Skip to main content
Erschienen in: Oncology and Therapy 2/2021

Open Access 01.12.2021 | Review

Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment

verfasst von: Jamie Burgess, Maryam Ferdousi, David Gosal, Cheng Boon, Kohei Matsumoto, Anne Marshall, Tony Mak, Andrew Marshall, Bernhard Frank, Rayaz A. Malik, Uazman Alam

Erschienen in: Oncology and Therapy | Ausgabe 2/2021

Abstract

Purpose

This review provides an update on the current clinical, epidemiological and pathophysiological evidence alongside the diagnostic, prevention and treatment approach to chemotherapy-induced peripheral neuropathy (CIPN).

Findings

The incidence of cancer and long-term survival after treatment is increasing. CIPN affects sensory, motor and autonomic nerves and is one of the most common adverse events caused by chemotherapeutic agents, which in severe cases leads to dose reduction or treatment cessation, with increased mortality. The primary classes of chemotherapeutic agents associated with CIPN are platinum-based drugs, taxanes, vinca alkaloids, bortezomib and thalidomide. Platinum agents are the most neurotoxic, with oxaliplatin causing the highest prevalence of CIPN. CIPN can progress from acute to chronic, may deteriorate even after treatment cessation (a phenomenon known as coasting) or only partially attenuate. Different chemotherapeutic agents share both similarities and key differences in pathophysiology and clinical presentation. The diagnosis of CIPN relies heavily on identifying symptoms, with limited objective diagnostic approaches targeting the class of affected nerve fibres. Studies have consistently failed to identify at-risk cohorts, and there are no proven strategies or interventions to prevent or limit the development of CIPN. Furthermore, multiple treatments developed to relieve symptoms and to modify the underlying disease in CIPN have failed.

Implications

The increasing prevalence of CIPN demands an objective approach to identify at-risk patients in order to prevent or limit progression and effectively alleviate the symptoms associated with CIPN. An evidence base for novel targets and both pharmacological and non-pharmacological treatments is beginning to emerge and has been recognised recently in publications by the American Society of Clinical Oncology and analgesic trial design expert groups such as ACTTION.
Key Summary Points
Chemotherapy-induced peripheral neuropathy is a common adverse event which affects the sensory, motor and autonomic nerves.
The diagnosis of chemotherapy-induced peripheral neuropathy lacks a gold standard.
There are currently no proven strategies or interventions to prevent or limit the development of chemotherapy-induced peripheral neuropathy.
A mechanistic approach is needed to address strategies for prevention and treatment of chemotherapy-induced peripheral neuropathy.

Introduction

The most recent estimation for all-cause cancer incidence is 18.1 million new cases per year [1]. With more effective targeted cancer treatments, long-term cancer survival is increasing in high-income countries [2], as evidenced by the 27% drop in the overall cancer death rate in the United States between 1991 and 2016 [3, 4]. However, chemotherapy-induced peripheral neuropathy (CIPN) is a common and challenging complication of several frequently administered antineoplastic agents [5]. The development of CIPN may result in prolonged infusion times, dose reduction or premature cessation of chemotherapy [68], which may negatively impact both treatment efficacy and patient survival [9, 10]. A meta-analysis of randomised controlled trials and cohort studies showed that around half of all patients develop CIPN during treatment [10].
There is currently no gold standard for the assessment of CIPN, with a variety of clinical tools utilised in studies with heterogeneous primary outcome measures [1121]. Indeed, subclinical nerve damage and motor involvement are poorly defined when using current standardised clinical instruments [15]. Accurate comparisons of the prevalence, incidence, prevention and treatment of CIPN are therefore problematic (Table 1). Additionally, there are considerable disparities in patient- and clinician-reported neurotoxicity. For example, in the ICON7 trial, clinicians reported CIPN in 28% of patients, while 67% of patients reported ‘quite a bit’ or ‘very much’ tingling or numbness, with poor agreement between patients and clinicians (κ = 0.236, 95% confidence interval, 0.177–0.296, p < 0.001) [22].
Table 1
The incidence of chemotherapy-induced peripheral neuropathy of participants undergoing platinum, taxane, vinca-alkaloid, immunomodulatory or proteasome inhibitor-based chemotherapy regimens
Study and design
Participants
Agent(s) studied
Cancer types
Diagnostic methodology
Grading criteria used
Study duration/length of follow-up
Incidence
Platinum agents
Leonard et al. [298]: Phase I trial
Oxaliplatin (n = 86)
Oxaliplatin
Colorectal
Questionnaire asked by clinical staff (SRO)
OSNS, based on the NCI-CTC
Up to 12 cycles
Grade 1 dysaesthesia: 70.9%, paraesthesia: 66.3%, grade 2 dysaesthesia: 11.6%, paraesthesia: 19.8%, grade 3 dysaesthesia: 4.7%, paraesthesia: 7%, grade 4 dysaesthesia: 0%, paraesthesia: 1.2%
Alejandro et al. [299]: Retrospective review of cohort study
FOLFOX6 (n = 50)
FOLFOX6
Colorectal
NCI-CTC
NCI-CTC
Up to 12 cycles
84% reported at least one episode of acute neuropathy, 74% reported acute OIPN. 48% reported persistent OIPN. 12% reported grade 3 neuropathy > 8 cycles of FOLFOX
Rothenberg et al. [300]: Phase III trial
Total (n = 445), Oxaliplatin (n = 153), FOLFOX4 (n = 150) fluorouracil and leucovorin (n = 142)
Oxaliplatin, FOLFOX, fluorouracil and leucovorin
Metastatic colorectal
Questionnaire asked by clinical staff (SRO)
OSNS, based on the NCI-CTC
14 months (maximum)
Acute OIPN (all grades): 53–58%, acute OIPN grade 3–4: 3–10%, cumulative OIPN: 51%, cumulative OIPN grade 3–4: 3%
Yamada et al. [301]: Phase III trial
Total (n = 685) S-1 and Oxaliplatin (n = 318), S-1 and Cisplatin (n = 324)
S-1 and oxaliplatin
S-1 and cisplatin
Advanced gastric
SRO
NCI-CTC-AE
25.9 (median)
Oxaliplatin—sensory neuropathy (any grade): 85.5%, grade ≥ 3: 16%, cisplatin sensory neuropathy (any grade): 23.6%, grade ≥ 3: 0%
Bando et al. [302]: Phase III trial
Total (n = 685)
S-1 and oxaliplatin (n = 343)
S-1 and cisplatin (n = 342)
S-1 and oxaliplatin
S-1 and cisplatin
Advanced gastric
SRO
NCI-CTC-AE
17.5 months for oxaliplatin, 13.5 months for cisplatin (median)
OIPN grade ≥ 3 4.5–5.3%, CisPN grade ≥: 0%
Lonardi et al. [303]: Phase III multicentre trial
Total (n = 3715)
3 months FOLFOX/XELOX treatment (n = 1848)
6 months FOLFOX/XELOX treatment (n = 1867)
FOLFOX4 (64%) or XELOX (36%)
Stage II/III colorectal
NCI-CTC (SRO)
NCI-CTC
3 Years
3 months treatment with either FOLFOX or XELOX, grade 0: 49.9%, grade 1–2: 41.3%, grade 3–4: 8.8%, 6 months treatment with either FOLFOX or XELOX, grade 0: 31.6%, grade 1–2: 37.2%, grade 3–4: 31.2%
Al-Batran et al. [304]: Phase III trial
Total (n = 220)
Oxaliplatin (n = 112)
Cisplatin (n = 102)
Fluorouracil, leucovorin, and oxaliplatin
Fluorouracil, leucovorin, and cisplatin
Advanced gastro-oesophageal
NCI-CTC (SRO)
WHO toxicity criteria
14 months (median)
Oxaliplatin (all grades): 62.5%, oxaliplatin grade 3–4: 14.3%, cisplatin (all grades): 21.6%, cisplatin grade 3-4: 2%
Cassidy et al. [305]: Two-arm, open-label, randomised phase III trial
Total = (n = 1304)
FOLFOX4 ± placebo (n = 649)
XELOX ± placebo (n = 655)
FOLFOX4, XELOX
Colorectal
NCI-CTC (SRO)
NCI-CTC
29.7 months (median)
FOLFOX4, grade 1: 11%, grade 2: 5%, grade 3: 4%, grade 4: 0%, XELOX, grade 1: 11%, grade 2: 5%, grade 3: 4%, grade 4: 0%
Tournigand et al. [306]: Randomised FOLFOX comparator trial
Total (n = 620)
FOLFOX4 (n = 311)
FOLFOX7 + simplified leucovorin and fluorouracil (n = 309)
FOLFOX4, FOLFOX7, leucovorin, fluorouracil
Advanced colorectal
NCI-CTC (SRO)
NCI-CTC
31 months (median)
FOLFOX4, grade 1: 34%, grade 2: 37%, grade 3: 18%, grade 4: 0%, FOLFOX7, grade 1: 36%, grade 2: 42%, grade 3: 13%, grade 4: 0%
Andre et al. [307]: International phase III trial
Total (n = 2246)
Oxaliplatin + fluorouracil and leucovorin (n = 1123)
Fluorouracil and leucovorin (n = 1123)
Oxaliplatin, fluorouracil, leucovorin,
Stage II/III colorectal
NCI-CTC (SRO)
NCI-CTC (version 1.0)
-
Oxaliplatin + fluorouracil and leucovorin, paraesthesia, all grades: 92%, grade 3: 12.4%, fluorouracil and leucovorin, all grades: 15.6%, grade 3: 0.2%
Gebremedhn et al. [42]: Systematic review
Total participants treated with oxaliplatin (n = 6211)
FOLFOX, FOLFOX3, FOLFOX4, oxaliplatin, XELOX
-
NCI-CTC version 1, 2 and 3, TNSc, WHO toxicity criteria, FACT, OSNS
-
-
Acute OIPN: most common AE of all grades 4–98%
Beijers et al. [308]: Systematic review
Total participants treated with oxaliplatin (n = 3869)
FOLFOX, FOLFOX4, XELOX
-
NCI-CTC version 1, 2 and 3, TNSc, WHO toxicity criteria, FACT, OSNS, NCS
-
12 months–8 years
No definitive conclusions drawn for the incidence and risk factors for chronic OIPN
Land et al. [309]: Phase III trial
Total (n = 395)
Oxaliplatin, fluorouracil and leucovorin (n = 189)
Fluorouracil and leucovorin (n = 206)
Oxaliplatin, fluorouracil and leucovorin
Stage II/III colorectal
FACT, OSNS, NCI-CTC
 
18 months
OIPN at 12 months, grade 1: 25%, grade 2: 4.5%, grade 3: 0.4%
De Gramont et al. [46]: Phase III trial
Total (n = 420)
Oxaliplatin, fluorouracil and leucovorin (n = 210)
Fluorouracil and leucovorin (n = 210)
Oxaliplatin, fluorouracil and leucovorin
Colorectal
NCI-CTC
NCI-CTC
27.7 months (median)
Painless paraesthesia: 65.1%, painful paraesthesia: 10.5%, pharyngolaryngeal dysaesthesia: 22.5%
Briani et al. [47]: Longitudinal cohort study
Total (n = 91)
FOLFOX4, FOLFOX6, XELOX
Colorectal
NCI-CTC, neurological examination, TNSc and NCS
TNSc
25 months (median) after treatment cessation
After 2 years treatment cessation: OIPN, grade 1: 85.2%, grade 2: 14.8%, grade 3: 0%
Park et al. [43]: Longitudinal cohort study
Total (n = 24)
FOLFOX4, FOLFOX6, XELOX
Colorectal
Clinical examination, TNSc, NSS, NCI-CTC (Sensory subscale), NCS
TNSc, NCI-CTC (Sensory subscale)
29 ± 4 months after treatment cessation
After 2.4 years treatment cessation: persistent OIPN symptoms: 79.2% (upper limbs 45.8%, 79.2% in the lower limbs), grade 0: 20.8%, grade 1: 37.5%, grade 2: 29.2%, grade 3: 12.5%, 66.7% reported minor improvements of 1 grade during time to follow-up > 40% reported fine motor deficits, walking difficulties and significant functional impairments
Ibrahim et al. [310]: multicentre randomised trial enrolled
Total (n = 445)
Oxaliplatin, fluorouracil and leucovorin (n = 150)
Fluorouracil and leucovorin (n = 142)
Oxaliplatin (n = 153)
Oxaliplatin, fluorouracil and leucovorin
-
WHO toxicity criteria, NCI-CTC
NCI-CTC
-
Oxaliplatin (all grades), total: 76%, acute: 65%, chronic: 43%, oxaliplatin (grade 3/4), acute: 5%, chronic: 3%, oxaliplatin, fluorouracil and leucovorin (all grades), total: 74%, acute: 56%, chronic: 48%, oxaliplatin, fluorouracil and leucovorin (grade 3/4), acute: 2%, chronic: 6%
Taxanes
Argyriou et al. [311]: Prospective study
Total (n = 21)
Paclitaxel, carboplatin
Lung, breast, ovarian
NSS, NDS, NCS
PNP, WHO toxicity criteria
3 months
Neuropathy (all grades): 66.5%, none: 33.3%, mild: 19%, moderate: 33.3%, severe: 14.2%
Peng et al. [312]: Meta-analysis
Total (n = 2878)
Nab-paclitaxel
Gastric, urothelial, pancreatic, lung, breast, cervix, ovarian, melanoma and prostate
-
NCI-CTC (version 4.0)
-
Nab-paclitaxel TIPN, total (all grades): 51.0% (95% CI 45.1–57.6%), high-grade: 12.4% (9.8–15.7%)
Socinski et al. [313]: Phase III trial
Total (n = 1052)
Nab-paclitaxel + carboplatin (n = 521)
Paclitaxel + carboplatin (n = 531)
Nab-paclitaxel, paclitaxel, carboplatin
Advanced non-small cell lung
ECOG, NCI-CTC (version 3.0)
NCI-CTC (version 3.0)
 
Nab-paclitaxel group, TIPN (all grades): 46%, grade 3: 3%, grade 4: 0%, paclitaxel group TIPN (all grades): 62%, grade 3: 11%, grade 4 :  < 1%
Pace et al. [241]: Pilot study
Total (n = 14)
Paclitaxel
Advanced breast
Neurological examination (VPT, pinprick, muscle strength, deep tendon reflexes), TNS, NCS
-
24 weeks, for 11 participants, a further follow-up examination was conducted 4–17 months after cessation of treatment
TIPN (all grades), 12 weeks: 71% (paraesthesia ± impaired tendon reflexes), 14 weeks: 96% (signs ± symptoms ± significant NCS abnormalities), non-significant improvement in all patients at follow-up
Baldwin et al. [314]: Prospective cohort study
Total (n = 1940)
Paclitaxel
Breast
NCI-CTC (version 2.0)
NCI-CTC (version 2.0)
-
TIPN grade ≥ 2, 4 cycles of paclitaxel: 17%, 6 cycles of paclitaxel: 33%
Dorling et al. [315]: Secondary case–control study of four chemotherapy trials
Total (n = 2354)
Participants analysed according to NCI-CTC-AE (n = 1279)
Paclitaxel, gemcitabine, cyclophosphamide, methotrexate, 5-fluorouracil, epirubicin
Breast
NCI-CTC-AE (version 2.0 & 3.0), TNS
NCI-CTC-AE (version 2.0 & 3.0)
1 month after treatment cessation
TIPN, grade 0: 21.2%, grade 1: 50.7%, grade 2: 23.7%, grade 3: 4.4%, TIPN grade ≥ 2: 28.1%
Shimozuma et al. [84]: Phase III trial
Total (n = 300)
Anthracycline + cyclophosphamide + paclitaxel (n = 74)
Anthracycline + cyclophosphamide + docetaxel (n = 75), Paclitaxel (n = 76)
Docetaxel (n = 75)
Anthracycline, cyclophosphamide paclitaxel, docetaxel
Breast
PNQ, FACT, NCI-CTC (version 2.0)
PNQ
1 year
Incidence of PNQ grade D or E (equivalent to NCI-CTC grade 3–4) for: paclitaxel:  > 10%, docetaxel: > 10%, both worsened after cycles 3–7, with an incidence of 16–21%
Scagliotti et al. [316]: Phase III trial
Total (n = 926)
Paclitaxel + carboplatin + sorafenib (n = 464)
Paclitaxel + carboplatin + placebo (n = 462)
Paclitaxel, carboplatin, sorafenib
Advanced non-small cell lung
NCI-CTC-AE (version 3.0)
NCI-CTC-AE (version 3.0)
 ~ 10 months
Paclitaxel, carboplatin, sorafenib group, all grades: 14%, grade 3: 3%, paclitaxel, carboplatin, placebo group, all grades: 13%, grade 3: 2%
Bonomi et al. [83]: Phase III trial
Total (n = 574)
High-dose paclitaxel and cisplatin (n = 193)
Low-dose paclitaxel and cisplatin (n = 191)
Etoposide and cisplatin (n = 190)
Paclitaxel, etoposide, cisplatin,
Advanced non-small cell lung
ECOG, FACT
ECOG
28.5 months (median)
Grade 3 TIPN, high-dose paclitaxel and cisplatin: 40%, low-dose paclitaxel and cisplatin: 23%, etoposide and cisplatin: 21%
Scagliotti et al. [317]: Phase III trial
Total (n = 607)
Paclitaxel + carboplatin (n = 201)
Gemcitabine + cisplatin (n = 205)
Vinorelbine + cisplatin (n = 201)
Paclitaxel, carboplatin, gemcitabine, cisplatin, vinorelbine
Advanced non-small cell lung
NCI-CTC (version 2.0)
NCI-CTC (version 2.0)
8–10 months
CIPN in paclitaxel and carboplatin group, grade 1: 22.8%, grade 2: 7%, grade 3: 0%, CIPN in the cisplatin and gemcitabine, grade 1: 4%, grade 2: 0%, grade 3: 0%, CIPN in the vinorelbine and cisplatin, grade 1: 4%, grade 2: 2.5%, grade 3: 0.5%
Gao et al. [318]: Meta-analysis
Total (n = 940)
Paclitaxel
Advanced, non-small cell lung
Weekly paclitaxel treatment grade 3–4: 10%, once every 3 weeks paclitaxel treatment, grade 3–4: 17.92%
Vinca alkaloids
Ness et al. [107]: Cohort study (children)
Total (n = 531)
Vincristine, vinblastine, carboplatin, cisplatin
Skin, brain, bone, muscle and kidney
mTNS, SOT
mTNS
Participants underwent testing ≥ 10 years after treatment
Sensory neuropathy (all grades): 20.4%, motor neuropathy (all grades): 20.8%
Andersson et al. [108]: Cohort study
Total (n = 107)
Vinorelbine
Advanced or metastatic breast
MedRA (version 18.1)
MedRA (version 18.1)
26.5 months (median)
Any grade: 21.5%, grade 3–4: 1.9%
Ramchandren et al. [319]: Cohort study (children)
Total (n = 37)
Vincristine
Acute lymphoblastic leukaemia
NIS, NCS, TNSr
NIS, NCS, TNSr
Participants underwent testing 7.4 years after treatment (mean)
TNSr score of 1 indicated a VIPN prevalence of 100%, TNSr score of ≥ 2 indicated a VIPN prevalence of 94.6%. Participants had impaired NCS
Smith et al. [320]: Cohort study (children)
Total (n = 128)
Vincristine
Acute lymphoblastic leukaemia
NCI-CTC-AE (version 4.0)
NCI-CTC-AE (version 4.0)
1 year from start of treatment
VIPN (all grades): 78%, sensory VIPN: grade 1: 31%, grade 2: 3.2%, grade 3: 1.6%, grade 4: 0%, motor VIPN: grade 1: 18%, grade 2: 4.4%, grade 3: 1.9%, grade 4: 0%
Immunomodulatory agents
Glasmacher et al. [133]: Systematic review and pooled analysis
Total (n = 1674)
Thalidomide
Multiple myeloma
WHO toxicity criteria
WHO toxicity criteria
-
50–200 mg/day of bortezomib: 16% BIPN (all grades),  > 200 mg/d of bortezomib: 31% BIPN (all grades)
Mileshkin et al. [125]: Cohort study
Total (n = 75)
Thalidomide
Refractory/relapsed multiple myeloma
NCI-CTC (version 2.0), NCS
NCI-CTC (version 2.0)
24 weeks
Grade ≥ 2 ThIPN: 31% SNAP impairment (> 50%): 53%
Dimopoulos et al. [321]: Multicentre phase II Trial
Total (n = 44)
Thalidomide, dexamethasone
Refractory multiple myeloma
WHO toxicity criteria
WHO toxicity criteria
23.3 months (median)
ThIPN (all grades): 23%
Prince et al. [322]: Multicentre phase II Trial
Total (n = 66)
Thalidomide
Relapsed/resistant multiple myeloma
NCI-CTC (version 2.0), NCS
NCI-CTC (version 2.0), NCS
20 months (median)
ThIPN (all grades): sensory: 70%, motor: 35%, ThiPN grade 3: sensory: 11%, motor: 3%
von Lilienfeld-Toal et al. [323]: Systematic review and pooled analysis
Total (n = 451)
Thalidomide, dexamethasone
Refractory/relapsed multiple myeloma
   
ThIPN (all grades): 27% (95% CI 23–32)
Briani et al. [121]: Case–control study
Total (n = 14)
Thalidomide
Systemic lupus erythematosus
Neurological examination, NSS, NCS
Neurological examination, NSS, NCS
Up to 35 months
ThiPN (all grades): 71.4%
Grover et al. [325]: Case–control study
Total (n = 23)
Thalidomide, cyclophosphamide, vincristine
Refractory/relapsed multiple myeloma
-
-
Up to 15 months
ThIPN (all grades): 13%
Tosi et al. [130]: Longitudinal Cohort study
Total (n = 40)
Thalidomide
Refractory/relapsed multiple myeloma
WHO toxicity criteria
WHO Toxicity Criteria
1 year
ThIPN at 6 months, grade 0: 47.5%, grade 1: 35%, grade 2: 17.5%, grade 3: 0%, ThIPN at 1 year, grade 0: 25%, grade 1: 15%, grade 2: 32.5%, grade 3: 27.5%
Facon et al. [326]: Randomised controlled trial
Total (n = 447)
Melphalan + prednisone (n = 196)
Melphalan + predispose + thalidomide (n = 125)
Stem cell transplant + melphalan (n = 126)
Thalidomide, melphalan, prednisone
Multiple myeloma
30 months
ThIPN (all grades): 55%, grade 3 – 5%
Bastuji-Garin et al. [122]: Prospective Cohort Study
Total (n = 135)
Thalidomide
Dermatological disorder
Signs and symptoms, NCS
Signs and symptoms, NCS
30 months
ThIPN (all grades): 25.2% (95% CI 17.9–32.5%)
Bramuzzo et al. [120]: Multicentre cohort study (children)
Total (n = 142)
Thalidomide
Pediatric inflammatory bowel disease
NCI-CTC (version 4.0), NCS
NCI-CTC (version 4.0)
24 months
ThIPN (all grades): 72.5%, NCS impairment: 49.1%
Dimopoulos et al. [135]: Phase III trial
Total (n = 351)
Lenalidomide (n = 176)
Placebo (n = 175)
Lenalidomide
Refractory/relapsed multiple myeloma
NCI-CTC (version 2.0)
NCI-CTC (version 2.0)
11.3 months (median)
Grade 3 lenalidomide-related neuropathy occurred at < 10%
Briani et al. [136]: Prospective Cohort Study
Total (n = 30)
Lenalidomide
Refractory/relapsed multiple myeloma
TNS, ECOG
TNS, ECOG
12 months
At baseline 53.3% of patients had BIPN/ThiPN; these patients remained stable. No lenalidomide-related neuropathy was identified after 12 months
Miguel et al. [137]: Multicentre phase III trial
Total (n = 455), Pomalidomide + low-dose dexamethasone (n = 302), high-dose dexamethasone (n = 153)
Pomalidomide, dexamethasone
Refractory/relapsed multiple myeloma + intolerant to bortezomib, lenalidomide or thalidomide
ECOG
ECOG
18 months
Pomalidomide-related neuropathy (any grade): 15%, dexamethasone-related neuropathy (any grade): 11%, pomalidomide or dexamethasone-related neuropathy (grade ≥ 3): 1%
Richardson et al. [327]: Multicentre phase II trial
Total (n = 102)
15 mg of lenalidomide twice daily (n = 35)
30 mg of lenalidomide once daily (n = 67)
Lenalidomide
Refractory/relapsed multiple myeloma
NCI-CTC (version 2.0)
NCI-CTC (version 2.0)
28 months
Lenalidomide-related neuropathy observed in 10% of patients in the once-daily group, lenalidomide-related neuropathy observed in 23% of patients in the twice-daily group
Katodritou et al. [132]: Cohort study
Total (n = 211)
Lenalidomide, dexamethasone
Refractory/relapsed multiple myeloma
-
-
13 months (median)
Lenalidomide-related neuropathy observed in 8% of patients
Proteasome inhibitors
 Peng et al. [328]: Meta-analysis
Total (n = 6492)
Bortezomib
Multiple myeloma, mantle cell lymphoma
-
-
-
BIPN (all grades): 33.9% (95% CI 29.9–38.5%), BIPN grade 3/4: 8.1% (95% CI 6.9–9.4%)
 Richardson et al. [153]: Phase II trial
Total (n = 193)
Bortezomib
Multiple myeloma
NCI-CTC (version 2.0)
NCI-CTC (version 2.0)
 
BIPN (all grades): 31%, BIPN grade 3: 12%
 Richardson et al. [129]: Cohort study
Total (n = 256)
Bortezomib at 1 mg/m2 (n = 28)
Bortezomib at (1.3 mg/m2) (n = 228)
Bortezomib
Advanced multiple myeloma
FACT, GOG-Ntx
FACT, GOG-Ntx
-
BIPN (1 mg/m2), grade 1: 11%
grade 2: 4%, grade 3: 4%
grade 4: 4%, all grades: 21%, BIPN (1.3 mg/m2), grade 1: 7%, grade 2: 16%, grade 3: 14%, grade 4: 0%, All grades: 37%
Richardson et al. [329]: Phase III trial
Total (n = 669)
Bortezomib (n = 331)dexamethasone (n = 332)
Bortezomib, dexamethasone
Advanced multiple myeloma
NCI-CTC (version 2.0)
NCI-CTC (version 2.0)
-
BIPN (all grades): 36%, BIPN grade 3): 7%, BIPN grade 4): 1%
Richardson et al. [330]: Cohort study
Total (n = 64)
Bortezomib
Multiple myeloma
FACT, GOG-Ntx, NCS
NCI-CTCAE (version NS)
29 months (median)
BIPN (all grades): 64%, grade 1: 36%, grade 2: 25%, grade 3: 3%
Kropff et al. [154]: Phase II trial
Total (n = 54)
Bortezomib, dexamethasone, cyclophosphamide
Multiple myeloma
NCI-CTC (version 3.0)
NCI-CTC (version 3.0)
20 months (median)
BIPN, grade 1: 17%, grade 2: 28%, grade 3: 17%
Aguiar et al. [331]: Systematic review and meta-analysis
-
Bortezomib, thalidomide, lenalidomide
Multiple myeloma
-
-
-
Peripheral neuropathy incidence was significantly higher when thalidomide was added to chemotherapy regimens compared to control arms
Chaudhry et al. [127]: Prospective cohort study
Total (n = 27)
Bortezomib, thalidomide
Multiple myeloma
TNS, NCS
TNS
2 months (median)
All grades: 96%, grade 1: 42%, grade 2: 38%, grade 3: 19%
CIPN chemotherapy-induced peripheral neuropathy, CisPN cisplatin-induced peripheral neuropathy, ECOG Eastern Cooperative oncology group criteria, FACT Functional Assessment of Cancer Therapy, GOG-Ntx Gynecologic Oncology Group–Neurotoxicity, NCS nerve conduction studies, NDS Neuropathy Disability Score, NIS Neuropathy Impairment Score, NS not stated, NSS Neuropathy Symptom Score, MeDRA Medical Dictionary for Regulatory Activities, OSNS oxaliplatin-specific neurotoxicity scale, PNP modified peripheral neuropathy score, PNQ Patient Neurotoxicity Questionnaire, OIPN oxaliplatin-induced peripheral neuropathy, SOT sensory organisation test, SRO self-reported outcome, ThIPN thalidomide-induced peripheral neuropathy, TIPN taxane-induced peripheral neuropathy, TNS Total Neuropathy Score, TNSr Total Neuropathy Score–reduced, mTNS modified Total Neuropathy Score, VPT vibration perception threshold
Chemotherapeutic agents result in neurotoxicity through a variety of mechanisms, culminating in a predominantly symmetrical sensory or sensorimotor, length-dependent neuropathy and autonomic dysfunction [2328]. Neuropathic syndromes specific to chemotherapeutic agents can be observed, each with their own presentation and natural history [2933] (Table 2). CIPN can develop, or continue to worsen, several months after treatment has stopped, in a phenomenon termed “coasting”. The prevalence of CIPN one month after finishing chemotherapy approaches 68%, and persists in approximately one third of patients beyond 6 months [10]. Risk factors for CIPN include the agent used, cumulative dose, number of cycles, treatment duration, combination therapies, genetic predisposition, age, existing nerve damage, severity of acute symptoms and chronic alcohol consumption amongst others [15]. The ageing population and more efficacious chemotherapeutic regimens will continue to increase cancer cure rates and long-term cancer survival [34], together with CIPN [35]. It is therefore imperative to develop effective strategies for the early identification with prevention and more efficacious management of CIPN.
Table 2
Neurotoxic antineoplastic agents and their cumulative dose, symptoms and signs [9, 10, 14, 2328, 42, 43, 46, 47, 102, 107, 108, 120123, 127, 129, 134, 184, 187, 241, 260, 298, 307, 319, 320, 322324, 328, 332350]
Antineoplastic agent
Approval
Cumulative toxic dose
Symptoms/Signs
Progression
Oxaliplatin (acute)
2002a
 ≥ 85 mg/m2
Predominantly sensory acute: Cold-induced allodynia, throat discomfort, tingling, numbness ± pain in the hands and feet
Acute (may lead to dose reduction or stopping treatment)
    
Does not resolve between cycles
   
Predominantly sensory chronic: Distal and symmetrical loss of sensation in the hands and feet ± pain
Severity of acute OIPN is predictive of chronic and higher grade
Oxaliplatin (chronic)
 
 ≥ 510 mg/m2
 
Coasting phenomenon
   
Symptoms are predominantly in the hands, which become more predominant in the feet after ~ 18 months of chronic OIPN symptoms
Participants continue to report symptoms for years after treatment has stopped
Cisplatin
1985a
 ≥ 600 mg/m2
Cisplatin implicated in ototoxicity
A proportion of participants recover although not back to pre-chemotherapy baseline
   
Motor: Muscle cramps, neuromyotonia, muscle weakness, fine motor impairment
 
   
Reduction and/or loss of deep tendon reflexes
 
  
 ≥ 780 mg/m2
Autonomic: Orthostatic hypotension
 
Carboplatin
1986a
 ≥ 400 mg/m2
Sensory: Distal and symmetrical loss of sensation in the hands and feet:
Acute (may lead to dose reduction or stopping treatment)
Motor:
Can progress to chronic
Large fibre involvement leading to ataxia
Coasting effect
Reduction or loss of deep tendon reflexes
 
Taxanes
  
Paclitaxel acute pain syndrome:
Acute pain syndrome
  
Aching pain, arthralgia, myalgia and muscle cramps in the lower extremities
Acute symptoms may not resolve between cycles
Paclitaxel
1992a
 ≥ 100 mg/m2
Predominantly sensory:
Severity of acute TIPN may lead to dose reduction or stopping treatment and is predictive of chronic and higher-grade neuropathy
Docetaxel
1995a
 ≥ 300 mg/m2
Acute, length-dependent distal sensory neuropathy characterised by numbness and tingling ± pain in a stocking-and-glove distribution
Recovery or improvement once treatment is stopped is expected in a majority of patients
   
Neuropathic pain in the hands and feet is frequent
Participants recover although rarely back to pre-chemotherapy baseline
   
Motor:
A number continue to persist with low-grade symptoms
   
Reduction and/or loss of deep tendon reflexes
 
   
Possible proprioceptive loss leading to an unsteady gait
 
   
Facial nerve palsy
 
   
Rare autonomic:
 
   
Orthostatic hypotension
 
   
Paralytic ileus
 
   
Arrhythmia
 
   
Optic neuropathy
 
Vinca alkaloids
  
Predominantly sensorimotor:
Acute (may lead to dose reduction or stopping treatment)
   
Distal and symmetrical loss of sensation in the hands and feet characterised by numbness and tingling ± pain
Progression to chronic has established genetic risk factors
Vincristine
1984a
 ≥ 4 mg/m2
Motor:
Children and adolescents tolerate higher cumulative doses than adults
   
Distal symmetric weakness in lower legs
Coasting effect
Vinblastine
1992a
 
Walking difficulties
 
   
Muscle cramps
 
Vinorelbine
1994a
 
Foot drop
 
   
Impaired fine motor skills
 
   
Autonomic:
 
   
Orthostatic hypotension
 
   
Paralytic ileus
 
   
Constipation
 
   
Urogenital dysfunction
 
   
Walking difficulties
 
   
Foot drop
 
   
Impaired fine motor skills
 
Thalidomide
2003a
 ≥ 50 mg/day
Sensory
Acute can progress to chronic
Distal and symmetrical loss of sensation in the hands and feet characterised by hyperaesthesia, hypoaesthesia and paraesthesia
Long-term neurotoxic sequelae are not uncommon
Numbness, tingling, burning pain, sensitivity to touch and heat in the hands and feet
Treatment duration may be more neurotoxic than dose
Motor
 
Distal weakness, tremor
 
Muscle cramps
 
Reduction or loss of deep tendon reflexes
 
Loss of proprioception
 
Gait ataxia
 
Bortezomib
2008a
 ≥ 1 mg/m2
Sensory:
Distal symmetrical, length-dependent axonal sensorimotor neuropathy, mild to moderate sensory loss, mild to severe neuropathic pain in a glove-and-stocking distribution. Burning sensations, tingling, hyperaesthesia, hypoaesthesia and weakness in the distal extremities, which may advance proximally
Acute can progress to chronic, although a majority of participants improve or completely resolve BIPN
Motor:
Mild to moderate motor weakness in the distal lower extremities
Rare autonomic:
Orthostatic hypotension
OIPN oxaliplatin-induced peripheral neuropathy, TIPN taxane-induced peripheral neuropathy
aApproval dates by a major governing body were compiled using Wishart et al. [351] DrugBank 5.0

Literature Search Methodology

Electronic database searches were undertaken in EMBASE, PubMed, OVID and Cochrane CENTRAL to identify included articles. The reference lists of relevant articles were searched, and in addition, studies were identified by authors with expertise in CIPN. Studies published from initial curation of the electronic database to March 2021 were identified, and those felt not relevant by authors were excluded with the guidance of the senior author (U.A.). This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Toxicity Versus Benefit

Balancing the risk of different manifestations of chemotoxicity and the potential benefit of reduced disease burden/remission is a demanding aspect of oncological practice. For instance, there is an increased risk of CIPN with oxaliplatin compared to cisplatin, but the risk of thromboembolism is greater for cisplatin than for oxaliplatin [36], with a small survival benefit with oxaliplatin compared to cisplatin. Accordingly, there are many options to try to limit CIPN by reducing the number of doses and cumulative toxicity, especially in older individuals or those more likely to have pre-existing neuropathy such as diabetes [37]. Patients are less likely to continue chemotherapy if they develop serious complications. In a population of older patients in a non-curative setting, lower doses of oxaliplatin and capecitabine were better tolerated, resulting in patients receiving a greater number of cycles and a small survival benefit [37]. Al-Batran et al. [38] reported that the rate of CIPN in patients treated with epirubicin, cisplatin and fluoropyrimidine was half that observed in patients treated with oxaliplatin, docetaxel and fluoropyrimidine. Similarly, Cunningham et al. [36] reported that the rate of thromboembolism doubled in patients treated with epirubicin, cisplatin and fluoropyrimidine [38]. Ultimately, there are trade-offs when treating patients with cancer, especially those with limited therapeutic options, worse prognosis or pre-existing conditions that may predispose them to chemotherapy-related complications.

