrossRef
4.
Zurück zum Zitat Domachevsky L, Groshar D, Galili R, Saute M, Bernstine H. Survival prognostic value of morphological and metabolic variables in patients with stage I and II non-Small cell lung cancer. Eur Radiol. 2015;25:3361–7.CrossRef Domachevsky L, Groshar D, Galili R, Saute M, Bernstine H. Survival prognostic value of morphological and metabolic variables in patients with stage I and II non-Small cell lung cancer. Eur Radiol. 2015;25:3361–7.CrossRef
5.
Zurück zum Zitat Koyasu S, Nakamoto Y, Kikuchi M, et al. Prognostic value of pretreatment 18F-FDG PET/CT parameters including visual evaluation in patients with head and neck squamous cell carcinoma. AJR Am J Roentgenol. 2014;202:851–8.CrossRef Koyasu S, Nakamoto Y, Kikuchi M, et al. Prognostic value of pretreatment 18F-FDG PET/CT parameters including visual evaluation in patients with head and neck squamous cell carcinoma. AJR Am J Roentgenol. 2014;202:851–8.CrossRef
6.
Zurück zum Zitat Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS ONE. 2015;10:e0124165.CrossRef Chalkidou A, O’Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS ONE. 2015;10:e0124165.CrossRef
7.
Zurück zum Zitat Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016. p. 785–794. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016. p. 785–794.
8.
Zurück zum Zitat Bergstra J, Bardenet R, Bengio Y, Ke´gl B. Algorithms for hyper-parameter optimization. In: Proceedings of the 25th annual conference on neural information processing systems 2011. p. 2546–2554. Bergstra J, Bardenet R, Bengio Y, Ke´gl B. Algorithms for hyper-parameter optimization. In: Proceedings of the 25th annual conference on neural information processing systems 2011. p. 2546–2554.
9.
Zurück zum Zitat Nishio M, Nishizawa M, Sugiyama O, et al. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLoS ONE. 2018;13:e0195875.CrossRef Nishio M, Nishizawa M, Sugiyama O, et al. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization. PLoS ONE. 2018;13:e0195875.CrossRef
10.
Zurück zum Zitat Maeta K, Nishiyama Y, Fujibayashi K, et al. Prediction of glucose metabolism disorder risk using a machine learning algorithm: pilot study. JMIR Diabetes. 2018;3:e10212.CrossRef Maeta K, Nishiyama Y, Fujibayashi K, et al. Prediction of glucose metabolism disorder risk using a machine learning algorithm: pilot study. JMIR Diabetes. 2018;3:e10212.CrossRef
11.
Zurück zum Zitat Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57.CrossRef Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57.CrossRef
12.
Zurück zum Zitat Gevaert O, Xu J, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary results. Radiology. 2012;264:387–96.CrossRef Gevaert O, Xu J, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data–methods and preliminary results. Radiology. 2012;264:387–96.CrossRef
14.
Zurück zum Zitat Nishio M, Kono AK, Kubo K, Koyama H, Nishii T, Sugimura K. Tumor segmentation on 18F FDG-PET images using graph cut and local spatial information. Open J Med Imaging. 2015;5:174–81.CrossRef Nishio M, Kono AK, Kubo K, Koyama H, Nishii T, Sugimura K. Tumor segmentation on 18F FDG-PET images using graph cut and local spatial information. Open J Med Imaging. 2015;5:174–81.CrossRef
15.
Zurück zum Zitat Besson FL, Henry T, Meyer C, et al. Rapid contour-based segmentation for 18F-FDG PET imaging of lung tumors by using ITK-SNAP: comparison to expert-based segmentation. Radiology. 2018;288(1):277–84.CrossRef Besson FL, Henry T, Meyer C, et al. Rapid contour-based segmentation for 18F-FDG PET imaging of lung tumors by using ITK-SNAP: comparison to expert-based segmentation. Radiology. 2018;288(1):277–84.CrossRef
16.
Zurück zum Zitat Yan J, Chu-Shern JL, Loi HY, Khor LK, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56:1667–73.CrossRef Yan J, Chu-Shern JL, Loi HY, Khor LK, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56:1667–73.CrossRef
17.
Zurück zum Zitat Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27:4498–509.CrossRef Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27:4498–509.CrossRef
18.
Zurück zum Zitat Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 1996;29:51–9.CrossRef Ojala T, Pietikäinen M, Harwood D. A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 1996;29:51–9.CrossRef
19.
Zurück zum Zitat Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002;24:971–87.CrossRef Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell. 2002;24:971–87.CrossRef
20.
Zurück zum Zitat Zhao G, Pietikäinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell. 2007;29:915–28.CrossRef Zhao G, Pietikäinen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell. 2007;29:915–28.CrossRef
24.
Zurück zum Zitat Lv Z, Fan J, Xu J, et al. Value of 18F-FDG PET/CT for predicting EGFR mutations and positive ALK expression in patients with non-small cell lung cancer: a retrospective analysis of 849 Chinese patients. Eur J Nucl Med Mol Imaging. 2018;45:735–50.CrossRef Lv Z, Fan J, Xu J, et al. Value of 18F-FDG PET/CT for predicting EGFR mutations and positive ALK expression in patients with non-small cell lung cancer: a retrospective analysis of 849 Chinese patients. Eur J Nucl Med Mol Imaging. 2018;45:735–50.CrossRef
25.
Zurück zum Zitat Fotouhi S, Asadi S, Kattan MW. A comprehensive data level analysis for cancer diagnosis on imbalanced data. J Biomed Inform. 2019;90:103089.CrossRef Fotouhi S, Asadi S, Kattan MW. A comprehensive data level analysis for cancer diagnosis on imbalanced data. J Biomed Inform. 2019;90:103089.CrossRef
Metadaten
Titel
Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on 18F FDG-PET/CT
verfasst von
Sho Koyasu
Mizuho Nishio
Hiroyoshi Isoda
Yuji Nakamoto
Kaori Togashi
Publikationsdatum
28.10.2019
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 1/2020
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-019-01414-0

Weitere Artikel der Ausgabe 1/2020

Annals of Nuclear Medicine 1/2020 Zur Ausgabe