Oxaliplatin-Induced Peripheral Neuropathy

Platinum-based chemotherapeutics (oxaliplatin, cisplatin and carboplatin) are used in the treatment of solid tumours of the gut, bladder, testes, ovary, uterus, lung, head and neck [39, 40]. Platinum chemotherapeutic agents have the highest prevalence rates of CIPN, affecting ~ 70% of patients, often complicated by coasting [29, 41]. The main anatomical structure injured by platinum agents is the dorsal root ganglion, and manifests as a sensory neuropathy with prominent pain accompanied by cold-induced allodynia and muscle cramps due to peripheral nerve hyperexcitability or neuromyotonia. Acute oxaliplatin-induced peripheral neuropathy (OIPN) can result in prolonged infusion times (~ 22%), dose reduction (15–43%) and treatment cessation (6–21.4%) [4246]. A systematic analysis of studies including 6211 participants undergoing oxaliplatin treatment found acute OIPN with an incidence of 4–98% [42]. The wide range of incidence may be attributed to heterogeneous dosing regimens, drug combinations, dosing intervals and screening instruments used to identify acute OIPN [42]. A longitudinal study following 346 participants undergoing FOLFOX chemotherapy demonstrated a 3-day peak in acute OIPN, with sensory symptoms including cold-induced hypersensitivity (71%), sensitivity to swallowing cold food and drink (71%), throat discomfort (63%) and muscle cramps (42%) [25]. Symptoms often persist between treatments and increase in severity with subsequent doses [25, 26]. The initial severity of acute OIPN also predicts progression to chronic sensory OIPN [25, 47], which can be identified in 84% of patients after 25 months, with long-term impact on functionality and quality of life.

Pathogenesis of Platinum-Induced Peripheral Neuropathy

The dorsal root ganglion (DRG) is particularly susceptible to chemotherapeutic agents, as it lies outside the central nervous system and is not protected by the blood–brain barrier [48]. In an animal model of CIPN, the accumulation of oxaliplatin in DRG neurons was associated with intracellular overexpression of Octn1/2 and Mate1 transporters [49]. Oxaliplatin also interferes with DNA cross-linking, resulting in direct neurotoxicity [50] and early p38 and ERK1/2 activation, reduced mitochondrial respiration, increased oxidative stress and dose-dependent apoptosis of DRG neurons [51]. Cell culture studies have shown greater neuronal cell body atrophy and apoptosis when exposed to oxaliplatin compared to both paclitaxel and controls, promoting a sensory neuronopathy (neuronal cell body) as opposed to an axonopathy that is phenotypic of other chemotherapeutic agents. OIPN also correlates with mitochondrial morphological artefacts, decreased adenosine triphosphate generation and depressed respiration rates in mitochondrial complexes I and II [5254] 55. Indeed, platinum agents and their metabolites form adducts with mitochondrial DNA (mtDNA), disrupting replication and transcription, with a reduction in neuronal cell body mitochondrial populations [56]. Oxidative stress leads to oxidation of intracellular moieties of neurons, diminishing neuronal energy status and increasing apoptosis [55, 5761]. Reduction of oxidative stress with phenyl N-tert-butylnitrone has been shown to decrease oxaliplatin-induced mechanical hyperalgesia and cold allodynia [62, 63]. Oxaliplatin also interacts with voltage-gated potassium channels (VGKC) expressed on peripheral motor neurons and is implicated in the acute phase of OIPN in which patients exhibit nerve hyperexcitability, prolonged depolarisation, increased neurotransmission and muscle contraction similar to that seen in neuromyotonia [44]. Notably, the excitability of Aδ and C-type fibres of the maxillary branch of the trigeminal nerve are controlled by VGKCs. Further, VGKC isotype 4.3 channels had slower deactivation after administration of oxaliplatin, and this may underlie cold-induced orofacial allodynia [64]. Intramuscular injections at the base of the tail of mice with oxaliplatin were shown to cause acute transient dose-dependent changes in excitability of both motor and sensory axons and evoked ectopic activity in these fibres [65]. Moreover, mathematical modelling indicates that oxaliplatin causes slow inactivation of voltage-gated sodium (NaV) channels and reduces the resting membrane potential of nerve fibres through the reduction of fast potassium conductance in the acute phase of OIPN [65]. Indeed, in preclinical studies, NaV channel-blocking drugs such as topiramate have recently been shown to have a neuroprotective effect in the prevention of both the acute and chronic phase of OIPN, with no interactions with the antineoplastic activity of oxaliplatin [66].
Cold hyperalgesia is a major feature of OIPN and is thought to be driven by TRPA1 and p38 MAPK activation in DRG neurons and increased activity of NaV channel isoforms NaV1.6 and NaV1.9 in nociceptive subpopulations of peripheral and DRG neurons. Further, there is a potential role played by transient receptor potential melastatin 8 (TRPM8) in acute cold-induced allodynia [67]. Altered expression of pain receptor-associated TREK-1, TRAAK, TRPA1 NaV channel isoforms and hyperpolarisation-activated cyclic nucleotide–gated (HCN1) channels in sensory neurons contribute to the prominent neuropathic pain associated with this condition [68]. Oxalate chelates Ca2+ ions, contributing to neuronal excitability and increasing spontaneous pain signalling [69]. There is also increased expression of pro-inflammatory cytokines including tumour necrosis factor-α (TNF-α) and interleukin (IL)-1β and decreased expression of the neuroprotective cytokines IL-10 and IL-4 [7072] through the activation of astrocytes by platinum-based chemotherapy agents. A summary figure of these processes is shown in Fig. 1.

Taxane-Induced Peripheral Neuropathy

The taxanes (paclitaxel, docetaxel and cabazitaxel) are currently first-line treatments for breast, ovarian, lung, bladder, prostate and other solid tumour cancers [34, 73, 74]. Taxane-induced peripheral neuropathy (TIPN) is the most common non-haematological adverse event of treatment, which may result in dose reduction and cessation of treatment, impacting patient survival [75]. TIPN primarily causes an acute, length-dependent distal sensory neuropathy, accompanied by neuropathic pain, which may progress proximally in more severe cases. Aβ fibres and to a lesser extent Aδ and C-fibres are affected in a glove-and-stocking distribution [31, 76, 77]. Patients report tingling, numbness, paraesthesia, neuropathic pain, cold-induced dysaesthesia and muscle cramps [26, 78], which typically worsen with treatment and gradually improve with cessation [26], although 31–44% of patients treated with docetaxel or paclitaxel report symptoms after up to 6 years of follow-up [7981]. TIPN incidence in non-small cell lung cancer (NSCLC) in phase III trials occurred in 13–62% of patients [82]. Severe TIPN (FACT-Lung grade ≥ 3) occurred in 21–40% of patients, with worse outcomes after receiving paclitaxel as opposed to docetaxel-based chemotherapy regimens [83]. Thus, docetaxel is generally considered to be less neurotoxic than paclitaxel [84].

Pathogenesis of TIPN

Studies have identified an increase in the incidence of abnormal axonal mitochondria in C-fibres when compared to controls after ~ 1 month of paclitaxel treatment [85]. Paclitaxel interacts with the mitochondrial permeability transition pore, leading to mitochondrial dysfunction, decreased mitochondrial respiration and disruption of neuronal ATP generation [86, 87], with disruption of the axonal microtubule network [88]. Taxane treatment of rat DRG neuronal stem cells increased ROS production and oxidative stress, simultaneously decreasing mitochondrial metabolic activity, membrane potential and antioxidant bioavailability [62, 89]. Similarly, taxane treatment of rat and human DRG neurons lowered the resting and threshold membrane potential and increased the frequency of ectopic spontaneous activity [90]. In experimental models, paclitaxel increased the expression of voltage-gated calcium channels (Cav) 3.2 and calcium current amplitude and decreased the excitability threshold of dorsal root sensory neurons, which when inhibited decreased mechanical hypersensitivity [87, 91, 92]. Further, toll-like receptor (TLR) 4 is also upregulated, resulting in increased intracellular calcium mediated by the co-located protein Cav3.2. Moreover, paclitaxel increases the expression of Nav 1.7 channels in a dose-dependent manner in human DRG neurons in culture, leading to increased ectopic spontaneous activity [92, 93]. Notably, paclitaxel can bind and activate TLR4 on macrophages, engaging signalling pathways that lead to increased gene expression and release of nuclear factor kappa B (NF-kB), initiating inflammatory and cytokine cascades [94]. TLR4, MyD88 and ERK1/2 expression is increased in IB4 and CGRP+ DRG neurons [9496]. Inflammatory mediators IL-6, IL-8, IL-10, monocyte chemoattractant protein-1 (MCP-1) and activated Langerhans cells are upregulated, where they propagate the further release of pro-inflammatory cytokines [9799]. Furthermore, there is increased expression of stress and inflammatory markers in Schwann cells and lumbar DRG neurons [100, 101]. Activation and migration of CD68+ macrophages, CD8+ T cells and CD11b+ leucocytes towards the DRG and peripheral nerves has been identified [99101]. Thus, sensitisation of C-fibres, net energy loss, neuroinflammation and hyperexcitability contribute to paclitaxel-induced peripheral neuropathy. The hypotheses of the pathomechanism of TIPN is summarised in Fig. 2.

Vinca Alkaloids

Vinca alkaloids are natural (vincristine and vinblastine) and semi-synthetic (vindesine and vinorelbine) chemotherapeutics derived from the periwinkle plant and are used either alone or in combination therapy to treat haematological malignancies, testicular cancer, myeloma, sarcoma, non-small cell lung cancer and tumours of the kidney, liver, lung, brain and breast [102]. Vincristine is arguably the most neurotoxic vinca alkaloid, with a majority of patients developing vincristine-induced neuropathy (VIPN) [10, 103], the severity of which is dose-dependent [104]105. Genetic polymorphisms in genes associated with Charcot-Marie-Tooth (CMT) disease appear to increase the risk of VIPN [106]. The incidence of VIPN or vinorelbine-induced neuropathy leading to sensory neuropathy is ~ 20%, with motor impairment in 17.5% of adult patients [107, 108]. The most common presentation of VIPN is a length-dependent sensory neuropathy, with significant motor impairment and occasional cranial nerve involvement [107]. Surprisingly, 91% of patients reported continuing symptoms 12 months after cessation of treatment [109], and there is evidence for long-term distal sensory [107, 110] and motor deficits in vincristine-treated cancer survivors [30].

Pathogenesis of VIPN

Anterograde transport of organelles and membrane proteins and retrograde transport of signalling molecules depends on microtubule-based transport [88]. Vinca alkaloids interfere with and disrupt microtubule assembly and mitotic spindle formation [111, 112]. They also increase the stability of microtubules, which impacts negatively on the ability of the cell to dynamically alter the structure of the cytoskeleton affecting axonal transport [88] 113. Additionally, vincristine is mitotoxic and can impair the mitochondrial electron transport chain, resulting in defective energy production [114]. Axonal degeneration requires both sterile alpha and TIR motif-containing proteins SARM1 and MAPK, and the deletion of SARM1 protects mice from developing VIPN [115]. Other intracellular targets include the NF-E2-related factor and haeme oxygenase 1/carbon monoxide system (Nrf2/HO-1/CO) which modulates the expression of connexin 43 (Cx43), protecting against nerve damage and reducing vincristine-induced neuroinflammation [116]. Increased expression of inflammatory markers TNF-α and IL-1β and increased expression of TRPA1 were recently identified in models of VIPN [117]. Moreover, mRNA gene ontology has identified the inflammatory role of vincristine on microglia and upregulation of pro-inflammatory genes including frizzled-related protein 2 (SFRP2) and C-X-C motif chemokines (CXCL) 10 and 9 [118]. The current available data on the hypothesised mechanism of VIPN is shown in Fig. 3A.

Thalidomide-Induced Peripheral Neuropathy

Thalidomide is a US Food and Drug Administration (FDA)-approved treatment for multiple myeloma (MM) [119]. Patients treated with thalidomide for MM, glioblastoma, renal cell carcinoma, colorectal and lung, melanoma, and breast and prostate cancer can develop thalidomide-induced peripheral neuropathy (ThiPN) [32, 102, 120122]. Symptoms include symmetrical numbness, tingling, burning pain and sensitivity to touch and heat, with hyperaesthesia, hypoaesthesia and paraesthesia in a glove-and-stocking distribution [32] with tremor, muscle cramps, distal muscle weakness, areflexia, loss of proprioception, gait ataxia and/or a lack of coordination [32, 123128]. The incidence of ThiPN ranges from 11 to 75% and is dependent on dose [120, 122, 129134] and duration of exposure [125]. As such, the results of phase I studies giving thalidomide to the maximum tolerable dose are not representative of patients who are receiving this medication over a longer duration. Peripheral neuropathy induced by the thalidomide analogues lenalidomide and pomalidomide are less severe and occur at a lower incidence [135137], making them the agents of choice in those with pre-existing neuropathy. MM is currently incurable and requires long durations of exposure to thalidomide and its analogues, which results in accumulative chemotoxicity [138]. This is especially relevant as the 5-year relative survival rate of M has increased in recent years [139]. Barlogie et al. [140] reported that 90% of participants with a National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) ≥ 2 grade ThiPN improved to a grade ≤ 2 within 3–4 months of thalidomide dose attenuation. However, complete clinical recovery is limited to approximately one quarter of patients [124, 128, 141143].

Pathogenesis of ThiPN

The exact pathomechanism of thalidomide is yet to be fully elucidated, but antiangiogenic properties [144] may lead to hypoxia of small nerve fibres [145]. Additionally, the immunomodulatory action of thalidomide inhibits basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), TNF-α and NF-kB and dysregulates neurotrophins; the signalling molecules responsible for the proliferation, survival and function of neurons are shown in Fig. 3B [146]. Further, preclinical ThiPN animal models demonstrate improvement of NCS following the injection of VEGF [147].

Bortezomib

The proteasome inhibitors bortezomib, ixazomib and carfilzomib are FDA-approved treatments for MM [148, 149] and are used in the treatment of progressive, relapsed or refractory MM and mantle cell lymphoma [150, 151]. Bortezomib-induced peripheral neuropathy (BIPN) is a distal, symmetrical, length-dependent axonal sensorimotor neuropathy characterised by mild to moderate sensory loss, mild to severe neuropathic pain and mild motor weakness of the distal lower extremities [[33, 152]. Phase II trials have identified a BIPN incidence of 31–37%, with grade ≥ 2 neuropathy present in 28% of participants [153155]. Although ixazomib and carfilzomib have a lower incidence of CIPN [156158], long-term treatment [159] with the addition of other chemotherapeutic agents [160] is required to maintain remission.

Pathogenesis of BIPN

Bortezomib initiates apoptosis through the release of intracellular Ca2+ in the endoplasmic reticulum, leading to activation of caspase, a protease enzyme essential for programmed cell death [161]. A study showed vacuolation of DRG-associated mitochondria [162], although these findings could not be replicated [163]. Bortezomib treatment increased the number of swollen and vacuolated mitochondria in A-fibres and C-fibres compared to controls, and mitochondrial respiration and adenosine triphosphate production were reduced, indicating cumulative energy failure as a pathogenic mechanism of BIPN [164]. In a recent study, bortezomib exhibited neurotoxicity in PC12 neuroblastoma cells through the induction of apoptosis which was ameliorated with antioxidants, implicating oxidative stress in the pathogenesis of BIPN [165]. Ultrastructural features of myelin sheath degeneration of large nerve fibres and axonal degeneration of C- fibres have been identified [162, 163]. Inhibition of NF-kB and TNF-α attenuates the severity of BIPN in preclinical models [166, 167]. Indeed, bortezomib treatment increases the expression of GATA-binding protein (GATA3), a transcription factor implicated in the regulation of inflammatory signalling cascades and upregulation of the T-cell chemoattractant chemokine C–C motif ligand 21 (CCL21) in dorsal horn neurons, which when silenced attenuates mechanical allodynia in Sprague Dawley rats [168]. The current hypothesis for the pathomechanism of BIPN is summarised in Fig. 3C.

Diagnostic Methods

Electrodiagnostic methods are considered the reference standard for the functional assessment of large sensory and motor fibres which drive paraesthesia, numbness and weakness seen in people with CIPN. Although sensory testing used in composite scoring systems is often deployed in the clinical setting, a rigorous, lengthy battery of standardised sensory tests is required to reliably identify a patient’s sensory phenotype. Further, these tests are subjective and cannot discriminate between a central or peripheral disease process of the somatosensory nervous system, and benefit from the addition of a structural measure of peripheral nerve fibres. In light of this, we include an overview of self-reported outcome measures, composite scoring systems, functional tests of large fibres, structural measure of small fibres such as skin biopsy, and highlight the novel, reiterative method of corneal confocal microscopy. This method is of particular interest, as the early detection of CIPN may enable health care professionals to determine subclinical nerve damage and assist in changes to dosing strategies before the neuropathy becomes irreversible. In this section we highlight the methods used to quantify CIPN in both clinical and research settings.

Identification of CIPN and Grading

The methods used in both clinical trials and medical practice to identify and grade the severity of CIPN can be broadly separated into instruments which utilise patient-reported outcomes, composite scoring systems with a functional assessment component, and quality-of-life tools [169]. Most commonly used is the clinician-led patient-reported tool, National Cancer Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE), although other instruments such as the Eastern Cooperative Oncology Group (ECOG) criteria and the World Health Organization (WHO) neurotoxicity scale [170] are also used. The latest version of the NCI-CTCAE (version 5.0) (Table 3) grades both motor and sensory neuropathy according to asymptomatic (grade 1), moderate (grade 2), severe (grade 3) or life-threatening (grade 4) neurotoxicity. Composite scoring systems such as the Total Neuropathy Score (TNS) use patient-reported symptoms, physical examination, vibration perception threshold and nerve conduction studies to grade CIPN, although there are versions which omit vibration perception threshold (TNSr) and nerve conduction studies (TNSc) [169]. Further, the TNS clinical (TNSc) and nurse-administered TNS (TNSn) have been shown to correlate well with the emergence of sensory and motor symptoms after the completion of chemotherapy, identifying 88% of participants who developed CIPN [171].
Table 3
The NCI-CTCAE grading system (version 5.0) [352]
CTCAE term
Grade 1
Grade 2
Grade 3
Grade 4
Grade 5
Peripheral motor neuropathy
Asymptomatic; clinical or diagnostic observations only
Moderate symptoms; limiting instrumental ADL
Severe symptoms; limiting self-care ADL
Life-threatening consequences; urgent intervention indicated
Death
Peripheral sensory neuropathy
Asymptomatic
Moderate symptoms; limiting instrumental ADL
Severe symptoms; limiting self-care ADL
Life-threatening consequences; urgent intervention indicated
ADL activities of daily living
Functional assessments are self-reported questionnaires measuring both the quality of life and symptoms specific to how neurotoxicity impairs activity. These measures are often tailored to the primary cancer such as the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-neurotoxicity (FACT/COG-Ntx) tool, which has been shown to correlate well with the TNSc and TNSn [171]. Other examples of functional assessments include the European Organisation for Research and Treatment of Cancer (EORTC) and the chemotherapy-induced peripheral neuropathy questionnaire (CIPN20). These instruments have been reviewed extensively by Cavaletti et al. [170] and Park et al. [169].

Nerve Conduction Studies (NCS)

NCS provide an objective measure of large fibre function and are considered the reference standard for the diagnosis of large fibre involvement in CIPN [172]. Peripheral nerve demyelination is accompanied by conduction slowing and latency prolongation, and axonal loss is accompanied by a reduction in amplitude.
In patients treated with paclitaxel and oxaliplatin, NCS can be used to confirm a symmetric, length-dependent, predominantly sensory distal neuropathy [173177]. However, in acute OIPN there are rarely significant changes in NCS, although motor axons can develop increased refractoriness resulting in repetitive motor discharges [173, 178, 179]. Further, a change in sensory excitability in acute OIPN predicts the development of chronic OIPN, a purely sensory neuropathy with a reduction in sensory sural nerve action potential (SNAP) and nerve conduction velocity (SNCV) without motor NCS involvement [180]. In a longitudinal study of ten participants, the phenomenon of coasting was evidenced by worsening median and sural sensory amplitudes at least 3 months after completing oxaliplatin-based chemotherapy [181]. The typical presentation of TIPN is that of a predominantly distal sensory axonal neuropathy with some motor involvement [172, 182]. A recent longitudinal study identified significantly reduced SNAP amplitudes predominantly in the upper limbs, but to a lesser extent in the lower limbs, 12 months after completion of taxane chemotherapy, arguing for a non-length-dependent effect [15]. Both acute and chronic thalidomide neurotoxicity are characterised by attenuation of median, radial and sural SNAPs and compound muscle action potentials (cMAPs) of the peroneal and tibial nerves [126]. NCS in patients with BIPN largely indicate a predominantly small fibre sensory axonal neuropathy, with less frequent motor neuropathy [129]. Bortezomib and thalidomide combination therapy is associated with a significant reduction in sural SNAP, peroneal motor nerve action potential (PMNAP) and peroneal motor nerve conduction velocity (PMNCV) [33, 127]. NCS in people with VIPN is characterised by a distal sensorimotor axonal neuropathy and motor involvement [172], with prolongation of distal latencies but preserved conduction velocities [183]. Furthermore, NCS parameters may deteriorate before or after the development of neuropathic symptoms [47, 127, 129, 172, 184187].

Quantitative Sensory Testing (QST)

QST provides an extensively validated mechanism-based and symptom-orientated approach to neuropathic pain. The loss of nerve fibre sensitivity or deafferentation can be detected using quantitative sensory testing for different nerve fibre populations. The loss of Aβ-fibre sensitivity is indicated by impaired vibration perception, light touch or mechanical detection thresholds. C-fibre dysfunction is reflected by abnormal heat detection and heat pain thresholds, whilst Aδ-fibre dysfunction is indicated by abnormal thresholds to pinprick stimuli, mechanical pain and cold detection [188190]. The majority of patients with CIPN from a range of drugs exhibit reduced or absent pinprick and vibration perception thresholds and impaired proprioception [191]. Early impairment of vibration detection and cold detection thresholds have been identified from week 12 of treatment with oxaliplatin, with an increase in mechanical detection thresholds 6 months after finishing treatment [180, 192]. Cold pain threshold can be used to dichotomise participants with acute OIPN and change over time [193]. People with TIPN exhibit diminished tactile perception in the upper and lower extremities, with worsening VPT in the lower limbs [194]. Participants with VIPN and BIPN exhibit widespread abnormalities in touch detection, pinprick detection and heat detection thresholds both within and outside self-reported areas of involvement [195, 196].

Skin Biopsy

The accepted gold standard for diagnosing small fibre pathology is skin biopsy [197, 198]. Normative age- and sex-related values for intraepidermal nerve fibre density have been published for clinical use [199]. In preclinical models of paclitaxel- and vincristine-induced peripheral neuropathy, there is a significant reduction in intraepidermal nerve fibres [91, 98]. Indeed, a significant decrease in intraepidermal nerve fibre density (IENFD) at the distal leg was identified in eight patients 6 months after oxaliplatin treatment had been stopped [200]. Notably, a recent study found a significant time-dependent decrease in IENFD 6 months after treatment had been stopped [180]. In patients with BIPN, whilst epidermal nerve density did not differ, there was a reduction in subepidermal nerve fibre density [201]. Further work is needed to characterise the differential effect of different chemotherapy drugs on small nerve fibres in the skin.

Corneal Confocal Microscopy

Corneal confocal microscopy (CCM) is a non-invasive, reiterative ophthalmic imaging technique that detects small nerve fibre abnormalities in the subbasal nerve plexus in a range of peripheral neuropathies [202210]. A large body of published data shows that CCM has good diagnostic [211] and prognostic [212] utility in diabetic neuropathy. Recently, CCM has been proposed to have utility in the diagnosis and follow-up of patients with CIPN [213].
In an early study of 15 patients with colorectal cancer treated with oxaliplatin, 10 patients developed a significant worsening of TNSc and 8 patients developed NCV evidence of a sensory axonal neuropathy [214]. CCM demonstrated a significant abnormality in 10/15 patients characterised by a reduction in corneal nerve fibre density (40%) and length (37%). Interestingly, after receiving the final cycle of chemotherapy, two patients with normal clinical and neurophysiological findings had evidence of severe corneal nerve loss, and 3 weeks later they developed neuropathic symptoms, indicative of coasting [214]. In 21 patients with gastro-oesophageal cancer without neuropathic symptoms there was evidence of corneal nerve loss which correlated with the stage of cancer. After three cycles of platinum-based chemotherapy, 61.5% of patients developed grade 1 symptomatic paraesthesia on CTCAE criteria; however, all patients except those with metastatic liver disease showed an increase in corneal nerve fibre length [205]. CCM has also shown a significant reduction in corneal nerve fibre density, length and beading in patients with MM undergoing treatment with bortezomib, despite clinically evident neuropathy being present in only 38.5% of patients [215]. More recently, of 63 patients who had received docetaxel for breast cancer (n = 28) or oxaliplatin for colorectal cancer (n = 35) 5 years prior to detailed neuropathy phenotyping, 41.3% still had evidence of CIPN, of whom 58% had pure large fibre neuropathy based on NCS [216]. Detailed QST revealed increased cold, warm, mechanical and vibration detection thresholds with no evidence of pinprick hyperalgesia or dynamic mechanical, cold or warm allodynia. CCM demonstrated no significant difference in corneal nerve fiber length, density or branch density between controls and patients with CIPN with and without small fibre neuropathy [216]. In a study comparing CCM in different peripheral neuropathies, patients with CIPN had evidence of corneal nerve fibre loss in a distinct pattern based on the corneal nerve fractal dimension, which differed from patients with diabetic neuropathy or chronic inflammatory demyelinating neuropathy [217]. A study of 70 patients with breast, colorectal, upper gastrointestinal and gynaecological cancer having received either paclitaxel (n = 40) or oxaliplatin (n = 30) within the past 3 to 24 months showed evidence of a significant reduction in the corneal nerve fibre and inferior whorl lengths [218]. Furthermore, corneal nerve fiber length, inferior whorl length, average nerve fiber length and corneal nerve fiber density were significantly lower in patients with neuropathy compared to those without neuropathy based on the correlation of TNSr and inferior whorl length with hand dexterity [218]. These data suggest that CCM may have diagnostic and prognostic value in CIPN.

Chemotherapy and Neuropathic Pain

A large meta-analysis of 13,683 people with CIPN estimated the prevalence of neuropathic pain to be as high as 40% [219]. A recent international study of 2003 patients with CIPN has found a similar prevalence of neuropathic pain, which significantly impacted upon quality of life and daily functioning [220]. CIPN is predominantly a sensory neuropathy, as summarised in Table 2, with pain being the most bothersome symptom [221]. Indeed, the symptom burden of CIPN including sensory disturbances and neuropathic pain profoundly impacts on the quality of life of survivors of cancer [84, 191, 222227]. CIPN also affects functionality and the capacity to work both during and after treatment, fuelling unemployment and loss of working time [228]. Moreover, a recent US administrative claims analysis by Song et al. [229] found that individuals with painful CIPN incur a significant economic burden driven by costs of analgesic drug prescriptions, increased rates of hospitalisation, emergency department visits and outpatient hospital visits compared to participants treated for cancer who did not develop CIPN. Pike et al. [230] showed that painful CIPN was associated with higher average costs of $17,344 compared to patients without CIPN. Notably, oxaliplatin- or paclitaxel-based chemotherapy regimens are more likely to result in neuropathic pain, and the pain associated with OIPN and TIPN is more severe and protracted [15]. The treatment of chronic neuropathic pain is often inadequate and may be poorly tolerated [231].

Preventative Treatment

A Cochrane systematic review of interventions and an expert group systematic review by the American Society of Clinical Oncology (ASCO) recommended against the use of a range of interventions (acupuncture, cryotherapy, exercise therapy or ganglioside-monosialic acid (GM-1), retinoic acid, amifostine, amitriptyline, calcium magnesium infusion (Ca/Mg), calmangafodipir, cannabinoids, carbamazepine, l-carnosine, diethyldithiocarbamate (DDTC), gabapentin, pregabalin, glutamate, glutathione, goshajinkigan (GJG), metformin minocycline, N-acetylcysteine, nimodipine, omega-3 fatty acids, ORG 2766, oxcarbazepine, recombinant human leukemia inhibitory factor, venlafaxine, vitamin B or vitamin E) in CIPN [232, 233]. Moreover, acetyl-l-carnitine is strongly advised against due to high-quality evidence indicating worsening neuropathy [232, 234].
The ACTTION [Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks]/CONCEPPT [Clinical Endpoints and Procedures for Peripheral Neuropathy Trials] consortia developed recommendations for CIPN prevention studies [235]. These included the selection of outcome measures and endpoints, eligibility criteria, potential effects of the investigational therapy on the efficacy of chemotherapy and accurate sample size estimation [235]. Summaries of studies evaluating putative preventative therapies are detailed in Table 4.
Table 4
Treatments which require further validation or are not currently recommended for the treatment or prevention of chemotherapy-induced peripheral neuropathy
Treatment
Author and study design
Number of patients
Antineoplastic agent
Study outcome(s)
Notes
α-Lipoic acid
Gedlicka et al. 2002 [353]: Pilot study
Total (n = 15)
Oxaliplatin, raltitrexed
53% of participants developed less severe OIPN symptoms
No control group, small sample population. High-dose α-lipoic acid associated with nausea and gastric pain
α-Lipoic acid
Gedlicka et al. 2003 [354]: Pilot study
Total (n = 14)
Docetaxel, cisplatin
Six participants improved CIPN symptoms by at least one WHO grade score. Seven participants with severe CIPN did not respond to treatment
No control group, small sample population
α-Lipoic acid
Guo et al. 2014 [236]: Randomised, double-blind, placebo-controlled trial
Participants randomised (n = 243) to α-lipoic acid (n = 122) or placebo (n = 121). Participants who did not complete the 24-week treatment were: α-lipoic acid (n = 88) and placebo (n = 85), leaving a final total (n = 173) for analysis of: α-lipoic acid (n = 88) placebo (n = 85)
Oxaliplatin, cisplatin
No statistically significant difference in FACT/GOG-Ntx scores between α-lipoic acid-treated or placebo-treated groups
High drop-out rate and poor α-lipoic acid treatment compliance
OPERA (α-lipoic acid, Boswellia serrata, methylsulfonylmethane, bromelain)
Desideri et al. 2017 [237]:
Prospective study
Total (n = 25)
Cisplatin, carboplatin, vinca alkaloid, taxanes and eribulin
Changes identified in patient-reported pain scores after 12 weeks of therapy compared to baseline
No placebo, small sample size
Neuronorm (docosahexaenoic acid, α-lipoic acid, vitamin C and vitamin E)
Maschio et al. 2019 [355]: Phase II prospective study
Total (n = 31)
Bortezomib
12 participants reported no BIPN, with 13 participants progressing to painful BIPN (grade 1). Five participants developed BIPN grade ≥ 2, which is fewer than the proposed 40% expected by the primary end-point
No comparator group. Small sample size
ORG 2766
van der Hoop et al. 1990 [332]: Prospective study
Total (n = 67)
Placebo (n = 25)
Low-dose ORG 2766 (n = 22)
High-dose ORG 2766 (n = 20) (Participants received either 4 or 6 cycles of chemotherapy)
Cisplatin
Vibration perception threshold after six cycles of cisplatin chemotherapy was preserved in the high-dose ORG 2766 group compared to placebo (5.87 ± 1.97 µm vs 0.88 ± 0.17 µm; p < 0.005)
-
ORG 2766
Roberts et al. 1997 [356]: Randomised, multicentre, double-blind, placebo-controlled trial
Total (n = 174)
Placebo (n = 67)
ORG 2766 2 mg (n = 63)
ORG 2766 4 mg (n = 66)
Cisplatin, cyclophosphamide
ORG 2766 increased the rate and severity of CisPN (p < 0.05)
-
ORG 2766
Koeppen et al. 2004 [357]: Randomised, double-blind, placebo-controlled study
Total (n = 147)
ORG 2766 (n = 73)
Placebo (n = 74)
Vincristine
No significant differences observed between placebo and ORG 2766 groups
-
ACL
Hershman et al. 2013 [234]: Randomised double-blind placebo-controlled Trial
Total (n = 409)
ALC (n = 201)
Placebo (n = 194)
Paclitaxel
ACL significantly worsened CIPN symptoms after 24 weeks
-
Curcumin
Howells et al. 2019 [238]: Randomised, standard-of-care comparator study
Total (n = 27)
FOLFOX (n = 9)
FOLFOX + curcumin (n = 18)
Oxaliplatin
No significant difference between treatment arms in OIPN
-
Venlafaxine (prevention)
Zimmerman et al. 2016 [297]: Pilot, randomised, placebo-controlled, double-blind study
Total (n = 43)
Venlafaxine (n = 22)
Placebo (n = 21)
Oxaliplatin
No significant effect of venlafaxine in the prevention of acute or chronic OIPN
OINS scores indicated improvement in cold hyperalgesia of the throat
Glutamine (prevention)
Wang et al. 2007 [247]: Randomised, standard-of-care-controlled trial
Total (n = 86)
Glutamine (n = 42)
Control (n = 44)
Oxaliplatin, 5-FU
The incidence of acute OIPN was lower in the glutamine group compared to the control group (33.3% vs 56.8%; p = 0.03)
No difference in NCS abnormalities (p = NS)
Glutamine (prevention)
Vahdat et al. 2001 [248]: Non-randomised, standard-of-care-controlled trial
Total (n = 55)
Glutamine (n = 12)
Control (n = 33)
Paclitaxel
Significant reduction in TIPN severity such as dysaesthesia (p < 0.05), motor weakness (p = 0.04) and interference with daily functioning (p < 0.001)
No objective nerve function measures
Glutamine (prevention)
Stubblefield et al. 2005 [249]: Non-randomised, standard-of-care-controlled trial
Total (n = 36)
Glutamine (n = 12)
Control (n = 24)
Paclitaxel
The glutamine group reported lower incidence of weakness (p = 0.02), vibration perception (p = 0.02) and numbness (p = 0.004) compared to controls
No difference in NCS abnormalities (p = NS)
Glutathione (prevention)
Cascinu et al. 1995 [245]: Randomised, placebo-controlled, double-blind trial
Total (n = 43)
Glutathione (n = 25)
Placebo (n = 18)
Cisplatin
After 15 weeks, glutathione resulted in fewer incidents of clinically confirmed CisPN compared to the placebo group (16% vs 88%; p = 0.0001)
-
Glutathione (prevention)
Cascinu et al. 2002 [244]: Randomised, placebo-controlled, double-blind trial
Total (n = 40)
Glutathione (n = 21)
Placebo (n = 19)
Oxaliplatin
Fewer participants developed grade 2–4 OIPN in the glutathione group compared to placebo (p = 0.004)
-
Vitamin E (prevention)
Pace et al. 2003 [240]: Randomised, standard-of-care-controlled trial
Total (n = 27)
Vitamin E + cisplatin (n = 13)
Cisplatin alone (n = 14)
Cisplatin
The incidence of CisPN was lower in the vitamin E-supplemented group compared to standard of care (30.7% vs 85.7%; p < 0.01)
No objective nerve function measures. Not placebo- or active-comparator-controlled
Vitamin E (prevention)
Pace et al. 2007 [241]: Multicentre randomised, placebo-controlled, double blind trial
Total (n = 25)
Vitamin E + cisplatin (n = 11)
Cisplatin alone (n = 14)
Cisplatin
Preliminary analysis of the first 25 eligible participants indicated median difference between vitamin E and placebo groups (p < 0.05)
Vitamin E (prevention)
Kottschade et al. 2011 [242]: Randomised, placebo-controlled, double blind phase III trial
Total (n = 185)
Vitamin E (n = 94)
Placebo (n = 91)
Taxanes and platinum
No significant effect of vitamin E in the prevention of sensory CIPN
Vitamin E (prevention)
Argyriou et al. 2005 [243]: Pilot, randomised, standard-of-care-controlled, open-label, single-blind trial
Total (n = 31)
Vitamin E (n = 16)
Control (n = 15)
Cisplatin, paclitaxel
CIPN incidence was reduced in the vitamin E group compared to controls (25% vs 73.3%; p = 0.019). NDS scores were lower in participants treated with vitamin E compared to controls (3.4 ± 6.3 vs 11.5 ± 10.6; p = 0.026)
Glutathione (prevention)
Milla et al. 2009 [358]: Randomised, placebo-controlled phase I trial
Total (n = 27)
Glutathione (n = 14)
Placebo (n = 13)
Oxaliplatin
Grade 1–2 OIPN occurred in 50% of participants compared to 69% of participants treated with placebo (p = 0.0037)
Calcium and magnesium (prevention)
Loprinzi et al. 2014 [258]: Randomised, placebo-controlled, double-blind phase III trial
Total (n = 353)
Calcium and magnesium infusion before and after chemotherapy (n = 118)
Calcium and magnesium infusion before and placebo after chemotherapy (n = 116)
Placebo (n = 119)
Oxaliplatin
No significant effect of calcium magnesium infusion in the prevention of acute OIPN
Calcium and magnesium (prevention)
Knijn et al. 2011 [254]: Retrospective analysis of a randomised, standard-of-care-controlled phase III trial
Total (n = 732)
Calcium and magnesium (n = 551)
Standard-of-care (n = 181)
Oxaliplatin
Incidence of OIPN (all grades) was reduced in the calcium and magnesium group compared to controls (85% vs 92%; p = 0.02). Incidence of ≥ 2 OIPN was similarly reduced (40% vs 45%; p = 0.22)
Calcium and magnesium (prevention)
Han et al. 2013 [259]: Prospective randomised, placebo-controlled, double-blind phase I, crossover trial
Total (n = 19)
Calcium and magnesium (n = 10)
Placebo (n = 9)
Oxaliplatin
No significant difference in self-reported acute OIPN symptoms
NCS abnormalities higher in calcium and magnesium compared to controls (p = ns)
Calcium and magnesium (prevention)
Gamelin et al. 2004 [255]: Retrospective analysis of a cohort study
Total (n = 161)
Calcium and magnesium (n = 96)
Standard-of-care (n = 65)
Oxaliplatin
At the end of treatment all grade OIPN was reduced in the calcium and magnesium compared to standard of care (4% vs 31%; p < 0.001). (20% vs 45%; p = 0.003). OIPN severity (grade ≥ 3) occurred at a lower incidence in participants treated with calcium and magnesium compared to standard of care (7% vs 26%; p = 0.001)
Calcium and magnesium (prevention)
Ao et al. 2012 [256]: Meta-analysis
Total (n = 202)
Oxaliplatin
Fixed effects model identified calcium and magnesium has no effect on acute OIPN (OR = 0.41, 95% CI 0.11–1.49; p = 0.70, I2, 0)
Amifostine (prevention)
Leong et al. 2003 [250]: Randomised, placebo-controlled, double-blind trial
Total (n = 58)
Amifostine (n = 21)
Placebo (n = 27)
Paclitaxel and carboplatin
No significant difference in neuropathy incidence of amifostine treatment between groups was identified
Amifostine (prevention)
Hilpert et al. 2005 [251]: Randomised, placebo-controlled, double-blind phase II trial
Total (n = 72)
Amifostine (n = 37)
Placebo (n = 34)
Paclitaxel, carboplatin and epirubicin
Amifostine improved self-reported sensory CIPN symptoms (NCI-CTC) compared to controls (p = 0.0046)
Amifostine caused worsening of nausea (p = 0.0005) and vomiting (p = 0.0083)
Amifostine (Ages 3–21) (prevention)
Gurney et al. 2014 [252]: Cohort study
Total (n = 379)
Average-risk (n = 263)
High-risk (n = 116)
Cisplatin
Participants with average risk of hearing loss reduced the risk of hearing loss (OR, 0.30; 95% CI: 0.14–0.64). High risk participants did not prevent hearing loss (OR, 0.89; 95% CI: 0.31–2.54)
DDTC
Gandara et al. 1995 [253]: Randomised placebo-controlled multicentre trial
Total (n = 214)
DDTC (n = 106)
Placebo (n = 108)
Cisplatin
Participants receiving DDTC with lower cumulative doses of cisplatin were more likely to cease chemotherapy treatment
Massage (prevention)
Izgu et al. 2019 [359]: Randomised, standard-of-care-controlled trial
Total (n = 40)
Massage (n = 19)
Control (n = 21)
Paclitaxel
Reduced pain reported by massage group compared to controls at week 12 (p < 0.05)
Electro-acupuncture (prevention)
Greenlee et al. 2016 [360]: Randomised sham-controlled pilot trial
Total (n = 48)
Electro-acupuncture (n = 25)
Sham electro-acupuncture (n = 23)
Paclitaxel, oxaliplatin
No difference between groups. Also, participants in receipt of electro-acupuncture recovered at a slower rate after chemotherapy treatment stopped
Calmangafodipir (prevention)
Glimelius et al. 2018 [361]: Randomised, placebo-controlled, double-blind phase II trial
Total (n = 173)
Placebo (n = 60)
Calmangafodipir (n = 113)
Oxaliplatin
Participants treated with calmangafodipir reported fewer sensory symptoms (p < 0.01) and fewer incidents of physician-graded OIPN (p = 0.016) compared to controls
Due to promising results, currently ongoing phase III trials
Pregabalin (prevention)
de Andrade et al. 2017 [283]: Randomised, placebo-controlled, double-blind phase II trial
Total (n = 143)
Pregabalin (n = 78)
Placebo (n = 65)
Oxaliplatin
Pregabalin did not decrease the incidence of chronic OIPN or neuropathic pain compared to placebo (p = NS)
Oxcarbazepine (prevention)
Argyriou et al. 2006 [362]: Randomised, open-label, standard-of-care-controlled trial
Total (n = 40)
Oxcarbazepine (n = 20)
Control (n = 20)
Oxaliplatin
The incidence of OIPN was reduced in the oxcarbazepine group compared to controls (31.2% vs 75%; p = 0.033)
Carbamazepine (treatment)
Wilson et al. 2002 [363]: Phase I trial
Total (n = 12)
Oxaliplatin
No impact on the symptoms or impaired NCS of OIPN
Small, non-randomised trial
Exercise (treatment)
Kleckner et al. 2018 [269]: Secondary analysis of multicentre, randomised, standard-of-care-controlled phase III trial
Total (n = 355)
Exercise (n = 170)
Control (n = 185)
Taxanes, platinums and vinca alkaloids
Exercise reduced self-reported sensory CIPN symptoms of thermal sensation in the hands or feet (p = 0.045), paraesthesia (p = 0.061) which was more pronounced in older (p = 0.086), male (p = 0.028) or participants with breast cancer (p = 0.076)
Aromatherapy massage (treatment)
Izgu et al. 2019 [364]: Randomised, standard-of-care-controlled trial
Total (n = 46)
Massage (n = 22)
Control (n = 24)
Oxaliplatin
Reduction in self-reported painful OIPN symptoms at week 6 in treated participants compared to standard of care
Acupuncture (treatment)
Molassiotis et al. 2019 [365]: Randomised, single-blind, standard-of-care-controlled trial
Total (n = 87)
Acupuncture (n = 44)
Control (n = 43)
Platinum, taxane, bortezomib
TNS scores improved after 20 weeks of treatment in participants treated with acupuncture compared to standard of care (p < 0.05). Sensory NCI-CTC-AE scores improved (p < 0.05) but not the motor subset items
Laser-acupuncture (treatment)
Hsieh et al. 2016 [267]: Prospective cohort study
Total (n = 17)
Oxaliplatin
Laser acupuncture reduced the severity of OIPN symptoms in both the hands and feet of participants (p < 0.05)
Acupuncture and methylcobalamin (treatment)
Han et al. 2017 [264]: Randomised, methylcobalamin controlled, prospective study
Total (n = 98)
Acupuncture + methylcobalamin (n = 49)
Methylcobalamin alone (n = 49)
After 84 days both groups improved pain scores, with reduced pain scores in the acupuncture group (p < 0.01)
Electro-acupuncture (treatment)
Rostock et al. 2013 [265]: Randomised placebo-controlled trial
Total (n = 59)
Electro-acupuncture (n = 14)
Hydroelectric baths (n = 13)
Vitamin B (n = 15)
Placebo (n = 17)
Electro-acupuncture demonstrated a worse effect in the treatment of CIPN symptoms (0.8 ± 1.2), with a group difference of –0.3 (95% CI −1.4 to 0.8; p = 0.705)
Electro-acupuncture
Garcia et al. 2014 [268]: Pilot study
Total (n = 19)
Thalidomide, bortezomib
At weeks 9–13, pain severity, fine motor functioning and walking all improved according to FACT/GOG-Ntx scores. No improvements in NCS were identified
Lidocaine (treatment)
Van den Heuvel et al. 2017 [366]: Prospective case series
Total (n = 9)
Platinum, taxanes, capecitabine, cyclophosphamide, trastuzumab, cyclophosphamide, capecitabine, imatinib, bevacizumab, etoposide and cytarabine
A significant analgesic effect in 88% of patients (p = 0.01). Pain reduction was maintained for 23 days in five participants
Lamotrigine
Rao et al. 2008 [367]: Randomised, double-blind, placebo-controlled phase III trial
Total (n = 131)
Paclitaxel, docetaxel, carboplatin, cisplatin, oxaliplatin, vincristine and vinblastine
No significant relief of CIPN symptoms identified using lamotrigine
Oral mucosal spray containing delta-9 tetrahydrocannabinol and cannabidiol (treatment)
Lynch et al. 2014 [368]: randomised, placebo-controlled crossover pilot study patients
Total (n = 16)
Cisplatin, oxaliplatin, paclitaxel, vincristine
No significant relief of pain intensity in participants with CIPN
Topical amitriptyline and ketamine
Gewandter et al. 2014 [271]: Multicentre, randomised, placebo-controlled, double-blind phase III trial
Total (n = 462)
Taxane, non-taxane
No significant difference in self-reported sensory CIPN symptoms using topical amitriptyline and ketamine compared to placebo (p = NS)
Short 5-week study
Topical baclofen, amitriptyline and ketamine
Barton et al. 2011 [369]: Randomised, placebo-controlled, double-blind trial
Total (n = 150)
Taxanes, platinums, vinca alkaloids and thalidomides
Improvement in sensory (p = 0.053) and motor (p = 0.021) subscales of the EORTC QLQ-CIPN20 in the topical baclofen, amitriptyline and ketamine group compared to controls
Topical amitriptyline
Rossignol et al. 2019 [272]: open-label, non-comparative, uncontrolled, prospective pilot clinical trial
Total (n = 44)
Oxaliplatin, bortezomib, vinca alkaloids, lenalidomide, bendamustine
A reduction in pain score of at least 3 points was observed after 1 week in all participants. After 4 weeks, pain scores were reduced to 2 (p < 0.0001)
Topical menthol 1% (treatment)
Fallon et al. 2015 [370]: Prospective study
Total (n = 38)
Oxaliplatin, cisplatin, carboplatin, paclitaxel and bortezomib
82% of participants had improvement in pain scores (p < 0.001). Improvements in HADS scores and QST were also identified (p < 0.001)
Capsaicin 8% patch
Anand et al. 2019 [275]: single-centre, open-label, longitudinal study
Total (n = 16)
Bortezomib, platinum, and or taxane
Self-reported measures indicated reduced spontaneous pain (p = 0.02), touch-evoked pain (p = 0.03), cold-evoked pain (p = 0.03), neuropathic pain (p = 0.0007), and continuous (p = 0.01) and overall pain (p = 0.004)
Potential disease modification as IENFD identified regenerative nerve markers
5-FU Fluorouracil, CIPN Chemotherapy-induced peripheral neuropathy, DDTC Diethyldithiocarbamate, EORTC QLQ-CIPN20 European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire-CIPN twenty-item scale, FACT/GOG-Ntx Functional Assessment of Cancer Therapy/Gynecologic Oncology Group – Neurotoxicity, IENFD Intraepidermal nerve fibre density, OIPN Oxaliplatin-induced peripheral neuropathy, NCI-CTC-AE Common Terminology Criteria for Adverse Events, NS not significant, NCS Nerve conduction studies, TIPN Taxane-induced peripheral neuropathy

Nutraceuticals

Nutraceuticals as neuroprotective agents have not yielded strong evidence for the prevention of neurotoxicity. For instance, α-lipoic acid [236], OPERA [237], curcumin [238] and Neuronorm [239] have shown no benefit in randomised controlled trials despite positive findings in preclinical studies. Similarly, despite positive pilot studies, a large phase III trial did not demonstrate a significant neuroprotective effect of vitamin E and glutathione supplementation [240243, 244, 245] [246]. However, in two randomised, standard-of-care-controlled trials and a smaller non-randomised standard-of-care-controlled trial, glutamine was associated with reduced incidence and severity of dysaesthesias, nerve conduction impairment and interference with daily functioning [247249]. Amifostine demonstrated a clinically meaningful benefit for the prevention of sensory and auditory CIPN but was associated with worsening nausea and vomiting [250252]. Patients administered diethyldithiocarbamate (DDTC), with lower cumulative doses of cisplatin, were more likely to withdraw from treatment due to CisPN-related adverse events [253]. Similarly, the hexapeptide analogue of ACTH, ORG 2766, increased the incidence of CIPN in a smaller cohort study [252]. Caution is advised with nutraceuticals and supplements with unproven efficacy.

Calcium and Magnesium Infusion

Retrospective studies of patients with advanced colorectal cancer treated with oxaliplatin found that calcium and magnesium infusion (Ca/Mg) significantly reduced the incidence of all-grade OIPN compared to 5-fluorouracil and leucovorin [254, 255]. Notably, a meta-analysis found that Ca/Mg treatment reduced the incidence of severe chronic OIPN (grade ≥ 2) (0.44 (95% CI 0.23–0.85; p = 0.01)) but does not reduce the incidence of acute OIPN (0.41 (95% CI 0.11–1.49; p = 0.18)) [256]. The reduction in acute OIPN incidence with Ca/Mg infusions has not been replicated in a phase I RCT and a large phase III RCT (Table 4) [257259].

Symptomatic Treatments

Recently published ASCO guidelines indicate that duloxetine is the only currently recommended treatment; however, due to a lack of definitive efficacy, no recommendations can be made for exercise therapy, acupuncture, scrambler therapy, gabapentin, pregabalin, topical gel treatment (containing baclofen/amitriptyline plus/minus ketamine), tricyclic antidepressants or oral cannabinoids in the treatment of symptomatic CIPN [232]. Based on current clinical trial data (Table 5), larger, high-quality studies are needed to confirm efficacy and identify risks of treatment [9, 232, 235, 260, 261].
Table 5
Current evidence for recommended treatment for painful chemotherapy-induced peripheral neuropathy [232, 235, 261, 371375]
Treatment
Author and study design
Number of patients
Antineoplastic agent
Study outcome
Guideline
Duloxetine
Yang et al. 2012 [291]: Open-label pilot study
30
Oxaliplatin
OIPN improved in 47.4% of participants by one grade, with 62.6% maintaining on a steady grade
ASCO, ONS, NCI
Smith et al. 2013 [290]: Randomised, placebo-controlled, double-blind, phase III crossover trial
141
Paclitaxel, oxaliplatin
Duloxetine statistically significantly reduced average pain score after 5 weeks compared to placebo (1.06 [95% CI, 0.72–1.40] vs 0.34 [95% CI, 0.01–0.66]; p = 0.003)
Hirayama et al. 2015 [292]: Randomised, vitamin B12-controlled, open-label crossover pilot trial
32
Oxaliplatin, paclitaxel, vincristine and bortezomib
Duloxetine changed pain scores pain (p = 0.04) and numbness (p = 0.03) compared to placebo
Otake et al. 2015 [376]: Retrospective cohort study
25
Paclitaxel, carboplatin, epirubicin
Duloxetine improved CIPN symptoms in 56% of participants
Farshchian et al. 2018 [294]: Randomised, placebo-controlled, double-blind trial
156
Taxane and platinum
Both duloxetine and venlafaxine reduced neuropathic pain and CIPN grade at week 4 compared to controls (p < 0.05). Duloxetine was more effective compared to venlafaxine (p < 0.05)
Anti-depressants
Kus et al. 2016 [296]: Retrospective case–control study
199
Taxanes, platinums
An improvement of 75% in pain score was reported in 53.5%, 58.3% and 45.2% in the first three visits compared to 0% in the control group (p < 0.001)
ESMO, NCCN
Özdoǧan et al. 2004 [377]:
Pilot study
12
Platinums, vinca alkaloids, 5-FU, etoposide
Reduced pain scores were statistically significant compared to baseline (p ≤ 0.001). Increase in drowsiness reported (p = 0.041)
Durand et al. 2005 [378]: Case study
2
Oxaliplatin
Anecdotal functional improvements reported
Durand et al. 2012 [295]: Randomised, double-blind, placebo-controlled phase III trial
42
Oxaliplatin
Pain relief reported at a higher frequency in participants treated with venlafaxine compared to controls (31.3% vs 5.3%; p = 0.03)
Hammack et al. 2002 [284]: Randomised, double-blind, placebo-controlled, crossover trial
51
Cisplatin
No significant impact on CiSPN pain or paraesthesia severity from baseline
Kautio et al. 2008 [285]: Randomised, double-blind, placebo-controlled trial
33
Vinca alkaloids, platinums and taxanes
No significant impact on CIPN pain
Gabapentinoids
Mishra et al. 2012 [279]: Prospective, randomised, double-blind, placebo-controlled trial
120
-
Number of participants requiring morphine was significantly lower in the amitriptyline, gabapentin and pregabalin treatment groups compared to placebo (56.7%, 33.3% and 16.7% vs 100%). Pregabalin appeared to outperform gabapentin in reducing lancinating pain (p = 0.026) and dysaesthesia (p = 0.021)
ESMO, ASCO, NCCN
Rao et al. 2007 [282]: Randomised, double-blind, placebo-controlled, crossover, phase III trial
84
Paclitaxel, docetaxel, carboplatin, cisplatin, oxaliplatin, vincristine or vinblastine
No benefit identified in reducing pain scores in participants with CIPN
Tsavaris et al. 2008 [280]: Pilot study
110
Docetaxel, paclitaxel, vinorelbine, oxaliplatin,
Approximately half of participants had no response to gabapentin therapy, whilst the other half had a decrease in chemotherapy dose self-reported to be managed by gabapentin pharmacotherapy
Magnowska et al. 2018 [281]: Prospective study
61
Paclitaxel, carboplatin
Participants receiving gabapentin report improved symptoms (p = 0.027), pain (p = 0.027 and neurological deficit (p = 0.019)
Saif et al. 2010 [379]: Prospective study
23
 
Pregabalin pharmacotherapy improved OIPN severity by 1–2 grades in 48% of participants
Opioids
Cartoni et al. 2012 [277]: Pilot study
46
Bortezomib
Reduction in the intensity and frequency of pain reported in 47.8% of participants after 2 weeks compared to baseline (mean numeric rating scale = 3.65; p < 0.01)
ESMO, NCCN
Kim et al. 2018 (276): Multicentre, interventional, single-arm phase IV study
66
Taxanes, epothilones platinums, bortezomib, thalidomide, vinca alkaloid
A 21.4% reduction in pain score in participants at week 4 (1.29 ± 1.84; p < 0.0001
ASCO American Society of Clinical Oncology, ESMO European Society for Medical Oncology, ONS Oncology Nursing Society, NCI National Cancer Institute, NCCN National Comprehensive Cancer Network

Acupuncture

In a systematic review of acupuncture for the treatment of CIPN, two out of three trials found acupuncture to be effective in improving self-reported CIPN measures [262264], but one trial found no benefit [265]. A recent systematic review identified 19 RCTs with 1174 patients and showed that acupuncture significantly improved not only pain but also, surprisingly, nerve conduction velocity [266]. Pilot studies of electro-acupuncture and laser acupuncture have shown improvements in self-reported measures and sensory testing in patients with chronic CIPN [267, 268].

Exercise

A secondary analysis of a large phase III randomised controlled trial of non-pharmaceutical interventions in cancer patients found that exercise reduced sensory symptoms in participants with OIPN, TIPN or VIPN, especially in participants who were older, male or had breast cancer [269]. A recent systematic review and meta-analysis indicated that exercise interventions significantly improve CIPN symptoms, and a sensorimotor-based exercise intervention reduced CIPN-induced loss of postural stability [270].

Topical therapies

A large phase III randomised, placebo-controlled trial of participants with CIPN treated with topical 2% ketamine plus 4% amitriptyline showed no benefit on mean pain, numbness or tingling scores when compared to placebo (p = 0.363) [271].However, a pilot study of 44 participants with CIPN treated with topical 10% amitriptyline showed a five-point reduction in mean pain scores after 4 weeks (p < 0.0001) [272].

High-Strength Capsaicin Patch

An in vitro study showed that oxaliplatin modulates the sensitivity of the capsaicin receptor (TRPV1) response through a secondary intracellular messenger [273]. In a single-centre study, the high-dose capsaicin 8% patch reduced pain by 84% in 18 participants with OIPN, 12 weeks after the patch was applied [274]. Similarly, a single-centre, open-label, longitudinal study showed that the capsaicin 8% patch ameliorated neuropathic pain in 16 participants with chronic CIPN, with evidence of regeneration of intraepidermal nerve fibres, suggestive of initial degeneration due to capsaicin [275]. Indeed, the latest ASCO guidelines indicate that the efficacy of the high-dose 8% capsaicin patch should be further explored [232].

Oxycodone

In a multicentre, phase IV study, oxycodone and naloxone taken together with gabapentin (≥ 900 mg/day) was found to decrease mean numeric rating scale pain scores from 6.0 ± 1.3 to 4.7 ± 2.1, after 4 weeks (p =  < 0.0001) [276]. Similarly, treatment with controlled-release oxycodone reduced mean pain intensity from 7.6 to 1.3 at day 14 (p < 0.002) [277]. However, close monitoring of long-term opioid therapy, particularly in combination with gabapentinoids, is advised [278].

Gabapentinoids

A double-blind, randomised, placebo-controlled trial found pregabalin to be more effective than both gabapentin and amitriptyline in decreasing pain scores, with a morphine-sparing effect associated with pregabalin monotherapy [279]. A pilot study and a cohort study identified gabapentin as a potential treatment with improved self-reported measures of CIPN [280, 281]. Nevertheless, a randomised, double-blind, placebo-controlled, crossover, phase III trial (n = 115) failed to show a significant change in the pain score with gabapentin in patients with CIPN [282]. Further, the pre-emptive administration of pregabalin did not decrease the risk of painful OIPN [283].

Tricyclic Antidepressants

A phase III randomised, double-blind, placebo-controlled, crossover trial of nortriptyline in participants with CisPN showed no benefit on paraesthesia or neuropathic symptoms, although there was an improvement in sleep (p < 0.02) [284]. Amitriptyline has shown no efficacy for the improvement or prevention of CIPN symptoms in two double-blind, randomised, placebo-controlled trials [285, 286].

Selective Serotonin Reuptake Inhibitors (SSRI)

There is limited evidence for the use of SSRIs in painful CIPN [232].

Selective Serotonin and Norepinephrine Reuptake Inhibitor (SNRI)

Studies in experimental models of painful neuropathy have demonstrated a superior antinociceptive effect of norepinephrine compared to serotonin [287], and combined increases in both serotonin and norepinephrine result in a better analgesic effect than an increase in either one alone [288]. A multicentre randomised, double-blind, placebo-controlled crossover trial demonstrated the efficacy of duloxetine in participants undergoing platinum or taxane chemotherapy regimens [289]. At 5 weeks, participants receiving duloxetine reported a greater mean decrease in pain score compared to placebo (1.06 [95% CI 0.72–1.40] vs 0.34 [95% CI 0.01–0.66] p = 0.00)3 [290]. Similar results have been reported in other smaller studies [291, 292]. Further, participants with painful OIPN are more likely to respond to duloxetine that those with TIPN [293]. Duloxetine has a greater effect than venlafaxine on pain scores [294]. Recent ASCO guidelines advise a moderate recommendation for the use of duloxetine in CIPN [232]. A randomised, double-blind, placebo-controlled phase III trial found greater improvements in pain relief by ≥ 50% in participants receiving venlafaxine compared to placebo (p = 0.02) [295]. A retrospective cohort study of participants with painful TIPN or OIPN found that venlafaxine achieved relief of paraesthesia in over half the participants for up to 9 weeks (p < 0.001) [296]. However, a small pilot randomised, placebo-controlled, double-blind study found no significant effect of venlafaxine in the prevention of OIPN [297].

Conclusion

CIPN is a major dose-limiting side effect of chemotherapy, and the burden of CIPN continues to increase with increasing cancer-survivorship. Clinical guidance for the treatment of CIPN highlights the paucity of preventative strategies and symptom management. The diagnosis and assessment of CIPN lacks a reference standard, with studies utilising heterogeneous CIPN assessment tools dependent on self-reported outcome measures. The recent ACTTION recommendations endorse a pathomechanism-driven treatment discovery approach to CIPN. CCM may provide an adjunct to NCS in natural history studies and trials of disease-modifying therapies. Detailed mechanistic research in CIPN and CIPN-related neuropathic pain is needed to address the substantial burden on the patient, families and society.

Acknowledgements

Funding

Jamie Burgess gratefully acknowledges the support given by the Pain Relief Foundation in the form of a PhD studentship whilst writing this manuscript. No funding or sponsorship was received for the publication of this article.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Authorship contributions

All persons who meet authorship criteria are listed as authors. All authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript. Conceptualisation, Uazman Alam and Jamie Burgess; writing—original draft preparation, Jamie Burgess, Maryam Ferdousi, Anne Marshall and Uazman Alam; writing—review and editing, Jamie Burgess, Kohei Matsumoto, David Gosal, C.B., Andrew Marshall, Tony Mak, Anne Marshall, Bernhard Frank, Rayaz A Malik, Uazman Alam; visualisation, Jamie Burgess and Uazman Alam; supervision, Uazman Alam. All authors have read and agreed to the published version of the manuscript. All included figures were created with Biorender.com.

Disclosures

Jamie Burgess, Uazman Alam, Maryam Ferdousi, David Gosal, Anne Marshall, Tony Mak, Andrew Marshall, Bernhard Frank, Rayaz A Malik and Uazman Alam have nothing to disclose. Cheng Boon’s affiliation changed during the manuscript’s production from the Department of Clinical Oncology, The Clatterbridge Cancer Centre, Wirral, UK to the Department of Clinical Oncology, The Royal Wolverhampton NHS Trust, Wolverhampton, UK.

Compliance with Ethics Guidelines

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Data availability

Data sharing is not applicable for this article, as no datasets were generated or analyzed during the current study.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68(6):394–424.PubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. 2018;68(6):394–424.PubMed
2.
Zurück zum Zitat Arnold M, Rutherford MJ, Bardot A, Ferlay J, Andersson TML, Myklebust TÅ, et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): a population-based study. Lancet Oncol. 2019;20(11):1493–505.PubMedPubMedCentral Arnold M, Rutherford MJ, Bardot A, Ferlay J, Andersson TML, Myklebust TÅ, et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): a population-based study. Lancet Oncol. 2019;20(11):1493–505.PubMedPubMedCentral
3.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA. 2019;69(1):7–34.PubMed Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA. 2019;69(1):7–34.PubMed
4.
Zurück zum Zitat Henley SJ, Singh SD, King J, Wilson RJ, O’Neil ME, Ryerson AB. Invasive cancer incidence and survival-United States, 2012. MMWR. 2015;64(49):1353–8.PubMed Henley SJ, Singh SD, King J, Wilson RJ, O’Neil ME, Ryerson AB. Invasive cancer incidence and survival-United States, 2012. MMWR. 2015;64(49):1353–8.PubMed
5.
Zurück zum Zitat Argyriou AA, Bruna J, Marmiroli P, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol. 2012;82(1):51–77.PubMed Argyriou AA, Bruna J, Marmiroli P, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol. 2012;82(1):51–77.PubMed
6.
Zurück zum Zitat Addington J, Freimer M (2106) Chemotherapy-induced peripheral neuropathy an update on the current understanding. Crit Rev 5:10 Addington J, Freimer M (2106) Chemotherapy-induced peripheral neuropathy an update on the current understanding. Crit Rev 5:10
7.
Zurück zum Zitat Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nature reviews. Neurology. 2010;6:657.PubMed Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Nature reviews. Neurology. 2010;6:657.PubMed
8.
Zurück zum Zitat Cavaletti G, Grp CIPS. Chemotherapy-induced peripheral neurotoxicity (CIPN): the dilemma of proper assessment. Nat Rev Neurol. 2018;12:657–66. Cavaletti G, Grp CIPS. Chemotherapy-induced peripheral neurotoxicity (CIPN): the dilemma of proper assessment. Nat Rev Neurol. 2018;12:657–66.
9.
10.
Zurück zum Zitat Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain. 2014;155(12):2461–70.PubMed Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain. 2014;155(12):2461–70.PubMed
11.
Zurück zum Zitat Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13(3):176–81.PubMed Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13(3):176–81.PubMed
12.
Zurück zum Zitat Smith EML, Knoerl R, Yang JJ, Kanzawa-Lee G, Lee D, Bridges CM. In search of a gold standard patient-reported outcome measure for use in chemotherapy-induced peripheral neuropathy clinical trials. Cancer Control. 2018;25(1):1073274818756608.PubMedPubMedCentral Smith EML, Knoerl R, Yang JJ, Kanzawa-Lee G, Lee D, Bridges CM. In search of a gold standard patient-reported outcome measure for use in chemotherapy-induced peripheral neuropathy clinical trials. Cancer Control. 2018;25(1):1073274818756608.PubMedPubMedCentral
13.
Zurück zum Zitat Smith EML, Cohen JA, Pett MA, Beck SL. The reliability and validity of a modified total neuropathy score-reduced and neuropathic pain severity items when used to measure chemotherapy-induced peripheral neuropathy in patients receiving taxanes and platinums. Cancer Nurs. 2010;33(3):173–83.PubMed Smith EML, Cohen JA, Pett MA, Beck SL. The reliability and validity of a modified total neuropathy score-reduced and neuropathic pain severity items when used to measure chemotherapy-induced peripheral neuropathy in patients receiving taxanes and platinums. Cancer Nurs. 2010;33(3):173–83.PubMed
14.
Zurück zum Zitat Pachman DR, Barton DL, Watson JC, Loprinzi CL. Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin Pharmacol Ther. 2011;90(3):377–87.PubMed Pachman DR, Barton DL, Watson JC, Loprinzi CL. Chemotherapy-induced peripheral neuropathy: prevention and treatment. Clin Pharmacol Ther. 2011;90(3):377–87.PubMed
15.
Zurück zum Zitat Molassiotis A, Cheng HL, Lopez V, Au JSK, Chan A, Bandla A, et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer. 2019;19(1):132.PubMedPubMedCentral Molassiotis A, Cheng HL, Lopez V, Au JSK, Chan A, Bandla A, et al. Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer. 2019;19(1):132.PubMedPubMedCentral
16.
Zurück zum Zitat Mendoza TR, Wang XS, Williams LA, Shi Q, Vichaya EG, Dougherty PM, et al. Measuring therapy-induced peripheral neuropathy: preliminary development and validation of the treatment-induced neuropathy assessment scale. J Pain. 2015;16(10):1032–43.PubMedPubMedCentral Mendoza TR, Wang XS, Williams LA, Shi Q, Vichaya EG, Dougherty PM, et al. Measuring therapy-induced peripheral neuropathy: preliminary development and validation of the treatment-induced neuropathy assessment scale. J Pain. 2015;16(10):1032–43.PubMedPubMedCentral
17.
Zurück zum Zitat Kautio AL, Saarto T, Haanpää M, Leminen A, Kalso E, Kautiainen H. Oxaliplatin scale and National Cancer Institute-common toxicity criteria in the assessment of chemotherapy-induced peripheral neuropathy. Anticancer Res. 2011;31(10):3493–6.PubMed Kautio AL, Saarto T, Haanpää M, Leminen A, Kalso E, Kautiainen H. Oxaliplatin scale and National Cancer Institute-common toxicity criteria in the assessment of chemotherapy-induced peripheral neuropathy. Anticancer Res. 2011;31(10):3493–6.PubMed
18.
Zurück zum Zitat Cavaletti G, Frigeni B, Lanzani F, Piatti M, Rota S, Briani C, et al. The Total Neuropathy Score as an assessment tool for grading the course of chemotherapy-induced peripheral neurotoxicity: comparison with the National Cancer Institute-Common Toxicity Scale. J Peripher Nerv Syst. 2007;12(3):210–5.PubMed Cavaletti G, Frigeni B, Lanzani F, Piatti M, Rota S, Briani C, et al. The Total Neuropathy Score as an assessment tool for grading the course of chemotherapy-induced peripheral neurotoxicity: comparison with the National Cancer Institute-Common Toxicity Scale. J Peripher Nerv Syst. 2007;12(3):210–5.PubMed
19.
Zurück zum Zitat Alberti P, Rossi E, Cornblath DR, Merkies ISJ, Postma TJ, Frigeni B, et al. Physician-assessed and patient-reported outcome measures in chemotherapy-induced sensory peripheral neurotoxicity: two sides of the same coin. Ann Oncol. 2014;25:257–64.PubMed Alberti P, Rossi E, Cornblath DR, Merkies ISJ, Postma TJ, Frigeni B, et al. Physician-assessed and patient-reported outcome measures in chemotherapy-induced sensory peripheral neurotoxicity: two sides of the same coin. Ann Oncol. 2014;25:257–64.PubMed
20.
Zurück zum Zitat Alberti P. Chemotherapy-induced peripheral neurotoxicity—outcome measures: the issue. Expert Opin Drug Metab Toxicol. 2017;13(3):241–3.PubMed Alberti P. Chemotherapy-induced peripheral neurotoxicity—outcome measures: the issue. Expert Opin Drug Metab Toxicol. 2017;13(3):241–3.PubMed
21.
Zurück zum Zitat Abdi S, Dougherty PM. Chemotherapy-induced peripheral neuropathy: a challenge for clinicians. Oncology. 2016;30(11):1030.PubMed Abdi S, Dougherty PM. Chemotherapy-induced peripheral neuropathy: a challenge for clinicians. Oncology. 2016;30(11):1030.PubMed
22.
Zurück zum Zitat Park SB, Kwok JB, Asher R, Lee CK, Beale P, Selle F, et al. Clinical and genetic predictors of paclitaxel neurotoxicity based on patient-versus clinician-reported incidence and severity of neurotoxicity in the ICON7 trial. Ann Oncol. 2017;28(11):2733–40.PubMed Park SB, Kwok JB, Asher R, Lee CK, Beale P, Selle F, et al. Clinical and genetic predictors of paclitaxel neurotoxicity based on patient-versus clinician-reported incidence and severity of neurotoxicity in the ICON7 trial. Ann Oncol. 2017;28(11):2733–40.PubMed
23.
Zurück zum Zitat Yeo F, Ng CC, Loh KWJ, Molassiotis A, Cheng HL, Au JSK, et al. Minimal clinically important difference of the EORTC QLQ-CIPN20 for worsening peripheral neuropathy in patients receiving neurotoxic chemotherapy. Support Care Cancer. 2019;27(12):4753–62.PubMed Yeo F, Ng CC, Loh KWJ, Molassiotis A, Cheng HL, Au JSK, et al. Minimal clinically important difference of the EORTC QLQ-CIPN20 for worsening peripheral neuropathy in patients receiving neurotoxic chemotherapy. Support Care Cancer. 2019;27(12):4753–62.PubMed
24.
Zurück zum Zitat Pachman DR, Qin R, Seisler DK, Smith EML, Beutler AS, Ta LE, et al. Clinical course of patients with oxaliplatin-associated neuropathy: N08CB (Alliance). J Clin Oncol. 2014;32(15):3595. Pachman DR, Qin R, Seisler DK, Smith EML, Beutler AS, Ta LE, et al. Clinical course of patients with oxaliplatin-associated neuropathy: N08CB (Alliance). J Clin Oncol. 2014;32(15):3595.
25.
Zurück zum Zitat Pachman DR, Qin R, Seisler DK, Smith EM, Beutler AS, Ta LE, et al. Clinical course of oxaliplatin-induced neuropathy: results from the randomized phase III Trial N08CB (Alliance). J Clin Oncol. 2015;33(30):3416–22.PubMedPubMedCentral Pachman DR, Qin R, Seisler DK, Smith EM, Beutler AS, Ta LE, et al. Clinical course of oxaliplatin-induced neuropathy: results from the randomized phase III Trial N08CB (Alliance). J Clin Oncol. 2015;33(30):3416–22.PubMedPubMedCentral
26.
Zurück zum Zitat Pachman DR, Qin R, Seisler D, Smith EM, Kaggal S, Novotny P, et al. Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505). Support Care Cancer. 2016;24(12):5059–68.PubMedPubMedCentral Pachman DR, Qin R, Seisler D, Smith EM, Kaggal S, Novotny P, et al. Comparison of oxaliplatin and paclitaxel-induced neuropathy (Alliance A151505). Support Care Cancer. 2016;24(12):5059–68.PubMedPubMedCentral
27.
Zurück zum Zitat Le-Rademacher J, Kanwar R, Seisler D, Pachman DR, Qin R, Abyzov A, et al. Patient-reported (EORTC QLQ-CIPN20) versus physician-reported (CTCAE) quantification of oxaliplatin- and paclitaxel/carboplatin-induced peripheral neuropathy in NCCTG/Alliance clinical trials. Support Care Cancer. 2017;25(11):3537–44.PubMedPubMedCentral Le-Rademacher J, Kanwar R, Seisler D, Pachman DR, Qin R, Abyzov A, et al. Patient-reported (EORTC QLQ-CIPN20) versus physician-reported (CTCAE) quantification of oxaliplatin- and paclitaxel/carboplatin-induced peripheral neuropathy in NCCTG/Alliance clinical trials. Support Care Cancer. 2017;25(11):3537–44.PubMedPubMedCentral
28.
Zurück zum Zitat Kaiser K, Lyleroehr M, Shaunfield S, Lacson L, Corona M, Kircher S, et al. Neuropathy experienced by colorectal cancer patients receiving oxaliplatin: a qualitative study to validate the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity scale. World J Gastrointest Oncol. 2020;12(2):205–18.PubMedPubMedCentral Kaiser K, Lyleroehr M, Shaunfield S, Lacson L, Corona M, Kircher S, et al. Neuropathy experienced by colorectal cancer patients receiving oxaliplatin: a qualitative study to validate the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity scale. World J Gastrointest Oncol. 2020;12(2):205–18.PubMedPubMedCentral
29.
Zurück zum Zitat Soveri LM, Lamminmaki A, Hanninen UA, Karhunen M, Bono P, Osterlund P. Long-term neuropathy and quality of life in colorectal cancer patients treated with oxaliplatin containing adjuvant chemotherapy. Acta Oncol. 2019;58(4):398–406.PubMed Soveri LM, Lamminmaki A, Hanninen UA, Karhunen M, Bono P, Osterlund P. Long-term neuropathy and quality of life in colorectal cancer patients treated with oxaliplatin containing adjuvant chemotherapy. Acta Oncol. 2019;58(4):398–406.PubMed
30.
Zurück zum Zitat Grisold A, Ackerl M, Surböck B, Giometto B, Grisold W. Multifocal neuropathy in vinorelbine treatment for breast cancer (P6.186). Neurology. 2017;88(16 Suppl):186. Grisold A, Ackerl M, Surböck B, Giometto B, Grisold W. Multifocal neuropathy in vinorelbine treatment for breast cancer (P6.186). Neurology. 2017;88(16 Suppl):186.
31.
Zurück zum Zitat Tamburin S, Park SB, Alberti P, Demichelis C, Schenone A, Argyriou AA. Taxane and epothilone-induced peripheral neurotoxicity: from pathogenesis to treatment. J Peripher Nerv Syst. 2019;24(Suppl 2):S40-s51.PubMed Tamburin S, Park SB, Alberti P, Demichelis C, Schenone A, Argyriou AA. Taxane and epothilone-induced peripheral neurotoxicity: from pathogenesis to treatment. J Peripher Nerv Syst. 2019;24(Suppl 2):S40-s51.PubMed
32.
Zurück zum Zitat Grammatico S, Cesini L, Petrucci MT. Managing treatment-related peripheral neuropathy in patients with multiple myeloma. Blood Lymphat Cancer. 2016;6:37–47.PubMedPubMedCentral Grammatico S, Cesini L, Petrucci MT. Managing treatment-related peripheral neuropathy in patients with multiple myeloma. Blood Lymphat Cancer. 2016;6:37–47.PubMedPubMedCentral
33.
Zurück zum Zitat Thawani SP, Tanji K, De Sousa EA, Weimer LH, Brannagan TH 3rd. Bortezomib-associated demyelinating neuropathy—clinical and pathologic features. J Clin Neuromuscul Dis. 2015;16(4):202–9.PubMed Thawani SP, Tanji K, De Sousa EA, Weimer LH, Brannagan TH 3rd. Bortezomib-associated demyelinating neuropathy—clinical and pathologic features. J Clin Neuromuscul Dis. 2015;16(4):202–9.PubMed
35.
Zurück zum Zitat Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics. CA. 2016;66(4):271–89.PubMed Miller KD, Siegel RL, Lin CC, Mariotto AB, Kramer JL, Rowland JH, et al. Cancer treatment and survivorship statistics. CA. 2016;66(4):271–89.PubMed
36.
Zurück zum Zitat Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med. 2008;358(1):36–46.PubMed Cunningham D, Starling N, Rao S, Iveson T, Nicolson M, Coxon F, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med. 2008;358(1):36–46.PubMed
37.
Zurück zum Zitat Hall PS, Swinson D, Waters JS, Wadsley J, Falk S, Roy R, et al. Optimizing chemotherapy for frail and elderly patients (pts) with advanced gastroesophageal cancer (aGOAC): the GO2 phase III trial. J Clin Oncol. 2019;37(15 Suppl):4006. Hall PS, Swinson D, Waters JS, Wadsley J, Falk S, Roy R, et al. Optimizing chemotherapy for frail and elderly patients (pts) with advanced gastroesophageal cancer (aGOAC): the GO2 phase III trial. J Clin Oncol. 2019;37(15 Suppl):4006.
38.
Zurück zum Zitat Al-Batran S-E, Homann N, Pauligk C, Goetze TO, Meiler J, Kasper S, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet. 2019;393(10184):1948–57.PubMed Al-Batran S-E, Homann N, Pauligk C, Goetze TO, Meiler J, Kasper S, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet. 2019;393(10184):1948–57.PubMed
39.
Zurück zum Zitat Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci. 2019;20(6):1451.PubMedCentral Zajączkowska R, Kocot-Kępska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int J Mol Sci. 2019;20(6):1451.PubMedCentral
40.
Zurück zum Zitat Hana S, Irina V. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci. 2017;10:174. Hana S, Irina V. Pathophysiology of Chemotherapy-Induced Peripheral Neuropathy. Front Mol Neurosci. 2017;10:174.
41.
Zurück zum Zitat Kroigard T, Schroder HD, Qvortrup C, Eckhoff L, Pfeiffer P, Gaist D, et al. Characterization and diagnostic evaluation of chronic polyneuropathies induced by oxaliplatin and docetaxel comparing skin biopsy to quantitative sensory testing and nerve conduction studies. Eur J Neurol. 2014;21(4):623–9.PubMed Kroigard T, Schroder HD, Qvortrup C, Eckhoff L, Pfeiffer P, Gaist D, et al. Characterization and diagnostic evaluation of chronic polyneuropathies induced by oxaliplatin and docetaxel comparing skin biopsy to quantitative sensory testing and nerve conduction studies. Eur J Neurol. 2014;21(4):623–9.PubMed
42.
Zurück zum Zitat Gebremedhn EG, Shortland PJ, Mahns DA. The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: a systematic review. BMC Cancer. 2018;18(1):410.PubMedPubMedCentral Gebremedhn EG, Shortland PJ, Mahns DA. The incidence of acute oxaliplatin-induced neuropathy and its impact on treatment in the first cycle: a systematic review. BMC Cancer. 2018;18(1):410.PubMedPubMedCentral
43.
Zurück zum Zitat Park SB, Lin CSY, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC. Long-term neuropathy after oxaliplatin treatment: challenging the dictum of reversibility. Oncologist. 2011;16(5):708–16.PubMedPubMedCentral Park SB, Lin CSY, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC. Long-term neuropathy after oxaliplatin treatment: challenging the dictum of reversibility. Oncologist. 2011;16(5):708–16.PubMedPubMedCentral
44.
Zurück zum Zitat Lehky TJ, Leonard GD, Wilson RH, Grem JL, Floeter MK. Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve. 2004;29(3):387–92.PubMed Lehky TJ, Leonard GD, Wilson RH, Grem JL, Floeter MK. Oxaliplatin-induced neurotoxicity: acute hyperexcitability and chronic neuropathy. Muscle Nerve. 2004;29(3):387–92.PubMed
45.
Zurück zum Zitat Land SR, Kopec JA, Cecchini RS, Ganz PA, Wieand HS, Colangelo LH, et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: NSABP C-07. J Clin Oncol. 2007;25(16):2205–11.PubMed Land SR, Kopec JA, Cecchini RS, Ganz PA, Wieand HS, Colangelo LH, et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: NSABP C-07. J Clin Oncol. 2007;25(16):2205–11.PubMed
46.
Zurück zum Zitat de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18(16):2938–47.PubMed de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18(16):2938–47.PubMed
47.
Zurück zum Zitat Briani C, Argyriou AA, Izquierdo C, Velasco R, Campagnolo M, Alberti P, et al. Long-term course of oxaliplatin-induced polyneuropathy: a prospective 2-year follow-up study. J Peripher Nerv Syst. 2014;19(4):299–306.PubMed Briani C, Argyriou AA, Izquierdo C, Velasco R, Campagnolo M, Alberti P, et al. Long-term course of oxaliplatin-induced polyneuropathy: a prospective 2-year follow-up study. J Peripher Nerv Syst. 2014;19(4):299–306.PubMed
48.
Zurück zum Zitat Branca JJV, Morucci G, Paternostro F, Gulisano M, Pacini A, Maresca M, et al. Oxaliplatin-induced blood brain barrier loosening: a new point of view on chemotherapy-induced neurotoxicity. Oncotarget. 2018;9(34):23426–38.PubMedPubMedCentral Branca JJV, Morucci G, Paternostro F, Gulisano M, Pacini A, Maresca M, et al. Oxaliplatin-induced blood brain barrier loosening: a new point of view on chemotherapy-induced neurotoxicity. Oncotarget. 2018;9(34):23426–38.PubMedPubMedCentral
49.
Zurück zum Zitat Fujita S, Hirota T, Sakiyama R, Baba M, Ieiri I. Identification of drug transporters contributing to oxaliplatin-induced peripheral neuropathy. J Neurochem. 2019;148(3):373–85.PubMed Fujita S, Hirota T, Sakiyama R, Baba M, Ieiri I. Identification of drug transporters contributing to oxaliplatin-induced peripheral neuropathy. J Neurochem. 2019;148(3):373–85.PubMed
50.
Zurück zum Zitat Banach M, Juranek JK, Zygulska AL. Chemotherapy-induced neuropathies-a growing problem for patients and health care providers. Brain Behav. 2017;7:e00558.PubMed Banach M, Juranek JK, Zygulska AL. Chemotherapy-induced neuropathies-a growing problem for patients and health care providers. Brain Behav. 2017;7:e00558.PubMed
51.
Zurück zum Zitat Scuteri A, Galimberti A, Maggioni D, Ravasi M, Pasini S, Nicolini G, et al. Role of MAPKs in platinum-induced neuronal apoptosis. Neurotoxicology. 2009;30:312–9.PubMed Scuteri A, Galimberti A, Maggioni D, Ravasi M, Pasini S, Nicolini G, et al. Role of MAPKs in platinum-induced neuronal apoptosis. Neurotoxicology. 2009;30:312–9.PubMed
52.
Zurück zum Zitat Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A, et al. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol. 2008;214:276.PubMed Melli G, Taiana M, Camozzi F, Triolo D, Podini P, Quattrini A, et al. Alpha-lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol. 2008;214:276.PubMed
53.
Zurück zum Zitat Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, et al. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis. 2011;41(3):661–8.PubMed Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, et al. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis. 2011;41(3):661–8.PubMed
54.
Zurück zum Zitat Flatters SJL, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain. 2006;122(3):245–57.PubMedPubMedCentral Flatters SJL, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. Pain. 2006;122(3):245–57.PubMedPubMedCentral
55.
Zurück zum Zitat Zheng H, Xiao WH, Bennett GJ. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol. 2011;232(2):154–61.PubMedPubMedCentral Zheng H, Xiao WH, Bennett GJ. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel- and oxaliplatin-evoked painful peripheral neuropathy. Exp Neurol. 2011;232(2):154–61.PubMedPubMedCentral
56.
Zurück zum Zitat Ta LE, Espeset L, Podratz J, Windebank AJ. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology. 2006;27:992.PubMed Ta LE, Espeset L, Podratz J, Windebank AJ. Neurotoxicity of oxaliplatin and cisplatin for dorsal root ganglion neurons correlates with platinum-DNA binding. Neurotoxicology. 2006;27:992.PubMed
57.
Zurück zum Zitat Di Cesare ML, Zanardelli M, Failli P, Ghelardini C. Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: Could it correlate with in vivo neuropathy? Free Radical Biol Med. 2013;61:143–50. Di Cesare ML, Zanardelli M, Failli P, Ghelardini C. Oxaliplatin-induced oxidative stress in nervous system-derived cellular models: Could it correlate with in vivo neuropathy? Free Radical Biol Med. 2013;61:143–50.
58.
Zurück zum Zitat Sharawy N, Rashed L, Youakim MF. Evaluation of multi-neuroprotective effects of erythropoietin using cisplatin induced peripheral neurotoxicity model. Exp Toxicol Pathol. 2015;67(4):315–22.PubMed Sharawy N, Rashed L, Youakim MF. Evaluation of multi-neuroprotective effects of erythropoietin using cisplatin induced peripheral neurotoxicity model. Exp Toxicol Pathol. 2015;67(4):315–22.PubMed
59.
Zurück zum Zitat Joseph EK, Chen X, Bogen O, Levine JD. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J Pain. 2008;9(5):463–72.PubMed Joseph EK, Chen X, Bogen O, Levine JD. Oxaliplatin acts on IB4-positive nociceptors to induce an oxidative stress-dependent acute painful peripheral neuropathy. J Pain. 2008;9(5):463–72.PubMed
60.
Zurück zum Zitat Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–208.PubMed Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–208.PubMed
61.
Zurück zum Zitat Di Cesare ML, Zanardelli M, Failli P, Ghelardini C. Oxaliplatin-induced neuropathy: oxidative stress as pathological mechanism. Protective effect of silibinin. J Pain. 2012;13(3):276–84. Di Cesare ML, Zanardelli M, Failli P, Ghelardini C. Oxaliplatin-induced neuropathy: oxidative stress as pathological mechanism. Protective effect of silibinin. J Pain. 2012;13(3):276–84.
62.
Zurück zum Zitat Shim HS, Bae C, Wang J, Lee KH, Hankerd KM, Kim HK, et al. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol Pain. 2019;15:1744806919840098.PubMedPubMedCentral Shim HS, Bae C, Wang J, Lee KH, Hankerd KM, Kim HK, et al. Peripheral and central oxidative stress in chemotherapy-induced neuropathic pain. Mol Pain. 2019;15:1744806919840098.PubMedPubMedCentral
63.
Zurück zum Zitat Di Cesare ML, Zanardelli M, Landini I, Pacini A, Ghelardini C, Mini E, et al. Effect of the SOD mimetic MnL4 on in vitro and in vivo oxaliplatin toxicity: possible aid in chemotherapy induced neuropathy. Free Radical Biol Med. 2016;93:67–76. Di Cesare ML, Zanardelli M, Landini I, Pacini A, Ghelardini C, Mini E, et al. Effect of the SOD mimetic MnL4 on in vitro and in vivo oxaliplatin toxicity: possible aid in chemotherapy induced neuropathy. Free Radical Biol Med. 2016;93:67–76.
64.
Zurück zum Zitat Viatchenko-Karpinski V, Ling J, Gu JG. Down-regulation of Kv43 channels and a-type K+ currents in V2 trigeminal ganglion neurons of rats following oxaliplatin treatment. Mol Pain. 2018;14:1. Viatchenko-Karpinski V, Ling J, Gu JG. Down-regulation of Kv43 channels and a-type K+ currents in V2 trigeminal ganglion neurons of rats following oxaliplatin treatment. Mol Pain. 2018;14:1.
65.
Zurück zum Zitat Makker PGS, White D, Lees JG, Parmar J, Goldstein D, Park SB, et al. Acute changes in nerve excitability following oxaliplatin treatment in mice. J Neurophysiol. 2020;124(1):232–44.PubMed Makker PGS, White D, Lees JG, Parmar J, Goldstein D, Park SB, et al. Acute changes in nerve excitability following oxaliplatin treatment in mice. J Neurophysiol. 2020;124(1):232–44.PubMed
66.
Zurück zum Zitat Alberti P, Canta A, Chiorazzi A, Fumagalli G, Meregalli C, Monza L, et al. Topiramate prevents oxaliplatin-related axonal hyperexcitability and oxaliplatin induced peripheral neurotoxicity. Neuropharmacology. 2020;164:107905.PubMed Alberti P, Canta A, Chiorazzi A, Fumagalli G, Meregalli C, Monza L, et al. Topiramate prevents oxaliplatin-related axonal hyperexcitability and oxaliplatin induced peripheral neurotoxicity. Neuropharmacology. 2020;164:107905.PubMed
67.
Zurück zum Zitat Kono T, Satomi M, Suno M, Kimura N, Yamazaki H, Furukawa H, et al. Oxaliplatin-induced neurotoxicity involves TRPM8 in the mechanism of acute hypersensitivity to cold sensation. Brain Behav. 2012;2(1):68–73.PubMedPubMedCentral Kono T, Satomi M, Suno M, Kimura N, Yamazaki H, Furukawa H, et al. Oxaliplatin-induced neurotoxicity involves TRPM8 in the mechanism of acute hypersensitivity to cold sensation. Brain Behav. 2012;2(1):68–73.PubMedPubMedCentral
68.
Zurück zum Zitat Descoeur J, Pereira V, Pizzoccaro A, Francois A, Ling B, Maffre V, et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol Med. 2011;2:266–78. Descoeur J, Pereira V, Pizzoccaro A, Francois A, Ling B, Maffre V, et al. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors. EMBO Mol Med. 2011;2:266–78.
69.
Zurück zum Zitat Benoit E, Brienza S, Dubois JM. Oxaliplatin, an anticancer agent that affects both Na^+ and K^+ channels in frog peripheral myelinated axons. Gen Physiol Biophys. 2006;25:263–76.PubMed Benoit E, Brienza S, Dubois JM. Oxaliplatin, an anticancer agent that affects both Na^+ and K^+ channels in frog peripheral myelinated axons. Gen Physiol Biophys. 2006;25:263–76.PubMed
70.
Zurück zum Zitat Wahlman C, Doyle TM, Little JW, Luongo L, Janes K, Chen Z, et al. Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms. Pain. 2018;159(6):1025–34.PubMedPubMedCentral Wahlman C, Doyle TM, Little JW, Luongo L, Janes K, Chen Z, et al. Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms. Pain. 2018;159(6):1025–34.PubMedPubMedCentral
71.
Zurück zum Zitat Robinson CR, Zhang H, Dougherty PM. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience. 2014;274:308–17.PubMed Robinson CR, Zhang H, Dougherty PM. Astrocytes, but not microglia, are activated in oxaliplatin and bortezomib-induced peripheral neuropathy in the rat. Neuroscience. 2014;274:308–17.PubMed
72.
Zurück zum Zitat Hu LY, Zhou Y, Cui WQ, Hu XM, Du LX, Mi WL, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) dependent microglial activation promotes cisplatin-induced peripheral neuropathy in mice. Brain Behav Immun. 2018;68:132–45.PubMed Hu LY, Zhou Y, Cui WQ, Hu XM, Du LX, Mi WL, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) dependent microglial activation promotes cisplatin-induced peripheral neuropathy in mice. Brain Behav Immun. 2018;68:132–45.PubMed
73.
Zurück zum Zitat Mekhail TM, Markman M. Paclitaxel in cancer therapy. Expert Opin Pharmacother. 2002;3(6):755–66.PubMed Mekhail TM, Markman M. Paclitaxel in cancer therapy. Expert Opin Pharmacother. 2002;3(6):755–66.PubMed
74.
Zurück zum Zitat Yared JA, Tkaczuk KH. Update on taxane development: new analogs and new formulations. Drug Des Devel Ther. 2012;6:371–84.PubMedPubMedCentral Yared JA, Tkaczuk KH. Update on taxane development: new analogs and new formulations. Drug Des Devel Ther. 2012;6:371–84.PubMedPubMedCentral
75.
Zurück zum Zitat Brewer JR, Morrison G, Dolan ME, Fleming GF. Chemotherapy-induced peripheral neuropathy: current status and progress. Gynecol Oncol. 2016;140(1):176–83.PubMed Brewer JR, Morrison G, Dolan ME, Fleming GF. Chemotherapy-induced peripheral neuropathy: current status and progress. Gynecol Oncol. 2016;140(1):176–83.PubMed
76.
Zurück zum Zitat Swain SM, Arezzo JC. Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin Adv Hematol Oncol. 2008;6(6):455–67.PubMed Swain SM, Arezzo JC. Neuropathy associated with microtubule inhibitors: diagnosis, incidence, and management. Clin Adv Hematol Oncol. 2008;6(6):455–67.PubMed
77.
Zurück zum Zitat Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR. Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain. 2004;109(1–2):132–42.PubMed Dougherty PM, Cata JP, Cordella JV, Burton A, Weng HR. Taxol-induced sensory disturbance is characterized by preferential impairment of myelinated fiber function in cancer patients. Pain. 2004;109(1–2):132–42.PubMed
78.
Zurück zum Zitat Hilkens PH, Verweij J, Vecht CJ, Stoter G, van den Bent MJ. Clinical characteristics of severe peripheral neuropathy induced by docetaxel (Taxotere). Ann Oncol. 1997;8(2):187–90.PubMed Hilkens PH, Verweij J, Vecht CJ, Stoter G, van den Bent MJ. Clinical characteristics of severe peripheral neuropathy induced by docetaxel (Taxotere). Ann Oncol. 1997;8(2):187–90.PubMed
79.
Zurück zum Zitat Mustafa Ali M, Moeller M, Rybicki L, Moore HCF. Long-term peripheral neuropathy symptoms in breast cancer survivors. Breast Cancer Res Treat. 2017;166(2):519–26.PubMed Mustafa Ali M, Moeller M, Rybicki L, Moore HCF. Long-term peripheral neuropathy symptoms in breast cancer survivors. Breast Cancer Res Treat. 2017;166(2):519–26.PubMed
81.
Zurück zum Zitat de la Morena BP, Conesa M, González-Billalabeitia E, Urrego E, García-Garre E, García-Martínez E, et al. Delayed recovery and increased severity of Paclitaxel-induced peripheral neuropathy in patients with diabetes. J Natl Compr Canc Netw. 2015;13(4):417–23. de la Morena BP, Conesa M, González-Billalabeitia E, Urrego E, García-Garre E, García-Martínez E, et al. Delayed recovery and increased severity of Paclitaxel-induced peripheral neuropathy in patients with diabetes. J Natl Compr Canc Netw. 2015;13(4):417–23.
82.
Zurück zum Zitat Bridges CM, Smith EM. What about Alice? Peripheral neuropathy from taxane-containing treatment for advanced nonsmall cell lung cancer. Support Care Cancer. 2014;22(9):2581–92.PubMed Bridges CM, Smith EM. What about Alice? Peripheral neuropathy from taxane-containing treatment for advanced nonsmall cell lung cancer. Support Care Cancer. 2014;22(9):2581–92.PubMed
83.
Zurück zum Zitat Bonomi P, Kim K, Fairclough D, Cella D, Kugler J, Rowinsky E, et al. Comparison of survival and quality of life in advanced non-small-cell lung cancer patients treated with two dose levels of paclitaxel combined with cisplatin versus etoposide with cisplatin: results of an Eastern Cooperative Oncology Group trial. J Clin Oncol. 2000;18(3):623–31.PubMed Bonomi P, Kim K, Fairclough D, Cella D, Kugler J, Rowinsky E, et al. Comparison of survival and quality of life in advanced non-small-cell lung cancer patients treated with two dose levels of paclitaxel combined with cisplatin versus etoposide with cisplatin: results of an Eastern Cooperative Oncology Group trial. J Clin Oncol. 2000;18(3):623–31.PubMed
84.
Zurück zum Zitat Shimozuma K, Ohashi Y, Takeuchi A, Aranishi T, Morita S, Kuroi K, et al. Taxane-induced peripheral neuropathy and health-related quality of life in postoperative breast cancer patients undergoing adjuvant chemotherapy: N-SAS BC 02, a randomized clinical trial. Support Care Cancer. 2012;20(12):3355–64.PubMed Shimozuma K, Ohashi Y, Takeuchi A, Aranishi T, Morita S, Kuroi K, et al. Taxane-induced peripheral neuropathy and health-related quality of life in postoperative breast cancer patients undergoing adjuvant chemotherapy: N-SAS BC 02, a randomized clinical trial. Support Care Cancer. 2012;20(12):3355–64.PubMed
85.
Zurück zum Zitat Lindå H, Sköld MK, Ochsmann T. Activating transcription factor 3, a useful marker for regenerative response after nerve root injury. Front Neurol. 2011;2:30.PubMedPubMedCentral Lindå H, Sköld MK, Ochsmann T. Activating transcription factor 3, a useful marker for regenerative response after nerve root injury. Front Neurol. 2011;2:30.PubMedPubMedCentral
86.
Zurück zum Zitat Kidd JF, Pilkington MF, Schell MJ, Fogarty KE, Skepper JN, Taylor CW, et al. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem. 2002;277(8):6504–10.PubMed Kidd JF, Pilkington MF, Schell MJ, Fogarty KE, Skepper JN, Taylor CW, et al. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem. 2002;277(8):6504–10.PubMed
87.
Zurück zum Zitat Krukowski K, Ma J, Laumet GO, Gutti T, Heijnen CJ, Kavelaars A, et al. HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain. 2017;158(6):1126–37.PubMedPubMedCentral Krukowski K, Ma J, Laumet GO, Gutti T, Heijnen CJ, Kavelaars A, et al. HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain. 2017;158(6):1126–37.PubMedPubMedCentral
88.
Zurück zum Zitat Windebank AJ, Grisold W. Chemotherapy-induced neuropathy. J Peripher Nerv Syst. 2008;13(1):27–46.PubMed Windebank AJ, Grisold W. Chemotherapy-induced neuropathy. J Peripher Nerv Syst. 2008;13(1):27–46.PubMed
89.
Zurück zum Zitat McCormick B, Lowes DA, Colvin L, Torsney C, Galley HF. MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. Br J Anaesth. 2016;117(5):659–66.PubMed McCormick B, Lowes DA, Colvin L, Torsney C, Galley HF. MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. Br J Anaesth. 2016;117(5):659–66.PubMed
90.
Zurück zum Zitat Li Y, Tatsui CE, Rhines LD, North RY, Harrison DS, Cassidy RM, et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain. 2017;158(3):417–29.PubMedPubMedCentral Li Y, Tatsui CE, Rhines LD, North RY, Harrison DS, Cassidy RM, et al. Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy. Pain. 2017;158(3):417–29.PubMedPubMedCentral
91.
Zurück zum Zitat Bennett GJ, Liu GK, Xiao WH, Jin HW, Siau C. Terminal arbor degeneration—a novel lesion produced by the antineoplastic agent paclitaxel. Eur J Neurosci. 2011;33(9):1667–76.PubMedPubMedCentral Bennett GJ, Liu GK, Xiao WH, Jin HW, Siau C. Terminal arbor degeneration—a novel lesion produced by the antineoplastic agent paclitaxel. Eur J Neurosci. 2011;33(9):1667–76.PubMedPubMedCentral
92.
Zurück zum Zitat Li Y, North RY, Rhines LD, Tatsui CE, Rao G, Edwards DD, et al. DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci. 2018;38(5):1124–36.PubMedPubMedCentral Li Y, North RY, Rhines LD, Tatsui CE, Rao G, Edwards DD, et al. DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J Neurosci. 2018;38(5):1124–36.PubMedPubMedCentral
93.
Zurück zum Zitat Chang W, Berta T, Kim YH, Ji RR, Lee S, Lee SY. Expression and role of voltage-gated sodium channels in human dorsal root ganglion neurons with special focus on Nav1.7, species differences, and regulation by paclitaxel. Neurosci Bull. 2018;34(1):4–12.PubMed Chang W, Berta T, Kim YH, Ji RR, Lee S, Lee SY. Expression and role of voltage-gated sodium channels in human dorsal root ganglion neurons with special focus on Nav1.7, species differences, and regulation by paclitaxel. Neurosci Bull. 2018;34(1):4–12.PubMed
94.
Zurück zum Zitat Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. J Pain. 2014;15(7):712–25.PubMedPubMedCentral Li Y, Zhang H, Zhang H, Kosturakis AK, Jawad AB, Dougherty PM. Toll-like receptor 4 signaling contributes to Paclitaxel-induced peripheral neuropathy. J Pain. 2014;15(7):712–25.PubMedPubMedCentral
95.
Zurück zum Zitat Li Y, Zhang H, Kosturakis AK, Cassidy RM, Zhang H, Kennamer-Chapman RM, et al. MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav Immun. 2015;49:255–66.PubMedPubMedCentral Li Y, Zhang H, Kosturakis AK, Cassidy RM, Zhang H, Kennamer-Chapman RM, et al. MAPK signaling downstream to TLR4 contributes to paclitaxel-induced peripheral neuropathy. Brain Behav Immun. 2015;49:255–66.PubMedPubMedCentral
96.
Zurück zum Zitat Li Y, Adamek P, Zhang H, Tatsui CE, Rhines LD, Mrozkova P, et al. The cancer chemotherapeutic paclitaxel increases human and rodent sensory neuron responses to TRPV1 by activation of TLR4. J Neurosci. 2015;35(39):13487–500.PubMedPubMedCentral Li Y, Adamek P, Zhang H, Tatsui CE, Rhines LD, Mrozkova P, et al. The cancer chemotherapeutic paclitaxel increases human and rodent sensory neuron responses to TRPV1 by activation of TLR4. J Neurosci. 2015;35(39):13487–500.PubMedPubMedCentral
97.
Zurück zum Zitat Penson RT, Kronish K, Duan Z, Feller A, Stark P, Cook SE, et al. Cytokines IL-1b, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFa in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Eur J Cancer. 1999;35:S239. Penson RT, Kronish K, Duan Z, Feller A, Stark P, Cook SE, et al. Cytokines IL-1b, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFa in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Eur J Cancer. 1999;35:S239.
98.
Zurück zum Zitat Siau C, Xiao W, Bennett GJ. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol. 2006;201(2):507–14.PubMedPubMedCentral Siau C, Xiao W, Bennett GJ. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells. Exp Neurol. 2006;201(2):507–14.PubMedPubMedCentral
99.
Zurück zum Zitat Krukowski K, Eijkelkamp N, Laumet G, Hack CE, Yan L, Dougherty PM, et al. CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J Neurosci. 2016;36(43):11074–83.PubMedPubMedCentral Krukowski K, Eijkelkamp N, Laumet G, Hack CE, Yan L, Dougherty PM, et al. CD8+ T cells and endogenous IL-10 are required for resolution of chemotherapy-induced neuropathic pain. J Neurosci. 2016;36(43):11074–83.PubMedPubMedCentral
100.
Zurück zum Zitat Ledeboer A, Jekich BM, Sloane EM, Mahoney JH, Langer SJ, Milligan ED, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun. 2007;21(5):686–98.PubMed Ledeboer A, Jekich BM, Sloane EM, Mahoney JH, Langer SJ, Milligan ED, et al. Intrathecal interleukin-10 gene therapy attenuates paclitaxel-induced mechanical allodynia and proinflammatory cytokine expression in dorsal root ganglia in rats. Brain Behav Immun. 2007;21(5):686–98.PubMed
101.
Zurück zum Zitat Peters CM, Jimenez-Andrade JM, Kuskowski MA, Ghilardi JR, Mantyh PW. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res. 2007;1168:46.PubMedPubMedCentral Peters CM, Jimenez-Andrade JM, Kuskowski MA, Ghilardi JR, Mantyh PW. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. Brain Res. 2007;1168:46.PubMedPubMedCentral
102.
Zurück zum Zitat Islam B, Lustberg M, Staff NP, Kolb N, Alberti P, Argyriou AA. Vinca alkaloids, thalidomide and eribulin-induced peripheral neurotoxicity: from pathogenesis to treatment. J Peripher Nerv Syst. 2019;24(Suppl 2):S63–73.PubMed Islam B, Lustberg M, Staff NP, Kolb N, Alberti P, Argyriou AA. Vinca alkaloids, thalidomide and eribulin-induced peripheral neurotoxicity: from pathogenesis to treatment. J Peripher Nerv Syst. 2019;24(Suppl 2):S63–73.PubMed
103.
Zurück zum Zitat Verstappen CCP, Koeppen S, Heimans JJ, Huijgens PC, Scheulen ME, Strumberg D, et al. Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology. 2005;64(6):1076–7.PubMed Verstappen CCP, Koeppen S, Heimans JJ, Huijgens PC, Scheulen ME, Strumberg D, et al. Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology. 2005;64(6):1076–7.PubMed
104.
Zurück zum Zitat Madsen ML, Due H, Ejskjær N, Jensen P, Madsen J, Dybkær K. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother Pharmacol. 2019;84(3):471–85.PubMedPubMedCentral Madsen ML, Due H, Ejskjær N, Jensen P, Madsen J, Dybkær K. Aspects of vincristine-induced neuropathy in hematologic malignancies: a systematic review. Cancer Chemother Pharmacol. 2019;84(3):471–85.PubMedPubMedCentral
105.
Zurück zum Zitat Kanbayashi Y, Hosokawa T, Okamoto K, Konishi H, Otsuji E, Yoshikawa T, et al. Statistical identification of predictors for peripheral neuropathy associated with administration of bortezomib, taxanes, oxaliplatin or vincristine using ordered logistic regression analysis. Anticancer Drugs. 2010;21(9):877–81.PubMed Kanbayashi Y, Hosokawa T, Okamoto K, Konishi H, Otsuji E, Yoshikawa T, et al. Statistical identification of predictors for peripheral neuropathy associated with administration of bortezomib, taxanes, oxaliplatin or vincristine using ordered logistic regression analysis. Anticancer Drugs. 2010;21(9):877–81.PubMed
106.
Zurück zum Zitat Chauvenet AR, Shashi V, Selsky C, Morgan E, Kurtzberg J, Bell B. Vincristine-induced neuropathy as the initial presentation of charcot-marie-tooth disease in acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Pediatr Hematol Oncol. 2003;25(4):316–20.PubMed Chauvenet AR, Shashi V, Selsky C, Morgan E, Kurtzberg J, Bell B. Vincristine-induced neuropathy as the initial presentation of charcot-marie-tooth disease in acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Pediatr Hematol Oncol. 2003;25(4):316–20.PubMed
107.
Zurück zum Zitat Ness KK, Jones KE, Smith WA, Spunt SL, Wilson CL, Armstrong GT, et al. Chemotherapy-related neuropathic symptoms and functional impairment in adult survivors of extracranial solid tumors of childhood: results from the St Jude Lifetime Cohort Study. Arch Phys Med Rehabil. 2013;94(8):1451–7.PubMedPubMedCentral Ness KK, Jones KE, Smith WA, Spunt SL, Wilson CL, Armstrong GT, et al. Chemotherapy-related neuropathic symptoms and functional impairment in adult survivors of extracranial solid tumors of childhood: results from the St Jude Lifetime Cohort Study. Arch Phys Med Rehabil. 2013;94(8):1451–7.PubMedPubMedCentral
108.
Zurück zum Zitat Andersson M, López-Vega JM, Petit T, Zamagni C, Easton V, Kamber J, et al. Efficacy and safety of pertuzumab and trastuzumab administered in a single infusion bag, followed by vinorelbine: VELVET Cohort 2 final results. Oncologist. 2017;22(10):1160–8.PubMedPubMedCentral Andersson M, López-Vega JM, Petit T, Zamagni C, Easton V, Kamber J, et al. Efficacy and safety of pertuzumab and trastuzumab administered in a single infusion bag, followed by vinorelbine: VELVET Cohort 2 final results. Oncologist. 2017;22(10):1160–8.PubMedPubMedCentral
109.
Zurück zum Zitat Haim N, Epelbaum R, Ben-Shahar M, Yarnitsky D, Simri W, Robinson E. Full dose vincristine (without 2-mg dose limit) in the treatment of lymphomas. Cancer. 1994;73(10):2515–9.PubMed Haim N, Epelbaum R, Ben-Shahar M, Yarnitsky D, Simri W, Robinson E. Full dose vincristine (without 2-mg dose limit) in the treatment of lymphomas. Cancer. 1994;73(10):2515–9.PubMed
110.
Zurück zum Zitat Kandula T, Farrar MA, Cohn RJ, Mizrahi D, Carey K, Johnston K, et al. Chemotherapy-induced peripheral neuropathy in long-term survivors of childhood cancer: clinical, neurophysiological, functional, and patient-reported outcomes. JAMA Neurol. 2018;75(8):980–8.PubMedPubMedCentral Kandula T, Farrar MA, Cohn RJ, Mizrahi D, Carey K, Johnston K, et al. Chemotherapy-induced peripheral neuropathy in long-term survivors of childhood cancer: clinical, neurophysiological, functional, and patient-reported outcomes. JAMA Neurol. 2018;75(8):980–8.PubMedPubMedCentral
111.
Zurück zum Zitat Topp KS, Tanner KD, Levine JD. Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol. 2000;424(4):563–76.PubMed Topp KS, Tanner KD, Levine JD. Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol. 2000;424(4):563–76.PubMed
112.
Zurück zum Zitat Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev. 2011;31(3):443–81.PubMedPubMedCentral Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Med Res Rev. 2011;31(3):443–81.PubMedPubMedCentral
113.
Zurück zum Zitat Cioroiu C, Weimer LH. Update on chemotherapy-induced peripheral neuropathy. Curr Neurol Neurosci Rep. 2017;17(6):47.PubMed Cioroiu C, Weimer LH. Update on chemotherapy-induced peripheral neuropathy. Curr Neurol Neurosci Rep. 2017;17(6):47.PubMed
114.
Zurück zum Zitat Joseph EK, Levine JD. Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain. 2006;121(1–2):105–14.PubMed Joseph EK, Levine JD. Mitochondrial electron transport in models of neuropathic and inflammatory pain. Pain. 2006;121(1–2):105–14.PubMed
115.
Zurück zum Zitat Gerdts J, Summers DW, Milbrandt J, DiAntonio A. Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron. 2016;89(3):449–60.PubMedPubMedCentral Gerdts J, Summers DW, Milbrandt J, DiAntonio A. Axon self-destruction: new links among SARM1, MAPKs, and NAD+ metabolism. Neuron. 2016;89(3):449–60.PubMedPubMedCentral
116.
Zurück zum Zitat Zhou L, Ao L, Yan Y, Li C, Li W, Ye A, et al. Levo-corydalmine attenuates vincristine-induced neuropathic pain in mice by upregulating the Nrf2/HO-1/CO pathway to inhibit connexin 43 expression. Neurotherapeutics. 2020;17(1):340–55.PubMed Zhou L, Ao L, Yan Y, Li C, Li W, Ye A, et al. Levo-corydalmine attenuates vincristine-induced neuropathic pain in mice by upregulating the Nrf2/HO-1/CO pathway to inhibit connexin 43 expression. Neurotherapeutics. 2020;17(1):340–55.PubMed
119.
Zurück zum Zitat Food and Drug Administration (2014) THALOMID® (thalidomide) Food and Drug Administration (2014) THALOMID® (thalidomide)
120.
Zurück zum Zitat Bramuzzo M, Stocco G, Montico M, Arrigo S, Calvi A, Lanteri P, et al. Risk factors and outcomes of thalidomide-induced peripheral neuropathy in a pediatric inflammatory bowel disease cohort. Inflamm Bowel Dis. 2017;23(10):1810–6.PubMed Bramuzzo M, Stocco G, Montico M, Arrigo S, Calvi A, Lanteri P, et al. Risk factors and outcomes of thalidomide-induced peripheral neuropathy in a pediatric inflammatory bowel disease cohort. Inflamm Bowel Dis. 2017;23(10):1810–6.PubMed
121.
Zurück zum Zitat Briani C, Zara G, Rondinone R, Iaccarino L, Ruggero S, Toffanin E, et al. Positive and negative effects of thalidomide on refractory cutaneous lupus erythematosus. Autoimmunity. 2005;38(7):549–55.PubMed Briani C, Zara G, Rondinone R, Iaccarino L, Ruggero S, Toffanin E, et al. Positive and negative effects of thalidomide on refractory cutaneous lupus erythematosus. Autoimmunity. 2005;38(7):549–55.PubMed
122.
Zurück zum Zitat Bastuji-Garin S, Ochonisky S, Bouche P, Gherardi RK, Duguet C, Djerradine Z, et al. Incidence and risk factors for thalidomide neuropathy: a prospective study of 135 dermatologic patients. J Invest Dermatol. 2002;119(5):1020–6.PubMed Bastuji-Garin S, Ochonisky S, Bouche P, Gherardi RK, Duguet C, Djerradine Z, et al. Incidence and risk factors for thalidomide neuropathy: a prospective study of 135 dermatologic patients. J Invest Dermatol. 2002;119(5):1020–6.PubMed
123.
Zurück zum Zitat Zara G, Ermani M, Rondinone R, Arienti S, Doria A. Thalidomide and sensory neurotoxicity: a neurophysiological study. J Neurol Neurosurg Psychiatry. 2008;79(11):1258–61.PubMed Zara G, Ermani M, Rondinone R, Arienti S, Doria A. Thalidomide and sensory neurotoxicity: a neurophysiological study. J Neurol Neurosurg Psychiatry. 2008;79(11):1258–61.PubMed
124.
Zurück zum Zitat Morawska M, Grzasko N, Kostyra M, Wojciechowicz J, Hus M. Therapy-related peripheral neuropathy in multiple myeloma patients. Hematol Oncol. 2015;33(4):113–9.PubMed Morawska M, Grzasko N, Kostyra M, Wojciechowicz J, Hus M. Therapy-related peripheral neuropathy in multiple myeloma patients. Hematol Oncol. 2015;33(4):113–9.PubMed
125.
Zurück zum Zitat Mileshkin L, Stark R, Day B, Seymour JF, Zeldis JB, Prince HM. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol. 2006;24(27):4507–14.PubMed Mileshkin L, Stark R, Day B, Seymour JF, Zeldis JB, Prince HM. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electrophysiologic monitoring. J Clin Oncol. 2006;24(27):4507–14.PubMed
126.
Zurück zum Zitat Chaudhry V, Cornblath DR, Corse A, Freimer M, Simmons-O’Brien E, Vogelsang G. Thalidomide-induced neuropathy. Neurology. 2002;59(12):1872–5.PubMed Chaudhry V, Cornblath DR, Corse A, Freimer M, Simmons-O’Brien E, Vogelsang G. Thalidomide-induced neuropathy. Neurology. 2002;59(12):1872–5.PubMed
127.
Zurück zum Zitat Chaudhry V, Cornblath DR, Polydefkis M, Ferguson A, Borrello I. Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J Peripher Nerv Syst. 2008;13(4):275–82.PubMedPubMedCentral Chaudhry V, Cornblath DR, Polydefkis M, Ferguson A, Borrello I. Characteristics of bortezomib- and thalidomide-induced peripheral neuropathy. J Peripher Nerv Syst. 2008;13(4):275–82.PubMedPubMedCentral
128.
Zurück zum Zitat Isoardo G, Bergui M, Durelli L, Barbero P, Boccadoro M, Bertola A, et al. Thalidomide neuropathy: clinical, electrophysiological and neuroradiological features. Acta Neurol Scand. 2004;109(3):188–93.PubMed Isoardo G, Bergui M, Durelli L, Barbero P, Boccadoro M, Bertola A, et al. Thalidomide neuropathy: clinical, electrophysiological and neuroradiological features. Acta Neurol Scand. 2004;109(3):188–93.PubMed
129.
Zurück zum Zitat Richardson PG, Briemberg H, Jagannath S, Wen PY, Barlogie B, Berenson J, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol. 2006;24(19):3113–20.PubMed Richardson PG, Briemberg H, Jagannath S, Wen PY, Barlogie B, Berenson J, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol. 2006;24(19):3113–20.PubMed
130.
Zurück zum Zitat Tosi P, Zamagni E, Cellini C, Plasmati R, Cangini D, Tacchetti P, et al. Neurological toxicity of long-term (>1 yr) thalidomide therapy in patients with multiple myeloma. Eur J Haematol. 2005;74(3):212–6.PubMed Tosi P, Zamagni E, Cellini C, Plasmati R, Cangini D, Tacchetti P, et al. Neurological toxicity of long-term (>1 yr) thalidomide therapy in patients with multiple myeloma. Eur J Haematol. 2005;74(3):212–6.PubMed
131.
Zurück zum Zitat Cavaletti G, Beronio A, Reni L, Ghiglione E, Schenone A, Briani C, et al. Thalidomide sensory neurotoxicity: a clinical and neurophysiologic study. Neurology. 2004;62(12):2291–3.PubMed Cavaletti G, Beronio A, Reni L, Ghiglione E, Schenone A, Briani C, et al. Thalidomide sensory neurotoxicity: a clinical and neurophysiologic study. Neurology. 2004;62(12):2291–3.PubMed
132.
Zurück zum Zitat Katodritou E, Vadikolia C, Lalagianni C, Kotsopoulou M, Papageorgiou G, Kyrtsonis MC, et al. “Real-world” data on the efficacy and safety of lenalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma who were treated according to the standard clinical practice: a study of the Greek Myeloma Study Group. Ann Hematol. 2014;93(1):129–39.PubMed Katodritou E, Vadikolia C, Lalagianni C, Kotsopoulou M, Papageorgiou G, Kyrtsonis MC, et al. “Real-world” data on the efficacy and safety of lenalidomide and dexamethasone in patients with relapsed/refractory multiple myeloma who were treated according to the standard clinical practice: a study of the Greek Myeloma Study Group. Ann Hematol. 2014;93(1):129–39.PubMed
133.
Zurück zum Zitat Glasmacher A, Hahn C, Hoffmann F, Naumann R, Goldschmidt H, von Lilienfeld-Toal M, et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br J Haematol. 2006;132(5):584–93.PubMed Glasmacher A, Hahn C, Hoffmann F, Naumann R, Goldschmidt H, von Lilienfeld-Toal M, et al. A systematic review of phase-II trials of thalidomide monotherapy in patients with relapsed or refractory multiple myeloma. Br J Haematol. 2006;132(5):584–93.PubMed
134.
Zurück zum Zitat Plasmati R, Pastorelli F, Cavo M, Petracci E, Zamagni E, Tosi P, et al. Neuropathy in multiple myeloma treated with thalidomide: a prospective study. Neurology. 2007;69(6):573–81.PubMed Plasmati R, Pastorelli F, Cavo M, Petracci E, Zamagni E, Tosi P, et al. Neuropathy in multiple myeloma treated with thalidomide: a prospective study. Neurology. 2007;69(6):573–81.PubMed
135.
Zurück zum Zitat Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau J-L, Dmoszynska A, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357(21):2123–32.PubMed Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau J-L, Dmoszynska A, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med. 2007;357(21):2123–32.PubMed
136.
Zurück zum Zitat Briani C, Torre CD, Campagnolo M, Lucchetta M, Berno T, Candiotto L, et al. Lenalidomide in patients with chemotherapy-induced polyneuropathy and relapsed or refractory multiple myeloma: results from a single-centre prospective study. J Peripher Nerv Syst. 2013;18(1):19–24.PubMed Briani C, Torre CD, Campagnolo M, Lucchetta M, Berno T, Candiotto L, et al. Lenalidomide in patients with chemotherapy-induced polyneuropathy and relapsed or refractory multiple myeloma: results from a single-centre prospective study. J Peripher Nerv Syst. 2013;18(1):19–24.PubMed
137.
Zurück zum Zitat Miguel JS, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66.PubMed Miguel JS, Weisel K, Moreau P, Lacy M, Song K, Delforge M, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66.PubMed
138.
Zurück zum Zitat Latif T, Chauhan N, Khan R, Moran A, Usmani SZ. Thalidomide and its analogues in the treatment of multiple myeloma. Exp Hematol Oncol. 2012;1(1):27.PubMedPubMedCentral Latif T, Chauhan N, Khan R, Moran A, Usmani SZ. Thalidomide and its analogues in the treatment of multiple myeloma. Exp Hematol Oncol. 2012;1(1):27.PubMedPubMedCentral
139.
Zurück zum Zitat Fonseca R, Jena AB, Peneva D, Clancy Z. Survival gains in multiple myeloma from 2003 to 2014. J Clin Oncol. 2018;36(30 suppl):98. Fonseca R, Jena AB, Peneva D, Clancy Z. Survival gains in multiple myeloma from 2003 to 2014. J Clin Oncol. 2018;36(30 suppl):98.
140.
Zurück zum Zitat Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F, et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med. 2006;354(10):1021–30.PubMed Barlogie B, Tricot G, Anaissie E, Shaughnessy J, Rasmussen E, van Rhee F, et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. N Engl J Med. 2006;354(10):1021–30.PubMed
141.
Zurück zum Zitat Fullerton PM, O’Sullivan DJ. Thalidomide neuropathy: a clinical electrophysiological, and histological follow-up study. J Neurol Neurosurg Psychiatry. 1968;31(6):543–51.PubMedPubMedCentral Fullerton PM, O’Sullivan DJ. Thalidomide neuropathy: a clinical electrophysiological, and histological follow-up study. J Neurol Neurosurg Psychiatry. 1968;31(6):543–51.PubMedPubMedCentral
142.
Zurück zum Zitat Hafström T. Polyneuropathy after neurosedyn (thalidomide) and its prognosis. Acta Neurol Scand. 1967;43(S32):5–41.PubMed Hafström T. Polyneuropathy after neurosedyn (thalidomide) and its prognosis. Acta Neurol Scand. 1967;43(S32):5–41.PubMed
143.
Zurück zum Zitat Banach M, Jurczyszyn A, Skotnicki A. Thalidomide induced peripheral neuropathy in multiple myeloma patients. Przegl Lek. 2015;72(11):629–35.PubMed Banach M, Jurczyszyn A, Skotnicki A. Thalidomide induced peripheral neuropathy in multiple myeloma patients. Przegl Lek. 2015;72(11):629–35.PubMed
145.
Zurück zum Zitat Tamilarasan KP, Kolluru GK, Rajaram M, Indhumathy M, Saranya R, Chatterjee S. Thalidomide attenuates nitric oxide mediated angiogenesis by blocking migration of endothelial cells. BMC Cell Biol. 2006;7(1):17.PubMedPubMedCentral Tamilarasan KP, Kolluru GK, Rajaram M, Indhumathy M, Saranya R, Chatterjee S. Thalidomide attenuates nitric oxide mediated angiogenesis by blocking migration of endothelial cells. BMC Cell Biol. 2006;7(1):17.PubMedPubMedCentral
146.
Zurück zum Zitat Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS Jr. Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem. 2001;276(25):22382–7.PubMed Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS Jr. Inhibition of NF-kappa B activity by thalidomide through suppression of IkappaB kinase activity. J Biol Chem. 2001;276(25):22382–7.PubMed
147.
Zurück zum Zitat Kirchmair R, Tietz AB, Panagiotou E, Walter DH, Silver M, Yoon YS, et al. Therapeutic angiogenesis inhibits or rescues chemotherapy-induced peripheral neuropathy: taxol- and thalidomide-induced injury of vasa nervorum is ameliorated by VEGF. Mol Ther. 2007;15(1):69–75.PubMed Kirchmair R, Tietz AB, Panagiotou E, Walter DH, Silver M, Yoon YS, et al. Therapeutic angiogenesis inhibits or rescues chemotherapy-induced peripheral neuropathy: taxol- and thalidomide-induced injury of vasa nervorum is ameliorated by VEGF. Mol Ther. 2007;15(1):69–75.PubMed
148.
Zurück zum Zitat Herndon TM, Deisseroth A, Kaminskas E, Kane RC, Koti KM, Rothmann MD, et al. US Food and Drug Administration approval: carfilzomib for the treatment of multiple myeloma. Clin Cancer Res. 2013;19(17):4559–63.PubMed Herndon TM, Deisseroth A, Kaminskas E, Kane RC, Koti KM, Rothmann MD, et al. US Food and Drug Administration approval: carfilzomib for the treatment of multiple myeloma. Clin Cancer Res. 2013;19(17):4559–63.PubMed
149.
Zurück zum Zitat Kane RC, Bross PF, Farrell AT, Pazdur R. Velcade: US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8(6):508–13.PubMed Kane RC, Bross PF, Farrell AT, Pazdur R. Velcade: US FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8(6):508–13.PubMed
150.
Zurück zum Zitat Pantani L, Zamagni E, Zannetti BA, Pezzi A, Tacchetti P, Brioli A, et al. Bortezomib and dexamethasone as salvage therapy in patients with relapsed/refractory multiple myeloma: analysis of long-term clinical outcomes. Ann Hematol. 2014;93(1):123–8.PubMed Pantani L, Zamagni E, Zannetti BA, Pezzi A, Tacchetti P, Brioli A, et al. Bortezomib and dexamethasone as salvage therapy in patients with relapsed/refractory multiple myeloma: analysis of long-term clinical outcomes. Ann Hematol. 2014;93(1):123–8.PubMed
152.
Zurück zum Zitat Argyriou AA, Iconomou G, Kalofonos HP. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood. 2008;112(5):1593–9.PubMed Argyriou AA, Iconomou G, Kalofonos HP. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood. 2008;112(5):1593–9.PubMed
153.
Zurück zum Zitat Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348(26):2609–17.PubMed Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348(26):2609–17.PubMed
154.
Zurück zum Zitat Kropff M, Bisping G, Schuck E, Liebisch P, Lang N, Hentrich M, et al. Bortezomib in combination with intermediate-dose dexamethasone and continuous low-dose oral cyclophosphamide for relapsed multiple myeloma. Br J Haematol. 2007;138(3):330–7.PubMed Kropff M, Bisping G, Schuck E, Liebisch P, Lang N, Hentrich M, et al. Bortezomib in combination with intermediate-dose dexamethasone and continuous low-dose oral cyclophosphamide for relapsed multiple myeloma. Br J Haematol. 2007;138(3):330–7.PubMed
155.
Zurück zum Zitat Kane RC, Dagher R, Farrell A, Ko CW, Sridhara R, Justice R, et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2007;13(18 Pt 1):5291–4.PubMed Kane RC, Dagher R, Farrell A, Ko CW, Sridhara R, Justice R, et al. Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2007;13(18 Pt 1):5291–4.PubMed
156.
Zurück zum Zitat Martin TG. Peripheral neuropathy experience in patients with relapsed and/or refractory multiple myeloma treated with carfilzomib. Oncology (Williston Park). 2013;27(Suppl 3):4–10. Martin TG. Peripheral neuropathy experience in patients with relapsed and/or refractory multiple myeloma treated with carfilzomib. Oncology (Williston Park). 2013;27(Suppl 3):4–10.
157.
Zurück zum Zitat Kumar SK, Berdeja JG, Niesvizky R, Lonial S, Laubach JP, Hamadani M, et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol. 2014;15(13):1503–12.PubMed Kumar SK, Berdeja JG, Niesvizky R, Lonial S, Laubach JP, Hamadani M, et al. Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study. Lancet Oncol. 2014;15(13):1503–12.PubMed
158.
Zurück zum Zitat Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Špička I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52.PubMed Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Špička I, Oriol A, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52.PubMed
159.
Zurück zum Zitat Sonneveld P. Management of multiple myeloma in the relapsed/refractory patient. Hematology Am Soc Hematol Educ Program. 2017;2017(1):508–17.PubMedPubMedCentral Sonneveld P. Management of multiple myeloma in the relapsed/refractory patient. Hematology Am Soc Hematol Educ Program. 2017;2017(1):508–17.PubMedPubMedCentral
160.
Zurück zum Zitat Mohan M, Matin A, Davies FE. Update on the optimal use of bortezomib in the treatment of multiple myeloma. Cancer Manag Res. 2017;9:51–63.PubMedPubMedCentral Mohan M, Matin A, Davies FE. Update on the optimal use of bortezomib in the treatment of multiple myeloma. Cancer Manag Res. 2017;9:51–63.PubMedPubMedCentral
161.
Zurück zum Zitat Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT. Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res. 2005;65(9):3828–36.PubMed Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT. Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res. 2005;65(9):3828–36.PubMed
162.
Zurück zum Zitat Cavaletti G, Gilardini A, Canta A, Rigamonti L, Rodriguez-Menendez V, Ceresa C, et al. Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol. 2007;204(1):317–25.PubMed Cavaletti G, Gilardini A, Canta A, Rigamonti L, Rodriguez-Menendez V, Ceresa C, et al. Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol. 2007;204(1):317–25.PubMed
163.
Zurück zum Zitat Meregalli C, Canta A, Carozzi VA, Chiorazzi A, Oggioni N, Gilardini A, et al. Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur J Pain. 2010;14(4):343–50.PubMed Meregalli C, Canta A, Carozzi VA, Chiorazzi A, Oggioni N, Gilardini A, et al. Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur J Pain. 2010;14(4):343–50.PubMed
164.
Zurück zum Zitat Zheng H, Xiao WH, Bennett GJ. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp Neurol. 2012;238(2):225–34.PubMed Zheng H, Xiao WH, Bennett GJ. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp Neurol. 2012;238(2):225–34.PubMed
165.
Zurück zum Zitat Iijima Y, Bandow K, Amano S, Sano M, Hino S, Kaneko T, et al. Protection of bortezomib-induced neurotoxicity by antioxidants. Anticancer Res. 2020;40(7):3685–96.PubMed Iijima Y, Bandow K, Amano S, Sano M, Hino S, Kaneko T, et al. Protection of bortezomib-induced neurotoxicity by antioxidants. Anticancer Res. 2020;40(7):3685–96.PubMed
166.
Zurück zum Zitat Alé A, Bruna J, Calls A, Karamita M, Haralambous S, Probert L, et al. Inhibition of the neuronal NFκB pathway attenuates bortezomib-induced neuropathy in a mouse model. Neurotoxicology. 2016;55:58–64.PubMed Alé A, Bruna J, Calls A, Karamita M, Haralambous S, Probert L, et al. Inhibition of the neuronal NFκB pathway attenuates bortezomib-induced neuropathy in a mouse model. Neurotoxicology. 2016;55:58–64.PubMed
167.
Zurück zum Zitat Zhao W, Wang W, Li X, Liu Y, Gao H, Jiang Y, et al. Peripheral neuropathy following bortezomib therapy in multiple myeloma patients: association with cumulative dose, heparanase, and TNF-α. Ann Hematol. 2019;98(12):2793–803.PubMed Zhao W, Wang W, Li X, Liu Y, Gao H, Jiang Y, et al. Peripheral neuropathy following bortezomib therapy in multiple myeloma patients: association with cumulative dose, heparanase, and TNF-α. Ann Hematol. 2019;98(12):2793–803.PubMed
168.
Zurück zum Zitat Zheng Y, Sun Y, Yang Y, Zhang S, Xu T, Xin W, et al. GATA3-dependent epigenetic upregulation of CCL21 is involved in the development of neuropathic pain induced by bortezomib. Mol Pain. 2019;15:1744806919863292.PubMedPubMedCentral Zheng Y, Sun Y, Yang Y, Zhang S, Xu T, Xin W, et al. GATA3-dependent epigenetic upregulation of CCL21 is involved in the development of neuropathic pain induced by bortezomib. Mol Pain. 2019;15:1744806919863292.PubMedPubMedCentral
169.
Zurück zum Zitat Park SB, Alberti P, Kolb NA, Gewandter JS, Schenone A, Argyriou AA. Overview and critical revision of clinical assessment tools in chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst. 2019;24(Suppl 2):S13-s25.PubMed Park SB, Alberti P, Kolb NA, Gewandter JS, Schenone A, Argyriou AA. Overview and critical revision of clinical assessment tools in chemotherapy-induced peripheral neurotoxicity. J Peripher Nerv Syst. 2019;24(Suppl 2):S13-s25.PubMed
170.
Zurück zum Zitat Cavaletti G, Frigeni B, Lanzani F, Mattavelli L, Susani E, Alberti P, et al. Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools. Eur J Cancer. 2010;46(3):479–94.PubMed Cavaletti G, Frigeni B, Lanzani F, Mattavelli L, Susani E, Alberti P, et al. Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools. Eur J Cancer. 2010;46(3):479–94.PubMed
172.
Zurück zum Zitat Kandula T, Farrar MA, Kiernan MC, Krishnan AV, Goldstein D, Horvath L, et al. Neurophysiological and clinical outcomes in chemotherapy-induced neuropathy in cancer. Clin Neurophysiol. 2017;128(7):1166–75.PubMed Kandula T, Farrar MA, Kiernan MC, Krishnan AV, Goldstein D, Horvath L, et al. Neurophysiological and clinical outcomes in chemotherapy-induced neuropathy in cancer. Clin Neurophysiol. 2017;128(7):1166–75.PubMed
173.
Zurück zum Zitat Park SB, Goldstein D, Lin CS, Krishnan AV, Friedlander ML, Kiernan MC. Acute abnormalities of sensory nerve function associated with oxaliplatin-induced neurotoxicity. J Clin Oncol. 2009;27(8):1243–9.PubMed Park SB, Goldstein D, Lin CS, Krishnan AV, Friedlander ML, Kiernan MC. Acute abnormalities of sensory nerve function associated with oxaliplatin-induced neurotoxicity. J Clin Oncol. 2009;27(8):1243–9.PubMed
174.
Zurück zum Zitat Krishnan AV, Goldstein D, Friedlander M, Kiernan MC. Oxaliplatin and axonal Na+ channel function in vivo. Clin Cancer Res. 2006;12(15):4481–4.PubMed Krishnan AV, Goldstein D, Friedlander M, Kiernan MC. Oxaliplatin and axonal Na+ channel function in vivo. Clin Cancer Res. 2006;12(15):4481–4.PubMed
175.
Zurück zum Zitat Kiernan MC, Krishnan AV. The pathophysiology of oxaliplatin-induced neurotoxicity. Curr Med Chem. 2006;13(24):2901–7.PubMed Kiernan MC, Krishnan AV. The pathophysiology of oxaliplatin-induced neurotoxicity. Curr Med Chem. 2006;13(24):2901–7.PubMed
176.
Zurück zum Zitat Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat Rev. 2008;34(4):368–77.PubMed Argyriou AA, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos HP. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat Rev. 2008;34(4):368–77.PubMed
177.
Zurück zum Zitat Argyriou AA, Koltzenburg M, Polychronopoulos P, Papapetropoulos S, Kalofonos HP. Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol. 2008;66(3):218–28.PubMed Argyriou AA, Koltzenburg M, Polychronopoulos P, Papapetropoulos S, Kalofonos HP. Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol. 2008;66(3):218–28.PubMed
178.
Zurück zum Zitat Park SB, Lin CSY, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC. Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain. 2009;132(Pt 10):2712–23.PubMed Park SB, Lin CSY, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC. Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain. 2009;132(Pt 10):2712–23.PubMed
179.
Zurück zum Zitat Park SB, Lin CSY, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC. Dose effects of oxaliplatin on persistent and transient Na+ conductances and the development of neurotoxicity. PLoS ONE. 2011;6(4):e18469.PubMedPubMedCentral Park SB, Lin CSY, Krishnan AV, Goldstein D, Friedlander ML, Kiernan MC. Dose effects of oxaliplatin on persistent and transient Na+ conductances and the development of neurotoxicity. PLoS ONE. 2011;6(4):e18469.PubMedPubMedCentral
180.
Zurück zum Zitat Krøigård T, Svendsen TK, Wirenfeldt M, Schrøder HD, Qvortrup C, Pfeiffer P, et al. Early changes in tests of peripheral nerve function during oxaliplatin treatment and their correlation with chemotherapy-induced polyneuropathy symptoms and signs. Eur J Neurol. 2020;27(1):68–76.PubMed Krøigård T, Svendsen TK, Wirenfeldt M, Schrøder HD, Qvortrup C, Pfeiffer P, et al. Early changes in tests of peripheral nerve function during oxaliplatin treatment and their correlation with chemotherapy-induced polyneuropathy symptoms and signs. Eur J Neurol. 2020;27(1):68–76.PubMed
181.
Zurück zum Zitat Murray JE, Pickering HR, Lin CSY, Goldstein D, Friedlander ML, Kiernan MC, et al. 6 Functional impact of neuropathy in patients receiving oxaliplatin chemotherapy. Clin Neurophysiol. 2014;125:e3. Murray JE, Pickering HR, Lin CSY, Goldstein D, Friedlander ML, Kiernan MC, et al. 6 Functional impact of neuropathy in patients receiving oxaliplatin chemotherapy. Clin Neurophysiol. 2014;125:e3.
182.
Zurück zum Zitat Osmani K, Vignes S, Aissi M, Wade F, Milani P, Lévy BI, et al. Taxane-induced peripheral neuropathy has good long-term prognosis: a 1- to 13-year evaluation. J Neurol. 2012;259(9):1936–43.PubMed Osmani K, Vignes S, Aissi M, Wade F, Milani P, Lévy BI, et al. Taxane-induced peripheral neuropathy has good long-term prognosis: a 1- to 13-year evaluation. J Neurol. 2012;259(9):1936–43.PubMed
183.
Zurück zum Zitat Pal PK. Clinical and electrophysiological studies in vincristine induced neuropathy. Electromyogr Clin Neurophysiol. 1999;39(6):323–30.PubMed Pal PK. Clinical and electrophysiological studies in vincristine induced neuropathy. Electromyogr Clin Neurophysiol. 1999;39(6):323–30.PubMed
184.
Zurück zum Zitat Timmins HC, Li T, Kiernan MC, Baron-Hay S, Marx G, Boyle F, et al. Taxane-induced peripheral neuropathy: differences in patient report and objective assessment. Support Care Cancer. 2020;28:459–4466. Timmins HC, Li T, Kiernan MC, Baron-Hay S, Marx G, Boyle F, et al. Taxane-induced peripheral neuropathy: differences in patient report and objective assessment. Support Care Cancer. 2020;28:459–4466.
185.
Zurück zum Zitat Timmins HC, Li T, Huynh W, Kiernan MC, Baron-Hay S, Boyle F, et al. Electrophysiological and phenotypic profiles of taxane-induced neuropathy. Clin Neurophysiol. 2020;131:1979–85.PubMed Timmins HC, Li T, Huynh W, Kiernan MC, Baron-Hay S, Boyle F, et al. Electrophysiological and phenotypic profiles of taxane-induced neuropathy. Clin Neurophysiol. 2020;131:1979–85.PubMed
186.
Zurück zum Zitat Matsuoka A, Mitsuma A, Maeda O, Kajiyama H, Kiyoi H, Kodera Y, et al. Quantitative assessment of chemotherapy-induced peripheral neurotoxicity using a point-of-care nerve conduction device. Cancer Sci. 2016;107(10):1453–7.PubMedPubMedCentral Matsuoka A, Mitsuma A, Maeda O, Kajiyama H, Kiyoi H, Kodera Y, et al. Quantitative assessment of chemotherapy-induced peripheral neurotoxicity using a point-of-care nerve conduction device. Cancer Sci. 2016;107(10):1453–7.PubMedPubMedCentral
187.
Zurück zum Zitat Kocer B, Sucak G, Kuruoglu R, Aki Z, Haznedar R, Erdogmus NI. Clinical and electrophysiological evaluation of patients with thalidomide-induced neuropathy. Acta Neurol Belg. 2009;109(2):120–6.PubMed Kocer B, Sucak G, Kuruoglu R, Aki Z, Haznedar R, Erdogmus NI. Clinical and electrophysiological evaluation of patients with thalidomide-induced neuropathy. Acta Neurol Belg. 2009;109(2):120–6.PubMed
188.
Zurück zum Zitat Fruhstorfer H. Thermal sensibility changes during ischemie nerve block. Pain. 1984;20(4):355–61.PubMed Fruhstorfer H. Thermal sensibility changes during ischemie nerve block. Pain. 1984;20(4):355–61.PubMed
189.
Zurück zum Zitat Magerl W, Fuchs PN, Meyer RA, Treede R-D. Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain. 2001;124(9):1754–64.PubMed Magerl W, Fuchs PN, Meyer RA, Treede R-D. Roles of capsaicin-insensitive nociceptors in cutaneous pain and secondary hyperalgesia. Brain. 2001;124(9):1754–64.PubMed
190.
Zurück zum Zitat Ziegler EA, Magerl W, Meyer RA, Treede R-D. Secondary hyperalgesia to punctate mechanical stimuli: central sensitization to A-fibre nociceptor input. Brain. 1999;122(12):2245–57.PubMed Ziegler EA, Magerl W, Meyer RA, Treede R-D. Secondary hyperalgesia to punctate mechanical stimuli: central sensitization to A-fibre nociceptor input. Brain. 1999;122(12):2245–57.PubMed
191.
Zurück zum Zitat Thomas S, Ajroud-Driss S, Dimachkie MM, Gibbons C, Freeman R, Simpson DM, et al. Peripheral neuropathy research registry: a prospective cohort. J Peripher Nerv Syst. 2019;24(1):39–47.PubMed Thomas S, Ajroud-Driss S, Dimachkie MM, Gibbons C, Freeman R, Simpson DM, et al. Peripheral neuropathy research registry: a prospective cohort. J Peripher Nerv Syst. 2019;24(1):39–47.PubMed
192.
Zurück zum Zitat Krøigård T, Schrøder HD, Qvortrup C, Eckhoff L, Pfeiffer P, Gaist D, et al. Characterization and diagnostic evaluation of chronic polyneuropathies induced by oxaliplatin and docetaxel comparing skin biopsy to quantitative sensory testing and nerve conduction studies. Eur J Neurol. 2014;21(4):623–9.PubMed Krøigård T, Schrøder HD, Qvortrup C, Eckhoff L, Pfeiffer P, Gaist D, et al. Characterization and diagnostic evaluation of chronic polyneuropathies induced by oxaliplatin and docetaxel comparing skin biopsy to quantitative sensory testing and nerve conduction studies. Eur J Neurol. 2014;21(4):623–9.PubMed
193.
Zurück zum Zitat Velasco R, Videla S, Villoria J, Ortiz E, Navarro X, Bruna J. Reliability and accuracy of quantitative sensory testing for oxaliplatin-induced neurotoxicity. Acta Neurol Scand. 2015;131(5):282–9.PubMed Velasco R, Videla S, Villoria J, Ortiz E, Navarro X, Bruna J. Reliability and accuracy of quantitative sensory testing for oxaliplatin-induced neurotoxicity. Acta Neurol Scand. 2015;131(5):282–9.PubMed
194.
Zurück zum Zitat Zhi WI, Chen P, Kwon A, Chen C, Harte SE, Piulson L, et al. Chemotherapy-induced peripheral neuropathy (CIPN) in breast cancer survivors: a comparison of patient-reported outcomes and quantitative sensory testing. Breast Cancer Res Treat. 2019;178(3):587–95.PubMedPubMedCentral Zhi WI, Chen P, Kwon A, Chen C, Harte SE, Piulson L, et al. Chemotherapy-induced peripheral neuropathy (CIPN) in breast cancer survivors: a comparison of patient-reported outcomes and quantitative sensory testing. Breast Cancer Res Treat. 2019;178(3):587–95.PubMedPubMedCentral
195.
Zurück zum Zitat Dougherty PM, Cata JP, Burton AW, Vu K, Weng HR. Dysfunction in multiple primary afferent fiber subtypes revealed by quantitative sensory testing in patients with chronic vincristine-induced pain. J Pain Symptom Manag. 2007;33(2):166–79. Dougherty PM, Cata JP, Burton AW, Vu K, Weng HR. Dysfunction in multiple primary afferent fiber subtypes revealed by quantitative sensory testing in patients with chronic vincristine-induced pain. J Pain Symptom Manag. 2007;33(2):166–79.
196.
Zurück zum Zitat Cata JP, Weng HR, Burton AW, Villareal H, Giralt S, Dougherty PM. Quantitative sensory findings in patients with bortezomib-induced pain. J Pain. 2007;8(4):296–306.PubMed Cata JP, Weng HR, Burton AW, Villareal H, Giralt S, Dougherty PM. Quantitative sensory findings in patients with bortezomib-induced pain. J Pain. 2007;8(4):296–306.PubMed
197.
Zurück zum Zitat Lauria G, Cornblath DR, Johansson O, McArthur JC, Mellgren SI, Nolano M, et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol. 2005;12(10):747–58.PubMed Lauria G, Cornblath DR, Johansson O, McArthur JC, Mellgren SI, Nolano M, et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol. 2005;12(10):747–58.PubMed
198.
Zurück zum Zitat Lauria G, Lombardi R. Skin biopsy: a new tool for diagnosing peripheral neuropathy. BMJ. 2007;334(7604):1159–62.PubMedPubMedCentral Lauria G, Lombardi R. Skin biopsy: a new tool for diagnosing peripheral neuropathy. BMJ. 2007;334(7604):1159–62.PubMedPubMedCentral
199.
Zurück zum Zitat Collongues N, Samama B, Schmidt-Mutter C, Chamard-Witkowski L, Debouverie M, Chanson J-B, et al. Quantitative and qualitative normative dataset for intraepidermal nerve fibers using skin biopsy. PLoS ONE. 2018;13(1):e0191614.PubMedPubMedCentral Collongues N, Samama B, Schmidt-Mutter C, Chamard-Witkowski L, Debouverie M, Chanson J-B, et al. Quantitative and qualitative normative dataset for intraepidermal nerve fibers using skin biopsy. PLoS ONE. 2018;13(1):e0191614.PubMedPubMedCentral
200.
Zurück zum Zitat Burakgazi AZ, Messersmith W, Vaidya D, Hauer P, Hoke A, Polydefkis M. Longitudinal assessment of oxaliplatininduced neuropathy. Neurology. 2011;77(10):980–6.PubMedPubMedCentral Burakgazi AZ, Messersmith W, Vaidya D, Hauer P, Hoke A, Polydefkis M. Longitudinal assessment of oxaliplatininduced neuropathy. Neurology. 2011;77(10):980–6.PubMedPubMedCentral
202.
Zurück zum Zitat Alam U, Jeziorska M, Petropoulos IN, Asghar O, Fadavi H, Ponirakis G, et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS ONE. 2017;12(7):e0180175.PubMedPubMedCentral Alam U, Jeziorska M, Petropoulos IN, Asghar O, Fadavi H, Ponirakis G, et al. Diagnostic utility of corneal confocal microscopy and intra-epidermal nerve fibre density in diabetic neuropathy. PLoS ONE. 2017;12(7):e0180175.PubMedPubMedCentral
203.
Zurück zum Zitat Chen X, Graham J, Dabbah MA, Petropoulos IN, Ponirakis G, Asghar O, et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care. 2015;38(6):1138–44.PubMedPubMedCentral Chen X, Graham J, Dabbah MA, Petropoulos IN, Ponirakis G, Asghar O, et al. Small nerve fiber quantification in the diagnosis of diabetic sensorimotor polyneuropathy: comparing corneal confocal microscopy with intraepidermal nerve fiber density. Diabetes Care. 2015;38(6):1138–44.PubMedPubMedCentral
204.
Zurück zum Zitat Kemp HI, Petropoulos IN, Rice ASC, Vollert J, Maier C, Strum D, et al. Use of corneal confocal microscopy to evaluate small nerve fibers in patients with human immunodeficiency virus. JAMA Ophthalmol. 2017;135(7):795–800.PubMedPubMedCentral Kemp HI, Petropoulos IN, Rice ASC, Vollert J, Maier C, Strum D, et al. Use of corneal confocal microscopy to evaluate small nerve fibers in patients with human immunodeficiency virus. JAMA Ophthalmol. 2017;135(7):795–800.PubMedPubMedCentral
205.
Zurück zum Zitat Ferdousi M, Azmi S, Petropoulos IN, Fadavi H, Ponirakis G, Marshall A, et al. Corneal confocal microscopy detects small fibre neuropathy in patients with upper gastrointestinal cancer and nerve regeneration in chemotherapy induced peripheral neuropathy. PLoS ONE. 2015;10(10):e0139394.PubMedPubMedCentral Ferdousi M, Azmi S, Petropoulos IN, Fadavi H, Ponirakis G, Marshall A, et al. Corneal confocal microscopy detects small fibre neuropathy in patients with upper gastrointestinal cancer and nerve regeneration in chemotherapy induced peripheral neuropathy. PLoS ONE. 2015;10(10):e0139394.PubMedPubMedCentral
206.
Zurück zum Zitat Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148.PubMed Quattrini C, Tavakoli M, Jeziorska M, Kallinikos P, Tesfaye S, Finnigan J, et al. Surrogate markers of small fiber damage in human diabetic neuropathy. Diabetes. 2007;56:2148.PubMed
207.
Zurück zum Zitat Stettner M, Hinrichs L, Guthoff R, Bairov S, Petropoulos IN, Warnke C, et al. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann Clin Transl Neurol. 2015;3(2):88–100.PubMedPubMedCentral Stettner M, Hinrichs L, Guthoff R, Bairov S, Petropoulos IN, Warnke C, et al. Corneal confocal microscopy in chronic inflammatory demyelinating polyneuropathy. Ann Clin Transl Neurol. 2015;3(2):88–100.PubMedPubMedCentral
208.
Zurück zum Zitat Kautio A-L, Haanpaa M, Kautiainen H, Kalso E, Saarto T. Burden of chemotherapy-induced neuropathy—a cross-sectional study. Support Care Cancer. 2011;12:1991. Kautio A-L, Haanpaa M, Kautiainen H, Kalso E, Saarto T. Burden of chemotherapy-induced neuropathy—a cross-sectional study. Support Care Cancer. 2011;12:1991.
209.
Zurück zum Zitat Azmi S, Ferdousi M, Alam U, Petropoulos IN, Ponirakis G, Marshall A, et al. Small-fibre neuropathy in men with type 1 diabetes and erectile dysfunction: a cross-sectional study. Diabetologia. 2017;60(6):1094–101.PubMedPubMedCentral Azmi S, Ferdousi M, Alam U, Petropoulos IN, Ponirakis G, Marshall A, et al. Small-fibre neuropathy in men with type 1 diabetes and erectile dysfunction: a cross-sectional study. Diabetologia. 2017;60(6):1094–101.PubMedPubMedCentral
210.
Zurück zum Zitat Evdokimov D, Frank J, Klitsch A, Unterecker S, Warrings B, Serra J, et al. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann Neurol. 2019;86(4):504–16.PubMed Evdokimov D, Frank J, Klitsch A, Unterecker S, Warrings B, Serra J, et al. Reduction of skin innervation is associated with a severe fibromyalgia phenotype. Ann Neurol. 2019;86(4):504–16.PubMed
211.
Zurück zum Zitat Perkins BA, Lovblom LE, Bril V, Scarr D, Ostrovski I, Orszag A, et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia. 2018;61(8):1856–61.PubMedPubMedCentral Perkins BA, Lovblom LE, Bril V, Scarr D, Ostrovski I, Orszag A, et al. Corneal confocal microscopy for identification of diabetic sensorimotor polyneuropathy: a pooled multinational consortium study. Diabetologia. 2018;61(8):1856–61.PubMedPubMedCentral
212.
Zurück zum Zitat Lewis EJH, Lovblom LE, Ferdousi M, Halpern EM, Jeziorska M, Pacaud D, et al. Rapid corneal nerve fiber loss: a marker of diabetic neuropathy onset and progression. Diabetes Care. 2020;48:1829–35. Lewis EJH, Lovblom LE, Ferdousi M, Halpern EM, Jeziorska M, Pacaud D, et al. Rapid corneal nerve fiber loss: a marker of diabetic neuropathy onset and progression. Diabetes Care. 2020;48:1829–35.
213.
Zurück zum Zitat Argyriou AA, Park SB, Islam B, Tamburin S, Velasco R, Alberti P, et al. Neurophysiological, nerve imaging and other techniques to assess chemotherapy-induced peripheral neurotoxicity in the clinical and research settings. J Neurol Neurosurg Psychiatry. 2019;90(12):1361–9.PubMed Argyriou AA, Park SB, Islam B, Tamburin S, Velasco R, Alberti P, et al. Neurophysiological, nerve imaging and other techniques to assess chemotherapy-induced peripheral neurotoxicity in the clinical and research settings. J Neurol Neurosurg Psychiatry. 2019;90(12):1361–9.PubMed
214.
Zurück zum Zitat Campagnolo M, Lazzarini D, Cacciavillani M, Fregona I, Bergamo F, Lonardi S, et al. Corneal confocal microscopy in patients with chemotherapy-induced neuropathy. PLoS ONE. 2012;10:S11–2. Campagnolo M, Lazzarini D, Cacciavillani M, Fregona I, Bergamo F, Lonardi S, et al. Corneal confocal microscopy in patients with chemotherapy-induced neuropathy. PLoS ONE. 2012;10:S11–2.
215.
Zurück zum Zitat Cocito F, Ricciardelli G, Mangiacavalli S, Pompa A, Pochintesta L, Ferretti V, et al. Corneal sub-basal neural damage pattern in multiple myeloma patients treated with bortezomib: an in vivo confocal study. Leuk Lymphoma. 2015;56(12):3440–1.PubMed Cocito F, Ricciardelli G, Mangiacavalli S, Pompa A, Pochintesta L, Ferretti V, et al. Corneal sub-basal neural damage pattern in multiple myeloma patients treated with bortezomib: an in vivo confocal study. Leuk Lymphoma. 2015;56(12):3440–1.PubMed
216.
Zurück zum Zitat Bennedsgaard K, Ventzel L, Andersen NT, Themistocleous AC, Bennett DL, Jensen TS, et al. Oxaliplatin- and docetaxel-induced polyneuropathy: clinical and neurophysiological characteristics. J Peripher Nerv Syst. 2020;25(4):377–87.PubMedPubMedCentral Bennedsgaard K, Ventzel L, Andersen NT, Themistocleous AC, Bennett DL, Jensen TS, et al. Oxaliplatin- and docetaxel-induced polyneuropathy: clinical and neurophysiological characteristics. J Peripher Nerv Syst. 2020;25(4):377–87.PubMedPubMedCentral
217.
Zurück zum Zitat Petropoulos IN, Al-Mohammedi A, Chen X, Ferdousi M, Ponirakis G, Kemp H, et al. The utility of corneal nerve fractal dimension analysis in peripheral neuropathies of different etiology. Transl Vis Sci Technol. 2020;9(9):43.PubMedPubMedCentral Petropoulos IN, Al-Mohammedi A, Chen X, Ferdousi M, Ponirakis G, Kemp H, et al. The utility of corneal nerve fractal dimension analysis in peripheral neuropathies of different etiology. Transl Vis Sci Technol. 2020;9(9):43.PubMedPubMedCentral
218.
Zurück zum Zitat Chiang JCB, Goldstein D, Trinh T, Au K, Mizrahi D, Muhlmann M, et al. A cross-sectional study of sub-basal corneal nerve reduction following neurotoxic chemotherapy. Transl Vis Sci Technol. 2021;10(1):24.PubMedPubMedCentral Chiang JCB, Goldstein D, Trinh T, Au K, Mizrahi D, Muhlmann M, et al. A cross-sectional study of sub-basal corneal nerve reduction following neurotoxic chemotherapy. Transl Vis Sci Technol. 2021;10(1):24.PubMedPubMedCentral
219.
Zurück zum Zitat Bennett MI, Rayment C, Hjermstad M, Aass N, Caraceni A, Kaasa S. Prevalence and aetiology of neuropathic pain in cancer patients: a systematic review. Pain. 2012;153(2):359–65.PubMed Bennett MI, Rayment C, Hjermstad M, Aass N, Caraceni A, Kaasa S. Prevalence and aetiology of neuropathic pain in cancer patients: a systematic review. Pain. 2012;153(2):359–65.PubMed
220.
Zurück zum Zitat Oh SY, Shin SW, Koh S-J, Bae SB, Chang H, Kim JH, et al. Multicenter, cross-sectional observational study of the impact of neuropathic pain on quality of life in cancer patients. Support Care Cancer. 2017;25(12):3759–67.PubMedPubMedCentral Oh SY, Shin SW, Koh S-J, Bae SB, Chang H, Kim JH, et al. Multicenter, cross-sectional observational study of the impact of neuropathic pain on quality of life in cancer patients. Support Care Cancer. 2017;25(12):3759–67.PubMedPubMedCentral
221.
Zurück zum Zitat Kautio AL, Haanpää M, Kautiainen H, Kalso E, Saarto T. Burden of chemotherapy-induced neuropathy—a cross-sectional study. Support Care Cancer. 2011;19(12):1991–6.PubMed Kautio AL, Haanpää M, Kautiainen H, Kalso E, Saarto T. Burden of chemotherapy-induced neuropathy—a cross-sectional study. Support Care Cancer. 2011;19(12):1991–6.PubMed
222.
Zurück zum Zitat Ezendam NP, Pijlman B, Bhugwandass C, Pruijt JF, Mols F, Vos MC, et al. Chemotherapy-induced peripheral neuropathy and its impact on health-related quality of life among ovarian cancer survivors: results from the population-based PROFILES registry. Gynecol Oncol. 2014;135(3):510–7.PubMed Ezendam NP, Pijlman B, Bhugwandass C, Pruijt JF, Mols F, Vos MC, et al. Chemotherapy-induced peripheral neuropathy and its impact on health-related quality of life among ovarian cancer survivors: results from the population-based PROFILES registry. Gynecol Oncol. 2014;135(3):510–7.PubMed
223.
Zurück zum Zitat Gewandter JS, Fan L, Magnuson A, Mustian K, Peppone L, Heckler C, et al. Falls and functional impairments in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study. Support Care Cancer. 2013;21(7):2059–66.PubMedPubMedCentral Gewandter JS, Fan L, Magnuson A, Mustian K, Peppone L, Heckler C, et al. Falls and functional impairments in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study. Support Care Cancer. 2013;21(7):2059–66.PubMedPubMedCentral
224.
Zurück zum Zitat Kuroi K, Shimozuma K. Neurotoxicity of taxanes: symptoms and quality of life assessment. Breast Cancer. 2004;11(1):92.PubMed Kuroi K, Shimozuma K. Neurotoxicity of taxanes: symptoms and quality of life assessment. Breast Cancer. 2004;11(1):92.PubMed
225.
Zurück zum Zitat Miaskowski C, Mastick J, Paul SM, Topp K, Smoot B, Abrams G, et al. Chemotherapy-Induced Neuropathy in Cancer Survivors. J Pain Symptom Manag. 2017;54(2):204-18.e2. Miaskowski C, Mastick J, Paul SM, Topp K, Smoot B, Abrams G, et al. Chemotherapy-Induced Neuropathy in Cancer Survivors. J Pain Symptom Manag. 2017;54(2):204-18.e2.
226.
Zurück zum Zitat Mols F, Beijers T, Lemmens V, van den Hurk CJ, Vreugdenhil G, van de Poll-Franse LV. Chemotherapy-induced neuropathy and its association with quality of life among 2- to 11-year colorectal cancer survivors: results from the population-based PROFILES registry. J Clin Oncol. 2013;31(21):2699–707.PubMed Mols F, Beijers T, Lemmens V, van den Hurk CJ, Vreugdenhil G, van de Poll-Franse LV. Chemotherapy-induced neuropathy and its association with quality of life among 2- to 11-year colorectal cancer survivors: results from the population-based PROFILES registry. J Clin Oncol. 2013;31(21):2699–707.PubMed
227.
Zurück zum Zitat Mols F, Beijers T, Vreugdenhil G, van de Poll-Franse L. Chemotherapy-induced peripheral neuropathy and its association with quality of life: a systematic review. Support Care Cancer. 2014;22(8):2261–9.PubMed Mols F, Beijers T, Vreugdenhil G, van de Poll-Franse L. Chemotherapy-induced peripheral neuropathy and its association with quality of life: a systematic review. Support Care Cancer. 2014;22(8):2261–9.PubMed
228.
Zurück zum Zitat Zanville NR, Nudelman KN, Smith DJ, Von Ah D, McDonald BC, Champion VL, et al. Evaluating the impact of chemotherapy-induced peripheral neuropathy symptoms (CIPN-sx) on perceived ability to work in breast cancer survivors during the first year post-treatment. Support Care Cancer. 2016;24(11):4779–89.PubMedPubMedCentral Zanville NR, Nudelman KN, Smith DJ, Von Ah D, McDonald BC, Champion VL, et al. Evaluating the impact of chemotherapy-induced peripheral neuropathy symptoms (CIPN-sx) on perceived ability to work in breast cancer survivors during the first year post-treatment. Support Care Cancer. 2016;24(11):4779–89.PubMedPubMedCentral
231.
Zurück zum Zitat Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. The Lancet Neurol. 2015;14(2):162–73.PubMed Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. The Lancet Neurol. 2015;14(2):162–73.PubMed
232.
Zurück zum Zitat Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol. 2020;38:3325–48.PubMed Loprinzi CL, Lacchetti C, Bleeker J, Cavaletti G, Chauhan C, Hertz DL, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update. J Clin Oncol. 2020;38:3325–48.PubMed
234.
Zurück zum Zitat Hershman DL, Unger JM, Crew KD, Minasian LM, Awad D, Moinpour CM, et al. Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J Clin Oncol. 2013;31(20):2627–33.PubMedPubMedCentral Hershman DL, Unger JM, Crew KD, Minasian LM, Awad D, Moinpour CM, et al. Randomized double-blind placebo-controlled trial of acetyl-L-carnitine for the prevention of taxane-induced neuropathy in women undergoing adjuvant breast cancer therapy. J Clin Oncol. 2013;31(20):2627–33.PubMedPubMedCentral
235.
Zurück zum Zitat Gewandter JS, Brell J, Cavaletti G, Dougherty PM, Evans S, Howie L, et al. Trial designs for chemotherapy-induced peripheral neuropathy prevention: ACTTION recommendations. Neurology. 2018;91(9):403–13.PubMedPubMedCentral Gewandter JS, Brell J, Cavaletti G, Dougherty PM, Evans S, Howie L, et al. Trial designs for chemotherapy-induced peripheral neuropathy prevention: ACTTION recommendations. Neurology. 2018;91(9):403–13.PubMedPubMedCentral
236.
Zurück zum Zitat Guo Y, Jones D, Palmer JL, Forman A, Dakhil SR, Velasco MR, et al. Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: a randomized, double-blind, placebo-controlled trial. Support Care Cancer. 2014;22(5):1223–31.PubMed Guo Y, Jones D, Palmer JL, Forman A, Dakhil SR, Velasco MR, et al. Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: a randomized, double-blind, placebo-controlled trial. Support Care Cancer. 2014;22(5):1223–31.PubMed
237.
Zurück zum Zitat Desideri I, Francolini G, Becherini C, Terziani F, Delli Paoli C, Olmetto E, et al. Use of an alpha lipoic, methylsulfonylmethane and bromelain dietary supplement (Opera®) for chemotherapy-induced peripheral neuropathy management, a prospective study. Med Oncol. 2017;34(3):1–5. Desideri I, Francolini G, Becherini C, Terziani F, Delli Paoli C, Olmetto E, et al. Use of an alpha lipoic, methylsulfonylmethane and bromelain dietary supplement (Opera®) for chemotherapy-induced peripheral neuropathy management, a prospective study. Med Oncol. 2017;34(3):1–5.
238.
Zurück zum Zitat Howells LM, Iwuji COO, Irving GRB, Barber S, Walter H, Sidat Z, et al. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J Nutr. 2019;149(7):1133–9.PubMedPubMedCentral Howells LM, Iwuji COO, Irving GRB, Barber S, Walter H, Sidat Z, et al. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J Nutr. 2019;149(7):1133–9.PubMedPubMedCentral
239.
Zurück zum Zitat Maschio M, Zarabla A, Maialetti A, Marchesi F, Giannarelli D, Gumenyuk S, et al. Prevention of bortezomib-related peripheral neuropathy with docosahexaenoic acid and α-lipoic acid in patients with multiple myeloma: preliminary data. Integr Cancer Ther. 2018;17(4):1115.PubMedPubMedCentral Maschio M, Zarabla A, Maialetti A, Marchesi F, Giannarelli D, Gumenyuk S, et al. Prevention of bortezomib-related peripheral neuropathy with docosahexaenoic acid and α-lipoic acid in patients with multiple myeloma: preliminary data. Integr Cancer Ther. 2018;17(4):1115.PubMedPubMedCentral
240.
Zurück zum Zitat Pace A, Savarese A, Picardo M, Maresca V, Pacetti U, Del Monte G, et al. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol. 2003;21(5):927–31.PubMed Pace A, Savarese A, Picardo M, Maresca V, Pacetti U, Del Monte G, et al. Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol. 2003;21(5):927–31.PubMed
241.
Zurück zum Zitat Pace A, Nisticò C, Cuppone F, Bria E, Galiè E, Graziano G, et al. Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clin Breast Cancer. 2007;7(7):550–4.PubMed Pace A, Nisticò C, Cuppone F, Bria E, Galiè E, Graziano G, et al. Peripheral neurotoxicity of weekly paclitaxel chemotherapy: a schedule or a dose issue? Clin Breast Cancer. 2007;7(7):550–4.PubMed
242.
Zurück zum Zitat Kottschade LA, Sloan JA, Mazurczak MA, Johnson DB, Murphy BP, Rowland KM, et al. The use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy: results of a randomized phase III clinical trial. Support Care Cancer. 2011;19(11):1769–77.PubMed Kottschade LA, Sloan JA, Mazurczak MA, Johnson DB, Murphy BP, Rowland KM, et al. The use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy: results of a randomized phase III clinical trial. Support Care Cancer. 2011;19(11):1769–77.PubMed
243.
Zurück zum Zitat Argyriou AA, Chroni E, Koutras A, Ellul J, Papapetropoulos S, Katsoulas G, et al. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: a randomized controlled trial. Neurology. 2005;64(1):26–31.PubMed Argyriou AA, Chroni E, Koutras A, Ellul J, Papapetropoulos S, Katsoulas G, et al. Vitamin E for prophylaxis against chemotherapy-induced neuropathy: a randomized controlled trial. Neurology. 2005;64(1):26–31.PubMed
244.
Zurück zum Zitat Cascinu S, Catalano V, Cordella L, Labianca R, Giordani P, Baldelli AM, et al. Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J Clin Oncol. 2002;20(16):3478–83.PubMed Cascinu S, Catalano V, Cordella L, Labianca R, Giordani P, Baldelli AM, et al. Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. J Clin Oncol. 2002;20(16):3478–83.PubMed
245.
Zurück zum Zitat Cascinu S, Cordella L, Del Ferro E, Fronzoni M, Catalano G. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebo-controlled trial. J Clin Oncol. 1995;13(1):26–32.PubMed Cascinu S, Cordella L, Del Ferro E, Fronzoni M, Catalano G. Neuroprotective effect of reduced glutathione on cisplatin-based chemotherapy in advanced gastric cancer: a randomized double-blind placebo-controlled trial. J Clin Oncol. 1995;13(1):26–32.PubMed
246.
Zurück zum Zitat Leal AD, Qin R, Atherton PJ, Haluska P, Behrens RJ, Tiber CH, et al. North Central Cancer Treatment Group/Alliance trial N08CA-the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled study. Cancer. 2014;120(12):1890–7.PubMed Leal AD, Qin R, Atherton PJ, Haluska P, Behrens RJ, Tiber CH, et al. North Central Cancer Treatment Group/Alliance trial N08CA-the use of glutathione for prevention of paclitaxel/carboplatin-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled study. Cancer. 2014;120(12):1890–7.PubMed
247.
Zurück zum Zitat Wang WS, Lin JK, Lin TC, Chen WS, Jiang JK, Wang HS, et al. Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist. 2007;12(3):312–9.PubMed Wang WS, Lin JK, Lin TC, Chen WS, Jiang JK, Wang HS, et al. Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist. 2007;12(3):312–9.PubMed
248.
Zurück zum Zitat Vahdat L, Papadopoulos K, Lange D, Leuin S, Kaufman E, Donovan D, et al. Reduction of paclitaxel-induced peripheral neuropathy with glutamine. Clin Cancer Res. 2001;7(5):1192–7.PubMed Vahdat L, Papadopoulos K, Lange D, Leuin S, Kaufman E, Donovan D, et al. Reduction of paclitaxel-induced peripheral neuropathy with glutamine. Clin Cancer Res. 2001;7(5):1192–7.PubMed
249.
Zurück zum Zitat Stubblefield MD, Vahdat LT, Balmaceda CM, Troxel AB, Hesdorffer CS, Gooch CL. Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiologic study. Clin Oncol (R Coll Radiol). 2005;17(4):271–6. Stubblefield MD, Vahdat LT, Balmaceda CM, Troxel AB, Hesdorffer CS, Gooch CL. Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiologic study. Clin Oncol (R Coll Radiol). 2005;17(4):271–6.
250.
Zurück zum Zitat Leong SS, Tan EH, Fong KW, Wilder-Smith E, Ong YK, Tai BC, et al. Randomized double-blind trial of combined modality treatment with or without amifostine in unresectable stage III non-small-cell lung cancer. J Clin Oncol. 2003;21(9):1767–74.PubMed Leong SS, Tan EH, Fong KW, Wilder-Smith E, Ong YK, Tai BC, et al. Randomized double-blind trial of combined modality treatment with or without amifostine in unresectable stage III non-small-cell lung cancer. J Clin Oncol. 2003;21(9):1767–74.PubMed
251.
Zurück zum Zitat Hilpert F, Stähle A, Tomé O, Burges A, Rossner D, Späthe K, et al. Neuroprotection with amifostine in the first-line treatment of advanced ovarian cancer with carboplatin/paclitaxel-based chemotherapy—a double-blind, placebo-controlled, randomized phase II study from the Arbeitsgemeinschaft Gynäkologische Onkologoie (AGO) Ovarian Cancer Study Group. Support Care Cancer. 2005;13(10):797–805.PubMed Hilpert F, Stähle A, Tomé O, Burges A, Rossner D, Späthe K, et al. Neuroprotection with amifostine in the first-line treatment of advanced ovarian cancer with carboplatin/paclitaxel-based chemotherapy—a double-blind, placebo-controlled, randomized phase II study from the Arbeitsgemeinschaft Gynäkologische Onkologoie (AGO) Ovarian Cancer Study Group. Support Care Cancer. 2005;13(10):797–805.PubMed
252.
Zurück zum Zitat Gurney JG, Bass JK, Onar-Thomas A, Huang J, Chintagumpala M, Bouffet E, et al. Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro Oncol. 2014;16(6):848–55.PubMedPubMedCentral Gurney JG, Bass JK, Onar-Thomas A, Huang J, Chintagumpala M, Bouffet E, et al. Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro Oncol. 2014;16(6):848–55.PubMedPubMedCentral
253.
Zurück zum Zitat Gandara DR, Nahhas WA, Adelson MD, Lichtman SM, Podczaski ES, Yanovich S, et al. Randomized placebo-controlled multicenter evaluation of diethyldithiocarbamate for chemoprotection against cisplatin-induced toxicities. J Clin Oncol. 1995;13(2):490–6.PubMed Gandara DR, Nahhas WA, Adelson MD, Lichtman SM, Podczaski ES, Yanovich S, et al. Randomized placebo-controlled multicenter evaluation of diethyldithiocarbamate for chemoprotection against cisplatin-induced toxicities. J Clin Oncol. 1995;13(2):490–6.PubMed
254.
Zurück zum Zitat Knijn N, Tol J, Koopman M, Werter MJ, Imholz AL, Valster FA, et al. The effect of prophylactic calcium and magnesium infusions on the incidence of neurotoxicity and clinical outcome of oxaliplatin-based systemic treatment in advanced colorectal cancer patients. Eur J Cancer. 2011;47(3):369–74.PubMed Knijn N, Tol J, Koopman M, Werter MJ, Imholz AL, Valster FA, et al. The effect of prophylactic calcium and magnesium infusions on the incidence of neurotoxicity and clinical outcome of oxaliplatin-based systemic treatment in advanced colorectal cancer patients. Eur J Cancer. 2011;47(3):369–74.PubMed
255.
Zurück zum Zitat Gamelin L, Boisdron-Celle M, Delva R, Guérin-Meyer V, Ifrah N, Morel A, et al. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin Cancer Res. 2004;10(12 Pt 1):4055–61.PubMed Gamelin L, Boisdron-Celle M, Delva R, Guérin-Meyer V, Ifrah N, Morel A, et al. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin Cancer Res. 2004;10(12 Pt 1):4055–61.PubMed
256.
Zurück zum Zitat Ao R, Wang YH, Li RW, Wang ZR. Effects of calcium and magnesium on acute and chronic neurotoxicity caused by oxaliplatin: a meta-analysis. Exp Ther Med. 2012;4(5):933–7.PubMedPubMedCentral Ao R, Wang YH, Li RW, Wang ZR. Effects of calcium and magnesium on acute and chronic neurotoxicity caused by oxaliplatin: a meta-analysis. Exp Ther Med. 2012;4(5):933–7.PubMedPubMedCentral
257.
Zurück zum Zitat Loprinzi CL, Qin R, Dakhil SR, Fehrenbacher L, Stella PJ, Atherton PJ, et al. Phase III randomized, placebo (PL)-controlled, double-blind study of intravenous calcium/magnesium (CaMg) to prevent oxaliplatin-induced sensory neurotoxicity (sNT), N08CB: An alliance for clinical trials in oncology study. J Clin Oncol. 2013;31(15 suppl):3501. Loprinzi CL, Qin R, Dakhil SR, Fehrenbacher L, Stella PJ, Atherton PJ, et al. Phase III randomized, placebo (PL)-controlled, double-blind study of intravenous calcium/magnesium (CaMg) to prevent oxaliplatin-induced sensory neurotoxicity (sNT), N08CB: An alliance for clinical trials in oncology study. J Clin Oncol. 2013;31(15 suppl):3501.
258.
Zurück zum Zitat Loprinzi CL, Qin R, Dakhil SR, Fehrenbacher L, Flynn KA, Atherton P, et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol. 2014;32(10):997–1005.PubMed Loprinzi CL, Qin R, Dakhil SR, Fehrenbacher L, Flynn KA, Atherton P, et al. Phase III randomized, placebo-controlled, double-blind study of intravenous calcium and magnesium to prevent oxaliplatin-induced sensory neurotoxicity (N08CB/Alliance). J Clin Oncol. 2014;32(10):997–1005.PubMed
259.
Zurück zum Zitat Han CH, Khwaounjoo P, Kilfoyle DH, Hill A, McKeage MJ. Phase I drug-interaction study of effects of calcium and magnesium infusions on oxaliplatin pharmacokinetics and acute neurotoxicity in colorectal cancer patients. BMC Cancer. 2013;13(1):495.PubMedPubMedCentral Han CH, Khwaounjoo P, Kilfoyle DH, Hill A, McKeage MJ. Phase I drug-interaction study of effects of calcium and magnesium infusions on oxaliplatin pharmacokinetics and acute neurotoxicity in colorectal cancer patients. BMC Cancer. 2013;13(1):495.PubMedPubMedCentral
260.
Zurück zum Zitat Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on chemotherapy-induced peripheral neuropathy (CIPN): a narrative review. Br J Anaesth. 2017;119(4):737–49.PubMed Flatters SJL, Dougherty PM, Colvin LA. Clinical and preclinical perspectives on chemotherapy-induced peripheral neuropathy (CIPN): a narrative review. Br J Anaesth. 2017;119(4):737–49.PubMed
261.
Zurück zum Zitat Gewandter JS, Freeman R, Kitt RA, Cavaletti G, Gauthier LR, McDermott MP, et al. Chemotherapy-induced peripheral neuropathy clinical trials: review and recommendations. Neurology. 2017;89(8):859–69.PubMed Gewandter JS, Freeman R, Kitt RA, Cavaletti G, Gauthier LR, McDermott MP, et al. Chemotherapy-induced peripheral neuropathy clinical trials: review and recommendations. Neurology. 2017;89(8):859–69.PubMed
262.
Zurück zum Zitat Lu Z, Moody J, Marx BL, Hammerstrom T. Treatment of chemotherapy-induced peripheral neuropathy in integrative oncology: a survey of acupuncture and oriental medicine practitioners. J Altern Complement Med. 2017;23(12):964–70.PubMed Lu Z, Moody J, Marx BL, Hammerstrom T. Treatment of chemotherapy-induced peripheral neuropathy in integrative oncology: a survey of acupuncture and oriental medicine practitioners. J Altern Complement Med. 2017;23(12):964–70.PubMed
263.
Zurück zum Zitat Li K, Giustini D, Seely D. A systematic review of acupuncture for chemotherapy-induced peripheral neuropathy. Curr Oncol (Toronto, Ont). 2019;26(2):e147–54. Li K, Giustini D, Seely D. A systematic review of acupuncture for chemotherapy-induced peripheral neuropathy. Curr Oncol (Toronto, Ont). 2019;26(2):e147–54.
264.
Zurück zum Zitat Han X, Wang L, Shi H, Zheng G, He J, Wu W, et al. Acupuncture combined with methylcobalamin for the treatment of chemotherapy-induced peripheral neuropathy in patients with multiple myeloma. BMC Cancer. 2017;17(1):40.PubMedPubMedCentral Han X, Wang L, Shi H, Zheng G, He J, Wu W, et al. Acupuncture combined with methylcobalamin for the treatment of chemotherapy-induced peripheral neuropathy in patients with multiple myeloma. BMC Cancer. 2017;17(1):40.PubMedPubMedCentral
265.
Zurück zum Zitat Rostock M, Jaroslawski K, Guethlin C, Ludtke R, Schröder S, Bartsch HH. Chemotherapy-induced peripheral neuropathy in cancer patients: a four-arm randomized trial on the effectiveness of electroacupuncture. Evid Based Complement Altern Med. 2013. https://doi.org/10.1155/2013/349653.CrossRef Rostock M, Jaroslawski K, Guethlin C, Ludtke R, Schröder S, Bartsch HH. Chemotherapy-induced peripheral neuropathy in cancer patients: a four-arm randomized trial on the effectiveness of electroacupuncture. Evid Based Complement Altern Med. 2013. https://​doi.​org/​10.​1155/​2013/​349653.CrossRef
266.
Zurück zum Zitat Jin Y, Wang Y, Zhang J, Xiao X, Zhang Q. Efficacy and safety of acupuncture against chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Evid Based Complement Altern Med. 2020;2020:8875433. Jin Y, Wang Y, Zhang J, Xiao X, Zhang Q. Efficacy and safety of acupuncture against chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Evid Based Complement Altern Med. 2020;2020:8875433.
267.
Zurück zum Zitat Hsieh YL, Chou LW, Hong SF, Chang FC, Tseng SW, Huang CC, et al. Laser acupuncture attenuates oxaliplatin-induced peripheral neuropathy in patients with gastrointestinal cancer: a pilot prospective cohort study. Acupunct Med. 2016;34(5):398–405.PubMed Hsieh YL, Chou LW, Hong SF, Chang FC, Tseng SW, Huang CC, et al. Laser acupuncture attenuates oxaliplatin-induced peripheral neuropathy in patients with gastrointestinal cancer: a pilot prospective cohort study. Acupunct Med. 2016;34(5):398–405.PubMed
268.
Zurück zum Zitat Garcia MK, Cohen L, Guo Y, Zhou Y, You B, Chiang J, et al. Electroacupuncture for thalidomide/bortezomib-induced peripheral neuropathy in multiple myeloma: a feasibility study. J Hematol Oncol. 2014;7(1):41.PubMedPubMedCentral Garcia MK, Cohen L, Guo Y, Zhou Y, You B, Chiang J, et al. Electroacupuncture for thalidomide/bortezomib-induced peripheral neuropathy in multiple myeloma: a feasibility study. J Hematol Oncol. 2014;7(1):41.PubMedPubMedCentral
269.
Zurück zum Zitat Kleckner IR, Kamen C, Gewandter JS, Mohile NA, Heckler CE, Culakova E, et al. Effects of exercise during chemotherapy on chemotherapy-induced peripheral neuropathy: a multicenter, randomized controlled trial. Support Care Cancer. 2018;26(4):1019–28.PubMed Kleckner IR, Kamen C, Gewandter JS, Mohile NA, Heckler CE, Culakova E, et al. Effects of exercise during chemotherapy on chemotherapy-induced peripheral neuropathy: a multicenter, randomized controlled trial. Support Care Cancer. 2018;26(4):1019–28.PubMed
270.
Zurück zum Zitat Lin WL, Wang RH, Chou FH, Feng IJ, Fang CJ, Wang HH. The effects of exercise on chemotherapy-induced peripheral neuropathy symptoms in cancer patients: a systematic review and meta-analysis. Support Care Cancer. 2021;29:5303–11.PubMed Lin WL, Wang RH, Chou FH, Feng IJ, Fang CJ, Wang HH. The effects of exercise on chemotherapy-induced peripheral neuropathy symptoms in cancer patients: a systematic review and meta-analysis. Support Care Cancer. 2021;29:5303–11.PubMed
271.
Zurück zum Zitat Gewandter JS, Mohile SG, Heckler CE, Ryan JL, Kirshner JJ, Flynn PJ, et al. A phase III randomized, placebo-controlled study of topical amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP Study of 462 cancer survivors. Support Care Cancer. 2014;22:1807–14.PubMedPubMedCentral Gewandter JS, Mohile SG, Heckler CE, Ryan JL, Kirshner JJ, Flynn PJ, et al. A phase III randomized, placebo-controlled study of topical amitriptyline and ketamine for chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP Study of 462 cancer survivors. Support Care Cancer. 2014;22:1807–14.PubMedPubMedCentral
272.
Zurück zum Zitat Rossignol J, Cozzi B, Liebaert F, Hatton S, Viallard ML, Hermine O, et al. High concentration of topical amitriptyline for treating chemotherapy-induced neuropathies. Support Care Cancer. 2019;27(8):3053–9.PubMed Rossignol J, Cozzi B, Liebaert F, Hatton S, Viallard ML, Hermine O, et al. High concentration of topical amitriptyline for treating chemotherapy-induced neuropathies. Support Care Cancer. 2019;27(8):3053–9.PubMed
273.
Zurück zum Zitat Anand U, Otto WR, Anand P. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons. Mol Pain. 2010;6:82.PubMedPubMedCentral Anand U, Otto WR, Anand P. Sensitization of capsaicin and icilin responses in oxaliplatin treated adult rat DRG neurons. Mol Pain. 2010;6:82.PubMedPubMedCentral
274.
Zurück zum Zitat Filipczak-Bryniarska I, Krzyzewski RM, Kucharz J, Michalowska-Kaczmarczyk A, Kleja J, Woron J, et al. High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: single-center experience. Med Oncol. 2017;9:1. Filipczak-Bryniarska I, Krzyzewski RM, Kucharz J, Michalowska-Kaczmarczyk A, Kleja J, Woron J, et al. High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: single-center experience. Med Oncol. 2017;9:1.
275.
Zurück zum Zitat Anand P, Elsafa E, Privitera R, Naidoo K, Yiangou Y, Donatien P, et al. Rational treatment of chemotherapy-induced peripheral neuropathy with capsaicin 8% patch: from pain relief towards disease modification. J Pain Res. 2019;12:2039.PubMedPubMedCentral Anand P, Elsafa E, Privitera R, Naidoo K, Yiangou Y, Donatien P, et al. Rational treatment of chemotherapy-induced peripheral neuropathy with capsaicin 8% patch: from pain relief towards disease modification. J Pain Res. 2019;12:2039.PubMedPubMedCentral
276.
Zurück zum Zitat Kim B-S, Jin J-Y, Kwon JH, Woo IS, Ko YH, Park S-Y, et al. Efficacy and safety of oxycodone/naloxone as add-on therapy to gabapentin or pregabalin for the management of chemotherapy-induced peripheral neuropathy in Korea. Asia Pac J Clin Oncol. 2018;14:e448–54.PubMed Kim B-S, Jin J-Y, Kwon JH, Woo IS, Ko YH, Park S-Y, et al. Efficacy and safety of oxycodone/naloxone as add-on therapy to gabapentin or pregabalin for the management of chemotherapy-induced peripheral neuropathy in Korea. Asia Pac J Clin Oncol. 2018;14:e448–54.PubMed
277.
Zurück zum Zitat Cartoni C, Brunetti GA, Federico V, Efficace F, Grammatico S, Tendas A, et al. Controlled-release oxycodone for the treatment of bortezomib-induced neuropathic pain in patients with multiple myeloma. Support Care Cancer. 2012;10:2621. Cartoni C, Brunetti GA, Federico V, Efficace F, Grammatico S, Tendas A, et al. Controlled-release oxycodone for the treatment of bortezomib-induced neuropathic pain in patients with multiple myeloma. Support Care Cancer. 2012;10:2621.
278.
Zurück zum Zitat Bykov K, Bateman BT, Franklin JM, Vine SM, Patorno E. Association of gabapentinoids with the risk of opioid-related adverse events in surgical patients in the United States. JAMA Netw Open. 2020;3(12):e2031647.PubMedPubMedCentral Bykov K, Bateman BT, Franklin JM, Vine SM, Patorno E. Association of gabapentinoids with the risk of opioid-related adverse events in surgical patients in the United States. JAMA Netw Open. 2020;3(12):e2031647.PubMedPubMedCentral
279.
Zurück zum Zitat Mishra S, Bhatnagar S, Goyal GN, Rana SP, Upadhya SP. A comparative efficacy of amitriptyline, gabapentin, and pregabalin in neuropathic cancer pain: a prospective randomized double-blind placebo-controlled study. Am J Hosp Palliat Care. 2012;29(3):177–82.PubMed Mishra S, Bhatnagar S, Goyal GN, Rana SP, Upadhya SP. A comparative efficacy of amitriptyline, gabapentin, and pregabalin in neuropathic cancer pain: a prospective randomized double-blind placebo-controlled study. Am J Hosp Palliat Care. 2012;29(3):177–82.PubMed
280.
Zurück zum Zitat Tsavaris N, Kopterides P, Kosmas C, Efthymiou A, Skopelitis H, Dimitrakopoulos A, et al. Gabapentin monotherapy for the treatment of chemotherapy-induced neuropathic pain: a pilot study. Pain Med. 2008;9:1209.PubMed Tsavaris N, Kopterides P, Kosmas C, Efthymiou A, Skopelitis H, Dimitrakopoulos A, et al. Gabapentin monotherapy for the treatment of chemotherapy-induced neuropathic pain: a pilot study. Pain Med. 2008;9:1209.PubMed
281.
Zurück zum Zitat Magnowska M, Izycka N, Kapola-Czyz J, Romala A, Lorek J, Spaczynski M, et al. Effectiveness of gabapentin pharmacotherapy in chemotherapy-induced peripheral neuropathy. Ginekol Pol. 2018;89:200–4.PubMed Magnowska M, Izycka N, Kapola-Czyz J, Romala A, Lorek J, Spaczynski M, et al. Effectiveness of gabapentin pharmacotherapy in chemotherapy-induced peripheral neuropathy. Ginekol Pol. 2018;89:200–4.PubMed
282.
Zurück zum Zitat Rao RD, Loprinzi CL, Michalak JC, Sloan JA, Novotny P, Soori GS, et al. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer. 2007;110(9):2110–8.PubMed Rao RD, Loprinzi CL, Michalak JC, Sloan JA, Novotny P, Soori GS, et al. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled, crossover trial (N00C3). Cancer. 2007;110(9):2110–8.PubMed
283.
Zurück zum Zitat de Andrade DC, Jacobsen Teixeira M, Galhardoni R, Ferreira KSL, Braz Mileno P, Scisci N, et al. Pregabalin for the prevention of oxaliplatin-induced painful neuropathy: a randomized Double-Blind Trial. Oncologist. 2017;22(10):1154-e105.PubMedPubMedCentral de Andrade DC, Jacobsen Teixeira M, Galhardoni R, Ferreira KSL, Braz Mileno P, Scisci N, et al. Pregabalin for the prevention of oxaliplatin-induced painful neuropathy: a randomized Double-Blind Trial. Oncologist. 2017;22(10):1154-e105.PubMedPubMedCentral
284.
Zurück zum Zitat Hammack JE, Michalak JC, Loprinzi CL, Sloan JA, Novotny PJ, Soori GS, et al. Phase III evaluation of nortriptyline for alleviation of symptoms of cis-platinum-induced peripheral neuropathy. Pain. 2002;98(1–2):195–203.PubMed Hammack JE, Michalak JC, Loprinzi CL, Sloan JA, Novotny PJ, Soori GS, et al. Phase III evaluation of nortriptyline for alleviation of symptoms of cis-platinum-induced peripheral neuropathy. Pain. 2002;98(1–2):195–203.PubMed
285.
Zurück zum Zitat Kautio A-L, Haanpää M, Saarto T, Kalso E. Amitriptyline in the treatment of chemotherapy-induced neuropathic symptoms. J Pain Symptom Manag. 2008;35(1):31–9. Kautio A-L, Haanpää M, Saarto T, Kalso E. Amitriptyline in the treatment of chemotherapy-induced neuropathic symptoms. J Pain Symptom Manag. 2008;35(1):31–9.
286.
Zurück zum Zitat Kautio AL, Haanpää M, Leminen A, Kalso E, Kautiainen H, Saarto T. Amitriptyline in the prevention of chemotherapy-induced neuropathic symptoms. Anticancer Res. 2009;29(7):2601–6.PubMed Kautio AL, Haanpää M, Leminen A, Kalso E, Kautiainen H, Saarto T. Amitriptyline in the prevention of chemotherapy-induced neuropathic symptoms. Anticancer Res. 2009;29(7):2601–6.PubMed
287.
Zurück zum Zitat Hall FS, Schwarzbaum JM, Perona MTG, Templin JS, Caron MG, Lesch KP, et al. A greater role for the norepinephrine transporter than the serotonin transporter in murine nociception. Neuroscience. 2011;175:315–27.PubMed Hall FS, Schwarzbaum JM, Perona MTG, Templin JS, Caron MG, Lesch KP, et al. A greater role for the norepinephrine transporter than the serotonin transporter in murine nociception. Neuroscience. 2011;175:315–27.PubMed
288.
Zurück zum Zitat Bellingham GA, Peng PW. Duloxetine: a review of its pharmacology and use in chronic pain management. Reg Anesth Pain Med. 2010;35(3):294–303.PubMed Bellingham GA, Peng PW. Duloxetine: a review of its pharmacology and use in chronic pain management. Reg Anesth Pain Med. 2010;35(3):294–303.PubMed
289.
Zurück zum Zitat Smith EM, Pang H, Cirrincione C, Fleishman S, Paskett ED, Ahles T, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA. 2013;309(13):1359–67.PubMedPubMedCentral Smith EM, Pang H, Cirrincione C, Fleishman S, Paskett ED, Ahles T, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA. 2013;309(13):1359–67.PubMedPubMedCentral
290.
Zurück zum Zitat Smith EML, Pang H, Cirrincione C, Fleishman S, Paskett ED, Ahles T, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy. A randomized clinical trial. JAMA. 2013;309:1359–67.PubMedPubMedCentral Smith EML, Pang H, Cirrincione C, Fleishman S, Paskett ED, Ahles T, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy. A randomized clinical trial. JAMA. 2013;309:1359–67.PubMedPubMedCentral
291.
Zurück zum Zitat Yang YH, Lin JK, Chen WS, Lin TC, Yang SH, Jiang JK, et al. Duloxetine improves oxaliplatin-induced neuropathy in patients with colorectal cancer: an open-label pilot study. Support Care Cancer. 2012;20(7):1491–7.PubMed Yang YH, Lin JK, Chen WS, Lin TC, Yang SH, Jiang JK, et al. Duloxetine improves oxaliplatin-induced neuropathy in patients with colorectal cancer: an open-label pilot study. Support Care Cancer. 2012;20(7):1491–7.PubMed
292.
Zurück zum Zitat Hirayama Y, Ishitani K, Sato Y, Iyama S, Takada K, Murase K, et al. Effect of duloxetine in Japanese patients with chemotherapy-induced peripheral neuropathy: a pilot randomized trial. Int J Clin Oncol. 2015;20(5):866–71.PubMed Hirayama Y, Ishitani K, Sato Y, Iyama S, Takada K, Murase K, et al. Effect of duloxetine in Japanese patients with chemotherapy-induced peripheral neuropathy: a pilot randomized trial. Int J Clin Oncol. 2015;20(5):866–71.PubMed
293.
Zurück zum Zitat Smith EM, Pang H, Ye C, Cirrincione C, Fleishman S, Paskett ED, et al. Predictors of duloxetine response in patients with oxaliplatin-induced painful chemotherapy-induced peripheral neuropathy (CIPN): a secondary analysis of randomised controlled trial—CALGB/alliance 170601. Eur J Cancer Care (Engl). 2017. https://doi.org/10.1111/ecc.12421.CrossRef Smith EM, Pang H, Ye C, Cirrincione C, Fleishman S, Paskett ED, et al. Predictors of duloxetine response in patients with oxaliplatin-induced painful chemotherapy-induced peripheral neuropathy (CIPN): a secondary analysis of randomised controlled trial—CALGB/alliance 170601. Eur J Cancer Care (Engl). 2017. https://​doi.​org/​10.​1111/​ecc.​12421.CrossRef
294.
Zurück zum Zitat Farshchian N, Alavi A, Heydarheydari S, Moradian N. Comparative study of the effects of venlafaxine and duloxetine on chemotherapy-induced peripheral neuropathy. Cancer Chemother Pharmacol. 2018;82(5):787–93.PubMed Farshchian N, Alavi A, Heydarheydari S, Moradian N. Comparative study of the effects of venlafaxine and duloxetine on chemotherapy-induced peripheral neuropathy. Cancer Chemother Pharmacol. 2018;82(5):787–93.PubMed
295.
Zurück zum Zitat Durand JP, Deplanque G, Montheil V, Gornet JM, Scotte F, Mir O, et al. Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity: results of EFFOX, a randomized, double-blind, placebo-controlled phase III trial. Ann Oncol. 2012;23(1):200–5.PubMed Durand JP, Deplanque G, Montheil V, Gornet JM, Scotte F, Mir O, et al. Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity: results of EFFOX, a randomized, double-blind, placebo-controlled phase III trial. Ann Oncol. 2012;23(1):200–5.PubMed
296.
Zurück zum Zitat Kus T, Aktas G, Alpak G, Kalender ME, Sevinc A, Kul S, et al. Efficacy of venlafaxine for the relief of taxane and oxaliplatin-induced acute neurotoxicity: a single-center retrospective case–control study. Support Care Cancer. 2016;24:2085.PubMed Kus T, Aktas G, Alpak G, Kalender ME, Sevinc A, Kul S, et al. Efficacy of venlafaxine for the relief of taxane and oxaliplatin-induced acute neurotoxicity: a single-center retrospective case–control study. Support Care Cancer. 2016;24:2085.PubMed
297.
Zurück zum Zitat Zimmerman C, Atherton PJ, Pachman D, Seisler D, Wagner-Johnston N, Dakhil S, et al. MC11C4: a pilot randomized, placebo-controlled, double-blind study of venlafaxine to prevent oxaliplatin-induced neuropathy. Support Care Cancer. 2016;24(3):1071–8.PubMed Zimmerman C, Atherton PJ, Pachman D, Seisler D, Wagner-Johnston N, Dakhil S, et al. MC11C4: a pilot randomized, placebo-controlled, double-blind study of venlafaxine to prevent oxaliplatin-induced neuropathy. Support Care Cancer. 2016;24(3):1071–8.PubMed
298.
Zurück zum Zitat Leonard GD, Wright MA, Quinn MG, Fioravanti S, Harold N, Schuler B, et al. Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer. BMC Cancer. 2005;5:116.PubMedPubMedCentral Leonard GD, Wright MA, Quinn MG, Fioravanti S, Harold N, Schuler B, et al. Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer. BMC Cancer. 2005;5:116.PubMedPubMedCentral
299.
Zurück zum Zitat Alejandro LM, Behrendt CE, Chen K, Openshaw H, Shibata S. Predicting acute and persistent neuropathy associated with oxaliplatin. Am J Clin Oncol. 2013;36(4):331–7.PubMedPubMedCentral Alejandro LM, Behrendt CE, Chen K, Openshaw H, Shibata S. Predicting acute and persistent neuropathy associated with oxaliplatin. Am J Clin Oncol. 2013;36(4):331–7.PubMedPubMedCentral
300.
Zurück zum Zitat Rothenberg ML, Oza AM, Bigelow RH, Berlin JD, Marshall JL, Ramanathan RK, et al. Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol. 2003;21(11):2059–69.PubMed Rothenberg ML, Oza AM, Bigelow RH, Berlin JD, Marshall JL, Ramanathan RK, et al. Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol. 2003;21(11):2059–69.PubMed
301.
Zurück zum Zitat Yamada Y, Higuchi K, Nishikawa K, Gotoh M, Fuse N, Sugimoto N, et al. Phase III study comparing oxaliplatin plus S-1 with cisplatin plus S-1 in chemotherapy-naïve patients with advanced gastric cancer. Ann Oncol. 2015;26(1):141–8.PubMed Yamada Y, Higuchi K, Nishikawa K, Gotoh M, Fuse N, Sugimoto N, et al. Phase III study comparing oxaliplatin plus S-1 with cisplatin plus S-1 in chemotherapy-naïve patients with advanced gastric cancer. Ann Oncol. 2015;26(1):141–8.PubMed
302.
Zurück zum Zitat Bando H, Yamada Y, Tanabe S, Nishikawa K, Gotoh M, Sugimoto N, et al. Efficacy and safety of S-1 and oxaliplatin combination therapy in elderly patients with advanced gastric cancer. Gastric Cancer. 2016;19(3):919–26.PubMed Bando H, Yamada Y, Tanabe S, Nishikawa K, Gotoh M, Sugimoto N, et al. Efficacy and safety of S-1 and oxaliplatin combination therapy in elderly patients with advanced gastric cancer. Gastric Cancer. 2016;19(3):919–26.PubMed
303.
Zurück zum Zitat Lonardi S, Sobrero A, Rosati G, Di Bartolomeo M, Ronzoni M, Aprile G, et al. Phase III trial comparing 3–6 months of adjuvant FOLFOX4/XELOX in stage II-III colon cancer: safety and compliance in the TOSCA trial. Ann Oncol. 2016;27(11):2074–81.PubMed Lonardi S, Sobrero A, Rosati G, Di Bartolomeo M, Ronzoni M, Aprile G, et al. Phase III trial comparing 3–6 months of adjuvant FOLFOX4/XELOX in stage II-III colon cancer: safety and compliance in the TOSCA trial. Ann Oncol. 2016;27(11):2074–81.PubMed
304.
Zurück zum Zitat Al-Batran SE, Hartmann JT, Probst S, Schmalenberg H, Hollerbach S, Hofheinz R, et al. Phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil, leucovorin plus either oxaliplatin or cisplatin: a study of the Arbeitsgemeinschaft Internistische Onkologie. J Clin Oncol. 2008;26(9):1435–42.PubMed Al-Batran SE, Hartmann JT, Probst S, Schmalenberg H, Hollerbach S, Hofheinz R, et al. Phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil, leucovorin plus either oxaliplatin or cisplatin: a study of the Arbeitsgemeinschaft Internistische Onkologie. J Clin Oncol. 2008;26(9):1435–42.PubMed
305.
Zurück zum Zitat Cassidy J, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol. 2008;26(12):2006–12.PubMed Cassidy J, Clarke S, Díaz-Rubio E, Scheithauer W, Figer A, Wong R, et al. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol. 2008;26(12):2006–12.PubMed
306.
Zurück zum Zitat Tournigand C, Cervantes A, Figer A, Lledo G, Flesch M, Buyse M, et al. OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-Go fashion in advanced colorectal cancer–a GERCOR study. J Clin Oncol. 2006;24(3):394–400.PubMed Tournigand C, Cervantes A, Figer A, Lledo G, Flesch M, Buyse M, et al. OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-Go fashion in advanced colorectal cancer–a GERCOR study. J Clin Oncol. 2006;24(3):394–400.PubMed
307.
Zurück zum Zitat André T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51.PubMed André T, Boni C, Mounedji-Boudiaf L, Navarro M, Tabernero J, Hickish T, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350(23):2343–51.PubMed
308.
Zurück zum Zitat Beijers AJ, Mols F, Vreugdenhil G. A systematic review on chronic oxaliplatin-induced peripheral neuropathy and the relation with oxaliplatin administration. Support Care Cancer. 2014;22(7):1999–2007.PubMed Beijers AJ, Mols F, Vreugdenhil G. A systematic review on chronic oxaliplatin-induced peripheral neuropathy and the relation with oxaliplatin administration. Support Care Cancer. 2014;22(7):1999–2007.PubMed
309.
Zurück zum Zitat Land SR, Kopec JA, Cecchini RS, Ganz PA, Wieand HS, Colangelo LH, et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for Stage II and III colon cancer: NSABP C-07. J Clin Oncol. 2007;25:2205.PubMed Land SR, Kopec JA, Cecchini RS, Ganz PA, Wieand HS, Colangelo LH, et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for Stage II and III colon cancer: NSABP C-07. J Clin Oncol. 2007;25:2205.PubMed
310.
Zurück zum Zitat Ibrahim A, Hirschfeld S, Cohen MH, Griebel DJ, Williams GA, Pazdur R. FDA drug approval summaries: oxaliplatin. Oncologist. 2004;9(1):8–12.PubMed Ibrahim A, Hirschfeld S, Cohen MH, Griebel DJ, Williams GA, Pazdur R. FDA drug approval summaries: oxaliplatin. Oncologist. 2004;9(1):8–12.PubMed
311.
Zurück zum Zitat Argyriou AA, Polychronopoulos P, Iconomou G, Koutras A, Kalofonos HP, Chroni E. Paclitaxel plus carboplatin-induced peripheral neuropathy. A prospective clinical and electrophysiological study in patients suffering from solid malignancies. J Neurol. 2005;252(12):1459–64.PubMed Argyriou AA, Polychronopoulos P, Iconomou G, Koutras A, Kalofonos HP, Chroni E. Paclitaxel plus carboplatin-induced peripheral neuropathy. A prospective clinical and electrophysiological study in patients suffering from solid malignancies. J Neurol. 2005;252(12):1459–64.PubMed
313.
Zurück zum Zitat Socinski MA, Bondarenko I, Karaseva NA, Makhson AM, Vynnychenko I, Okamoto I, et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J Clin Oncol. 2012;30(17):2055–62.PubMed Socinski MA, Bondarenko I, Karaseva NA, Makhson AM, Vynnychenko I, Okamoto I, et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J Clin Oncol. 2012;30(17):2055–62.PubMed
314.
Zurück zum Zitat Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, Jiang C, et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res. 2012;18(18):5099–109.PubMedPubMedCentral Baldwin RM, Owzar K, Zembutsu H, Chhibber A, Kubo M, Jiang C, et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res. 2012;18(18):5099–109.PubMedPubMedCentral
315.
Zurück zum Zitat Dorling L, Kar S, Michailidou K, Hiller L, Vallier AL, Ingle S, et al. The relationship between common genetic markers of breast cancer risk and chemotherapy-induced toxicity: a case–control study. PLoS ONE. 2016;11(7):e0158984.PubMedPubMedCentral Dorling L, Kar S, Michailidou K, Hiller L, Vallier AL, Ingle S, et al. The relationship between common genetic markers of breast cancer risk and chemotherapy-induced toxicity: a case–control study. PLoS ONE. 2016;11(7):e0158984.PubMedPubMedCentral
316.
Zurück zum Zitat Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(11):1835–42.PubMed Scagliotti G, Novello S, von Pawel J, Reck M, Pereira JR, Thomas M, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(11):1835–42.PubMed
317.
Zurück zum Zitat Scagliotti GV, De Marinis F, Rinaldi M, Crinò L, Gridelli C, Ricci S, et al. Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer. J Clin Oncol. 2002;20(21):4285–91.PubMed Scagliotti GV, De Marinis F, Rinaldi M, Crinò L, Gridelli C, Ricci S, et al. Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer. J Clin Oncol. 2002;20(21):4285–91.PubMed
318.
Zurück zum Zitat Gao G, Chu H, Zhao L, Gui T, Xu Q, Shi J. A meta-analysis of paclitaxel-based chemotherapies administered once every week compared with once every 3 weeks first-line treatment of advanced non-small-cell lung cancer. Lung Cancer. 2012;76(3):380–6.PubMed Gao G, Chu H, Zhao L, Gui T, Xu Q, Shi J. A meta-analysis of paclitaxel-based chemotherapies administered once every week compared with once every 3 weeks first-line treatment of advanced non-small-cell lung cancer. Lung Cancer. 2012;76(3):380–6.PubMed
319.
Zurück zum Zitat Ramchandren S, Leonard M, Mody RJ, Donohue JE, Moyer J, Hutchinson R, et al. Peripheral neuropathy in survivors of childhood acute lymphoblastic leukemia. J Peripher Nerv Syst. 2009;14(3):184–9.PubMed Ramchandren S, Leonard M, Mody RJ, Donohue JE, Moyer J, Hutchinson R, et al. Peripheral neuropathy in survivors of childhood acute lymphoblastic leukemia. J Peripher Nerv Syst. 2009;14(3):184–9.PubMed
320.
Zurück zum Zitat Lavoie Smith EM, Li L, Chiang C, Thomas K, Hutchinson RJ, Wells EM, et al. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J Peripher Nerv Syst. 2015;20(1):37–46.PubMed Lavoie Smith EM, Li L, Chiang C, Thomas K, Hutchinson RJ, Wells EM, et al. Patterns and severity of vincristine-induced peripheral neuropathy in children with acute lymphoblastic leukemia. J Peripher Nerv Syst. 2015;20(1):37–46.PubMed
321.
Zurück zum Zitat Dimopoulos MA, Zervas K, Kouvatseas G, Galani E, Grigoraki V, Kiamouris C, et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann Oncol. 2001;12(7):991–5.PubMed Dimopoulos MA, Zervas K, Kouvatseas G, Galani E, Grigoraki V, Kiamouris C, et al. Thalidomide and dexamethasone combination for refractory multiple myeloma. Ann Oncol. 2001;12(7):991–5.PubMed
322.
Zurück zum Zitat Prince HM, Mileshkin L, Roberts A, Ganju V, Underhill C, Catalano J, et al. A multicenter phase II trial of thalidomide and celecoxib for patients with relapsed and refractory multiple myeloma. Clin Cancer Res. 2005;11(15):5504–14.PubMed Prince HM, Mileshkin L, Roberts A, Ganju V, Underhill C, Catalano J, et al. A multicenter phase II trial of thalidomide and celecoxib for patients with relapsed and refractory multiple myeloma. Clin Cancer Res. 2005;11(15):5504–14.PubMed
323.
Zurück zum Zitat von Lilienfeld-Toal M, Hahn-Ast C, Furkert K, Hoffmann F, Naumann R, Bargou R, et al. A systematic review of phase II trials of thalidomide/dexamethasone combination therapy in patients with relapsed or refractory multiple myeloma. Eur J Haematol. 2008;81(4):247–52. von Lilienfeld-Toal M, Hahn-Ast C, Furkert K, Hoffmann F, Naumann R, Bargou R, et al. A systematic review of phase II trials of thalidomide/dexamethasone combination therapy in patients with relapsed or refractory multiple myeloma. Eur J Haematol. 2008;81(4):247–52.
324.
Zurück zum Zitat Prince HM, Schenkel B, Mileshkin L. An analysis of clinical trials assessing the efficacy and safety of single-agent thalidomide in patients with relapsed or refractory multiple myeloma. Leuk Lymphoma. 2007;48(1):46–55.PubMed Prince HM, Schenkel B, Mileshkin L. An analysis of clinical trials assessing the efficacy and safety of single-agent thalidomide in patients with relapsed or refractory multiple myeloma. Leuk Lymphoma. 2007;48(1):46–55.PubMed
325.
Zurück zum Zitat Grover JK, Uppal G, Raina V. The adverse effects of thalidomide in relapsed and refractory patients of multiple myeloma. Ann Oncol. 2002;13(10):1636–40.PubMed Grover JK, Uppal G, Raina V. The adverse effects of thalidomide in relapsed and refractory patients of multiple myeloma. Ann Oncol. 2002;13(10):1636–40.PubMed
326.
Zurück zum Zitat Facon T, Mary JY, Hulin C, Benboubker L, Attal M, Pegourie B, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06): a randomised trial. Lancet. 2007;370(9594):1209–18.PubMed Facon T, Mary JY, Hulin C, Benboubker L, Attal M, Pegourie B, et al. Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06): a randomised trial. Lancet. 2007;370(9594):1209–18.PubMed
327.
Zurück zum Zitat Richardson PG, Blood E, Mitsiades CS, Jagannath S, Zeldenrust SR, Alsina M, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006;108(10):3458–64.PubMedPubMedCentral Richardson PG, Blood E, Mitsiades CS, Jagannath S, Zeldenrust SR, Alsina M, et al. A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood. 2006;108(10):3458–64.PubMedPubMedCentral
328.
Zurück zum Zitat Peng L, Ye X, Zhou Y, Zhang J, Zhao Q. Meta-analysis of incidence and risk of peripheral neuropathy associated with intravenous bortezomib. Support Care Cancer. 2015;23(9):2813–24.PubMed Peng L, Ye X, Zhou Y, Zhang J, Zhao Q. Meta-analysis of incidence and risk of peripheral neuropathy associated with intravenous bortezomib. Support Care Cancer. 2015;23(9):2813–24.PubMed
329.
Zurück zum Zitat Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98.PubMed Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352(24):2487–98.PubMed
330.
Zurück zum Zitat Richardson PG, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T, Harousseau J-L, et al. Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol. 2009;144(6):895–903.PubMed Richardson PG, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T, Harousseau J-L, et al. Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol. 2009;144(6):895–903.PubMed
331.
Zurück zum Zitat Aguiar PM, de Mendonça LT, Colleoni GWB, Storpirtis S. Efficacy and safety of bortezomib, thalidomide, and lenalidomide in multiple myeloma: an overview of systematic reviews with meta-analyses. Crit Rev Oncol Hematol. 2017;113:195–212.PubMed Aguiar PM, de Mendonça LT, Colleoni GWB, Storpirtis S. Efficacy and safety of bortezomib, thalidomide, and lenalidomide in multiple myeloma: an overview of systematic reviews with meta-analyses. Crit Rev Oncol Hematol. 2017;113:195–212.PubMed
332.
Zurück zum Zitat van der Hoop RG, van der Burg ME, ten Bokkel Huinink WW, van Houwelingen C, Neijt JP. Incidence of neuropathy in 395 patients with ovarian cancer treated with or without cisplatin. Cancer. 1990;66(8):1697–702.PubMed van der Hoop RG, van der Burg ME, ten Bokkel Huinink WW, van Houwelingen C, Neijt JP. Incidence of neuropathy in 395 patients with ovarian cancer treated with or without cisplatin. Cancer. 1990;66(8):1697–702.PubMed
333.
Zurück zum Zitat Tofthagen CS, Cheville AL, Loprinzi CL. The physical consequences of chemotherapy-induced peripheral neuropathy. Curr Oncol Rep. 2020;22(5):50.PubMed Tofthagen CS, Cheville AL, Loprinzi CL. The physical consequences of chemotherapy-induced peripheral neuropathy. Curr Oncol Rep. 2020;22(5):50.PubMed
334.
Zurück zum Zitat Ruddy KJ, Le-Rademacher J, Lacouture ME, Wilkinson M, Onitilo AA, Vander Woude AC, et al. Randomized controlled trial of cryotherapy to prevent paclitaxel-induced peripheral neuropathy (RU221511I); an ACCRU trial. Breast. 2019;48:89–97.PubMed Ruddy KJ, Le-Rademacher J, Lacouture ME, Wilkinson M, Onitilo AA, Vander Woude AC, et al. Randomized controlled trial of cryotherapy to prevent paclitaxel-induced peripheral neuropathy (RU221511I); an ACCRU trial. Breast. 2019;48:89–97.PubMed
335.
Zurück zum Zitat Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN, Kamal A, et al. Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer. 2012;118(20):5171–8.PubMed Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN, Kamal A, et al. Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial N08C1. Cancer. 2012;118(20):5171–8.PubMed
336.
Zurück zum Zitat Molassiotis A, Cheng HL, Leung KT, Li YC, Wong KH, Au JSK, et al. Risk factors for chemotherapy-induced peripheral neuropathy in patients receiving taxane- and platinum-based chemotherapy. Brain Behav. 2019;9(6):1312. Molassiotis A, Cheng HL, Leung KT, Li YC, Wong KH, Au JSK, et al. Risk factors for chemotherapy-induced peripheral neuropathy in patients receiving taxane- and platinum-based chemotherapy. Brain Behav. 2019;9(6):1312.
337.
Zurück zum Zitat Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy:a comprehensive survey. Cancer Treat Rev. 2014;40(7):872–82.PubMed Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy:a comprehensive survey. Cancer Treat Rev. 2014;40(7):872–82.PubMed
338.
Zurück zum Zitat Loprinzi CL, Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN, et al. Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J Clin Oncol. 2011;29(11):1472–8.PubMedPubMedCentral Loprinzi CL, Reeves BN, Dakhil SR, Sloan JA, Wolf SL, Burger KN, et al. Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG N08C1. J Clin Oncol. 2011;29(11):1472–8.PubMedPubMedCentral
339.
Zurück zum Zitat Liu H, Xu R, Huang H. Peripheral neuropathy outcomes and efficacy of subcutaneous bortezomib when combined with thalidomide and dexamethasone in the treatment of multiple myeloma. Exp Ther Med. 2016;12(5):3041–6.PubMedPubMedCentral Liu H, Xu R, Huang H. Peripheral neuropathy outcomes and efficacy of subcutaneous bortezomib when combined with thalidomide and dexamethasone in the treatment of multiple myeloma. Exp Ther Med. 2016;12(5):3041–6.PubMedPubMedCentral
340.
Zurück zum Zitat Kang L, Tian Y, Xu S, Chen H. Oxaliplatin-induced peripheral neuropathy: clinical features, mechanisms, prevention and treatment. J Neurol. 2020;268:3269–82.PubMed Kang L, Tian Y, Xu S, Chen H. Oxaliplatin-induced peripheral neuropathy: clinical features, mechanisms, prevention and treatment. J Neurol. 2020;268:3269–82.PubMed
341.
Zurück zum Zitat Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2014;32(18):1941–67.PubMed Hershman DL, Lacchetti C, Dworkin RH, Lavoie Smith EM, Bleeker J, Cavaletti G, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2014;32(18):1941–67.PubMed
342.
Zurück zum Zitat Glendenning JL, Barbachano Y, Norman AR, Dearnaley DP, Horwich A, Huddart RA. Long-term neurologic and peripheral vascular toxicity after chemotherapy treatment of testicular cancer. Cancer. 2010;116(10):2322–31.PubMed Glendenning JL, Barbachano Y, Norman AR, Dearnaley DP, Horwich A, Huddart RA. Long-term neurologic and peripheral vascular toxicity after chemotherapy treatment of testicular cancer. Cancer. 2010;116(10):2322–31.PubMed
343.
Zurück zum Zitat Eckhoff L, Feddersen S, Knoop AS, Ewertz M, Bergmann TK. Docetaxel-induced neuropathy: a pharmacogenetic case-control study of 150 women with early-stage breast cancer. Acta Oncol. 2015;54(4):530–7.PubMed Eckhoff L, Feddersen S, Knoop AS, Ewertz M, Bergmann TK. Docetaxel-induced neuropathy: a pharmacogenetic case-control study of 150 women with early-stage breast cancer. Acta Oncol. 2015;54(4):530–7.PubMed
344.
Zurück zum Zitat Cavaletti G, Marmiroli P. Management of oxaliplatin-induced peripheral sensory neuropathy. Cancers (Basel). 2020;12(6):1370. Cavaletti G, Marmiroli P. Management of oxaliplatin-induced peripheral sensory neuropathy. Cancers (Basel). 2020;12(6):1370.
345.
Zurück zum Zitat Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Curr Opin Neurol. 2015;28(5):500–7.PubMed Cavaletti G, Marmiroli P. Chemotherapy-induced peripheral neurotoxicity. Curr Opin Neurol. 2015;28(5):500–7.PubMed
346.
Zurück zum Zitat Brydøy M, Oldenburg J, Klepp O, Bremnes RM, Wist EA, Wentzel-Larsen T, et al. Observational study of prevalence of long-term raynaud-like phenomena and neurological side effects in testicular cancer survivors. JNCI. 2009;101(24):1682–95.PubMedPubMedCentral Brydøy M, Oldenburg J, Klepp O, Bremnes RM, Wist EA, Wentzel-Larsen T, et al. Observational study of prevalence of long-term raynaud-like phenomena and neurological side effects in testicular cancer survivors. JNCI. 2009;101(24):1682–95.PubMedPubMedCentral
347.
Zurück zum Zitat Argyriou AA, Polychronopoulos P, Koutras A, Iconomou G, Gourzis P, Assimakopoulos K, et al. Is advanced age associated with increased incidence and severity of chemotherapy-induced peripheral neuropathy? Support Care Cancer. 2006;14(3):223–9.PubMed Argyriou AA, Polychronopoulos P, Koutras A, Iconomou G, Gourzis P, Assimakopoulos K, et al. Is advanced age associated with increased incidence and severity of chemotherapy-induced peripheral neuropathy? Support Care Cancer. 2006;14(3):223–9.PubMed
348.
Zurück zum Zitat Argyriou AA, Cavaletti G, Bruna J, Kyritsis AP, Kalofonos HP. Bortezomib-induced peripheral neurotoxicity: an update. Arch Toxicol. 2014;88(9):1669–79.PubMed Argyriou AA, Cavaletti G, Bruna J, Kyritsis AP, Kalofonos HP. Bortezomib-induced peripheral neurotoxicity: an update. Arch Toxicol. 2014;88(9):1669–79.PubMed
349.
Zurück zum Zitat Anyanwu CO, Stewart CL, Werth VP. Thalidomide-induced orofacial neuropathy. J Clin Rheumatol. 2014;20(7):399–400.PubMedPubMedCentral Anyanwu CO, Stewart CL, Werth VP. Thalidomide-induced orofacial neuropathy. J Clin Rheumatol. 2014;20(7):399–400.PubMedPubMedCentral
350.
Zurück zum Zitat Albany C, Dockter T, Wolfe E, Le-Rademacher J, Wagner-Johnston N, Einhorn L, et al. Cisplatin-associated neuropathy characteristics compared with those associated with other neurotoxic chemotherapy agents (Alliance A151724). Support Care Cancer. 2020;29:833–40.PubMedPubMedCentral Albany C, Dockter T, Wolfe E, Le-Rademacher J, Wagner-Johnston N, Einhorn L, et al. Cisplatin-associated neuropathy characteristics compared with those associated with other neurotoxic chemotherapy agents (Alliance A151724). Support Care Cancer. 2020;29:833–40.PubMedPubMedCentral
351.
Zurück zum Zitat Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 50: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.PubMed Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 50: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–82.PubMed
353.
Zurück zum Zitat Gedlicka C, Scheithauer W, Schüll B, Kornek GV. Effective treatment of oxaliplatin-induced cumulative polyneuropathy with alpha-lipoic acid. J Clin Oncol. 2002;20(15):3359–61.PubMed Gedlicka C, Scheithauer W, Schüll B, Kornek GV. Effective treatment of oxaliplatin-induced cumulative polyneuropathy with alpha-lipoic acid. J Clin Oncol. 2002;20(15):3359–61.PubMed
354.
Zurück zum Zitat Gedlicka C, Kornek GV, Schmid K, Scheithauer W. Amelioration of docetaxel/cisplatin induced polyneuropathy by {alpha}-lipoic acid. Ann Oncol. 2003;14:339–40.PubMed Gedlicka C, Kornek GV, Schmid K, Scheithauer W. Amelioration of docetaxel/cisplatin induced polyneuropathy by {alpha}-lipoic acid. Ann Oncol. 2003;14:339–40.PubMed
356.
Zurück zum Zitat Roberts JA, Jenison EL, Kim K, Clarke-Pearson D, Langleben A. A randomized, multicenter, double-blind, placebo-controlled, dose-finding study of ORG 2766 in the prevention or delay of cisplatin-induced neuropathies in women with ovarian cancer. Gynecol Oncol. 1997;67(2):172–7.PubMed Roberts JA, Jenison EL, Kim K, Clarke-Pearson D, Langleben A. A randomized, multicenter, double-blind, placebo-controlled, dose-finding study of ORG 2766 in the prevention or delay of cisplatin-induced neuropathies in women with ovarian cancer. Gynecol Oncol. 1997;67(2):172–7.PubMed
357.
Zurück zum Zitat Koeppen S, Verstappen CC, Körte R, Scheulen ME, Strumberg D, Postma TJ, et al. Lack of neuroprotection by an ACTH (4–9) analogue. a randomized trial in patients treated with vincristine for Hodgkin’s or non-Hodgkin’s lymphoma. J Cancer Res Clin Oncol. 2004;130(3):153–60.PubMed Koeppen S, Verstappen CC, Körte R, Scheulen ME, Strumberg D, Postma TJ, et al. Lack of neuroprotection by an ACTH (4–9) analogue. a randomized trial in patients treated with vincristine for Hodgkin’s or non-Hodgkin’s lymphoma. J Cancer Res Clin Oncol. 2004;130(3):153–60.PubMed
358.
Zurück zum Zitat Milla P, Airoldi M, Weber G, Drescher A, Jaehde U, Cattel L. Administration of reduced glutathione in FOLFOX4 adjuvant treatment for colorectal cancer: effect on oxaliplatin pharmacokinetics, Pt-DNA adduct formation, and neurotoxicity. Anticancer Drugs. 2009;20(5):396–402.PubMed Milla P, Airoldi M, Weber G, Drescher A, Jaehde U, Cattel L. Administration of reduced glutathione in FOLFOX4 adjuvant treatment for colorectal cancer: effect on oxaliplatin pharmacokinetics, Pt-DNA adduct formation, and neurotoxicity. Anticancer Drugs. 2009;20(5):396–402.PubMed
359.
Zurück zum Zitat Izgu N, Metin ZG, Karadas C, Ozdemir L, Cetin N, Demirci U. Prevention of chemotherapy-induced peripheral neuropathy with classical massage in breast cancer patients receiving paclitaxel: an assessor-blinded randomized controlled trial. Eur J Oncol Nurs. 2019;40:36–43.PubMed Izgu N, Metin ZG, Karadas C, Ozdemir L, Cetin N, Demirci U. Prevention of chemotherapy-induced peripheral neuropathy with classical massage in breast cancer patients receiving paclitaxel: an assessor-blinded randomized controlled trial. Eur J Oncol Nurs. 2019;40:36–43.PubMed
360.
Zurück zum Zitat Greenlee H, Crew KD, Capodice J, Awad D, Buono D, Shi Z, et al. Randomized sham-controlled pilot trial of weekly electro-acupuncture for the prevention of taxane-induced peripheral neuropathy in women with early stage breast cancer. Breast Cancer Res Treat. 2016;156(3):453–64.PubMedPubMedCentral Greenlee H, Crew KD, Capodice J, Awad D, Buono D, Shi Z, et al. Randomized sham-controlled pilot trial of weekly electro-acupuncture for the prevention of taxane-induced peripheral neuropathy in women with early stage breast cancer. Breast Cancer Res Treat. 2016;156(3):453–64.PubMedPubMedCentral
361.
Zurück zum Zitat Glimelius B, Manojlovic N, Pfeiffer P, Mosidze B, Kurteva G, Karlberg M, et al. Persistent prevention of oxaliplatin-induced peripheral neuropathy using calmangafodipir (PledOx(®)): a placebo-controlled randomised phase II study (PLIANT). Acta Oncol. 2018;57(3):393–402.PubMed Glimelius B, Manojlovic N, Pfeiffer P, Mosidze B, Kurteva G, Karlberg M, et al. Persistent prevention of oxaliplatin-induced peripheral neuropathy using calmangafodipir (PledOx(®)): a placebo-controlled randomised phase II study (PLIANT). Acta Oncol. 2018;57(3):393–402.PubMed
362.
Zurück zum Zitat Argyriou AA, Chroni E, Polychronopoulos P, Iconomou G, Koutras A, Makatsoris T, et al. Efficacy of oxcarbazepine for prophylaxis against cumulative oxaliplatin-induced neuropathy. Neurology. 2006;67(12):2253.PubMed Argyriou AA, Chroni E, Polychronopoulos P, Iconomou G, Koutras A, Makatsoris T, et al. Efficacy of oxcarbazepine for prophylaxis against cumulative oxaliplatin-induced neuropathy. Neurology. 2006;67(12):2253.PubMed
363.
Zurück zum Zitat Wilson RH, Lehky T, Thomas RR, Quinn MG, Floeter MK, Grem JL. Acute oxaliplatin-induced peripheral nerve hyperexcitability. J Clin Oncol. 2002;20(7):1767–74.PubMed Wilson RH, Lehky T, Thomas RR, Quinn MG, Floeter MK, Grem JL. Acute oxaliplatin-induced peripheral nerve hyperexcitability. J Clin Oncol. 2002;20(7):1767–74.PubMed
364.
Zurück zum Zitat Izgu N, Ozdemir L, Bugdayci BF. Effect of aromatherapy massage on chemotherapy-induced peripheral neuropathic pain and fatigue in patients receiving oxaliplatin: an open label quasi-randomized controlled pilot study. Cancer Nurs. 2019;2:139. Izgu N, Ozdemir L, Bugdayci BF. Effect of aromatherapy massage on chemotherapy-induced peripheral neuropathic pain and fatigue in patients receiving oxaliplatin: an open label quasi-randomized controlled pilot study. Cancer Nurs. 2019;2:139.
365.
Zurück zum Zitat Molassiotis A, Suen LKP, Cheng HL, Mok TSK, Lee SCY, Wang CH, et al. A randomized assessor-blinded wait-list-controlled trial to assess the effectiveness of acupuncture in the management of chemotherapy-induced peripheral neuropathy. Integr Cancer Ther. 2019;18:1534735419836501.PubMedPubMedCentral Molassiotis A, Suen LKP, Cheng HL, Mok TSK, Lee SCY, Wang CH, et al. A randomized assessor-blinded wait-list-controlled trial to assess the effectiveness of acupuncture in the management of chemotherapy-induced peripheral neuropathy. Integr Cancer Ther. 2019;18:1534735419836501.PubMedPubMedCentral
367.
Zurück zum Zitat Rao RD, Loprinzi CL, Flynn PJ, Nashawaty M, Sloan JA, Novotny P, et al. Efficacy of lamotrigine in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled trial, N01C3. Cancer. 2008;112(12):2802–8.PubMed Rao RD, Loprinzi CL, Flynn PJ, Nashawaty M, Sloan JA, Novotny P, et al. Efficacy of lamotrigine in the management of chemotherapy-induced peripheral neuropathy: a phase 3 randomized, double-blind, placebo-controlled trial, N01C3. Cancer. 2008;112(12):2802–8.PubMed
368.
Zurück zum Zitat Lynch ME, Cesar-Rittenberg P, Hohmann AG. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J Pain Symptom Manag. 2014;1:166. Lynch ME, Cesar-Rittenberg P, Hohmann AG. A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. J Pain Symptom Manag. 2014;1:166.
369.
Zurück zum Zitat Barton DL, Wos EJ, Qin R, Mattar BI, Green NB, Lanier KS, et al. A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support Care Cancer. 2011;19(6):833–41.PubMed Barton DL, Wos EJ, Qin R, Mattar BI, Green NB, Lanier KS, et al. A double-blind, placebo-controlled trial of a topical treatment for chemotherapy-induced peripheral neuropathy: NCCTG trial N06CA. Support Care Cancer. 2011;19(6):833–41.PubMed
370.
Zurück zum Zitat Fallon MT, Storey DJ, Krishan A, Weir CJ, Mitchell R, Fleetwood-Walker SM, et al. Cancer treatment-related neuropathic pain: proof of concept study with menthol—a TRPM8 agonist. Support Care Cancer. 2015;23(9):2769–77.PubMedPubMedCentral Fallon MT, Storey DJ, Krishan A, Weir CJ, Mitchell R, Fleetwood-Walker SM, et al. Cancer treatment-related neuropathic pain: proof of concept study with menthol—a TRPM8 agonist. Support Care Cancer. 2015;23(9):2769–77.PubMedPubMedCentral
371.
Zurück zum Zitat Ripamonti CI, Santini D, Maranzano E, Berti M, Roila F. Management of cancer pain: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(Suppl 7):139–54. Ripamonti CI, Santini D, Maranzano E, Berti M, Roila F. Management of cancer pain: ESMO Clinical Practice Guidelines. Ann Oncol. 2012;23(Suppl 7):139–54.
372.
Zurück zum Zitat Massey RL, Kim HK, Abdi S. Brief review: chemotherapy-induced painful peripheral neuropathy (CIPPN): current status and future directions. Can J Anesth. 2014;61(8):754–62.PubMed Massey RL, Kim HK, Abdi S. Brief review: chemotherapy-induced painful peripheral neuropathy (CIPPN): current status and future directions. Can J Anesth. 2014;61(8):754–62.PubMed
373.
Zurück zum Zitat Fradkin M, Batash R, Elmaleh S, Debi R, Schaffer P, Schaffer M, et al. Management of peripheral neuropathy induced by chemotherapy. Curr Med Chem. 2019;26(25):4698–708.PubMed Fradkin M, Batash R, Elmaleh S, Debi R, Schaffer P, Schaffer M, et al. Management of peripheral neuropathy induced by chemotherapy. Curr Med Chem. 2019;26(25):4698–708.PubMed
374.
Zurück zum Zitat Dorsey SG, Kleckner IR, Barton D, Mustian K, O’Mara A, St Germain D, et al. The National Cancer Institute Clinical Trials planning meeting for prevention and treatment of chemotherapy-induced peripheral neuropathy. J Natl Cancer Inst. 2019;111(6):531–7.PubMedPubMedCentral Dorsey SG, Kleckner IR, Barton D, Mustian K, O’Mara A, St Germain D, et al. The National Cancer Institute Clinical Trials planning meeting for prevention and treatment of chemotherapy-induced peripheral neuropathy. J Natl Cancer Inst. 2019;111(6):531–7.PubMedPubMedCentral
375.
Zurück zum Zitat Attal N, Cruccu G, Baron R, Haanpaa M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17(9):1113-e88.PubMed Attal N, Cruccu G, Baron R, Haanpaa M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17(9):1113-e88.PubMed
376.
Zurück zum Zitat Otake A, Yoshino K, Ueda Y, Sawada K, Mabuchi S, Kimura T, et al. Usefulness of duloxetine for paclitaxel-induced peripheral neuropathy treatment in gynecological cancer patients. Anticancer Res. 2015;35:359–63.PubMed Otake A, Yoshino K, Ueda Y, Sawada K, Mabuchi S, Kimura T, et al. Usefulness of duloxetine for paclitaxel-induced peripheral neuropathy treatment in gynecological cancer patients. Anticancer Res. 2015;35:359–63.PubMed
377.
Zurück zum Zitat Özdoǧan M, Samur M, Bozcuk HŞ, Çoban E, Savaş B, Aydin H. Venlafaxine for treatment of chemotherapy-induced neuropathic pain. Turkish J Cancer. 2004;34(3):110–3. Özdoǧan M, Samur M, Bozcuk HŞ, Çoban E, Savaş B, Aydin H. Venlafaxine for treatment of chemotherapy-induced neuropathic pain. Turkish J Cancer. 2004;34(3):110–3.
378.
Zurück zum Zitat Durand JP, Alexandre J, Guillevin L, Goldwasser F. Clinical activity of venlafaxine and topiramate against oxaliplatin-induced disabling permanent neuropathy. Anticancer Drugs. 2005;16:587–91.PubMed Durand JP, Alexandre J, Guillevin L, Goldwasser F. Clinical activity of venlafaxine and topiramate against oxaliplatin-induced disabling permanent neuropathy. Anticancer Drugs. 2005;16:587–91.PubMed
379.
Zurück zum Zitat Saif MW, Syrigos K, Kaley K, Isufi I. Role of pregabalin in treatment of oxaliplatin-induced sensory neuropathy. Anticancer Res. 2010;30:2927–33.PubMed Saif MW, Syrigos K, Kaley K, Isufi I. Role of pregabalin in treatment of oxaliplatin-induced sensory neuropathy. Anticancer Res. 2010;30:2927–33.PubMed
Metadaten
Titel
Chemotherapy-Induced Peripheral Neuropathy: Epidemiology, Pathomechanisms and Treatment
verfasst von
Jamie Burgess
Maryam Ferdousi
David Gosal
Cheng Boon
Kohei Matsumoto
Anne Marshall
Tony Mak
Andrew Marshall
Bernhard Frank
Rayaz A. Malik
Uazman Alam
Publikationsdatum
01.12.2021
Verlag
Springer Healthcare
Erschienen in
Oncology and Therapy / Ausgabe 2/2021
Print ISSN: 2366-1070
Elektronische ISSN: 2366-1089
DOI
https://doi.org/10.1007/s40487-021-00168-y

Weitere Artikel der Ausgabe 2/2021

Oncology and Therapy 2/2021 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.