Skip to main content
Erschienen in: Journal of Nephrology 1/2015

Open Access 01.02.2015 | Review

Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis

verfasst von: Xin Lin, Jing Yuan, Yingting Zhao, Yan Zha

Erschienen in: Journal of Nephrology | Ausgabe 1/2015

Abstract

Background

Interleukin-18 (IL-18) mediates ischemic acute tubular necrosis; it has been proved as a rapid, reliable, and affordable test marker for the early detection of acute kidney injury (AKI), but its predictive accuracy varies greatly.

Methods

MEDLINE and EMBASE, Cochrane Library, Ovid, and Springerlink (from inception to November 15, 2013) were searched for relevant studies (in English) investigating diagnostic accuracy of urine IL-18 to predict AKI in various clinical settings. The text index was increasing or increased urine IL-18 level and the main outcome was the development of AKI, which was primarily based on serum creatinine level [using risk, injury, failure, loss and end-stage renal disease (RIFLE), acute kidney injury network, or modified pediatric RIFLE criteria in pediatric patients]. Pooled estimates of diagnostic odds ratio (OR), sensitivity and specificity were calculated. Summary receiver operating characteristic curves were used to calculate the measures of accuracy and Q point value (Q*). Remarkable heterogeneity was explored further by subgroup analysis based on the different clinical settings.

Results

We analyzed data from 11 studies of 3 countries covering 2,796 patients. These studies were marked by limitations of threshold and non-threshold effect heterogeneity. Across all settings, the diagnostic OR for urine IL-18 level to predict AKI was 5.11 [95 % confidence interval (CI) 3.22–8.12], with sensitivity and specificity respectively at 0.51 and 0.79. The area under the ROC curve of urine IL-18 level to predict AKI was 0.77 (95 % CI 0.71–0.83). Subgroup analysis showed that urine IL-18 level in pediatric patients (<18 years) and early AKI predictive time (<12 h) were more effective in predicting AKI, with diagnostic ORs of 7.51 (2.99–18.88), 8.18 (2.19–30.51), respectively.

Conclusion

Urine IL-18 holds promise as a biomarker in the prediction of AKI but has only moderate diagnostic value.

Introduction

As an abrupt or rapid decline in renal filtration function, acute kidney injury (AKI) is a common condition associated with significant morbidity and mortality. In critically ill patients, those with AKI usually present a worse clinical outcome than their non-AKI counterparts [1]. Although regarded as the standard indicators of kidney function loss, serum creatinine (sCr) level and urine output are recognized as having limitations. On the one hand, sCr cannot accurately reflect the glomerular filtration rate (GFR) in a patient with unsteady state, and urine output is easily affected by water intake and the primary water load of the body [2]. On the other hand, sCr and urine output have limited sensitivity and specificity, and a delayed response to kidney impairment. All these factors suggest that sCr and urine output are not appropriate markers in the early detection of AKI. Thus, an accurate and timely biomarker to predict AKI onset or progression after renal insult is urgently needed.
Interleukin-18 (IL-18), a member of the IL-1 family of cytokines, is synthesized as an inactive 23-kDa precursor by several tissues including monocytes, macrophages, and proximal tubular epithelial cells, and is processed into an active 18.3 kDa cytokine by caspase-1 [3]. It has been demonstrated in some animal studies [4] as a mediator of renal ischemia–reperfusion injury, inducing acute tubular necrosis, and neutrophil and monocyte infiltration of the renal parenchyma. More recently, numerous clinical studies have focused on the diagnostic accuracy of IL-18 level in predicting AKI [57]. With the evidence accumulating, contradictory results have raised concerns about the predictive value of AKI across various settings. Thus, we performed a systematic review and meta-analysis to investigate the diagnostic accuracy of IL-18 level for predicting AKI. Since there is no clear consensus about the appropriate cutoff level of IL-18 to predict AKI and different thresholds have been reported by different studies, the summary receiver operating characteristic (sROC) curve was delineated for the meta-analysis.

Methods

Data sources and search strategy

A computer-based search was performed in MEDLINE, EMBASE, Cochrane Library, Ovid, and Springerlink databases, from inception until November 15, 2013, to identify potentially relevant articles. The search strategy consisted of terms related to AKI (“acute kidney injury” and “acute renal failure”) combined with the term “interleukin-18/interleukin 18/IL-18”. To ensure all articles were located, a secondary search of the articles already retrieved was undertaken, reviewing their reference lists. The preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines for the conduct of meta-analyses were followed [8].

Study selection

The titles and abstracts were examined independently by two of the authors (X. L. and J. Y.) to ascertain their relevance and inclusion for further analysis. Any disagreements were settled by consensus using a third opinion (Y. Z.). Inclusion criteria were that studies investigated the diagnostic accuracy of urinary IL-18 to predict AKI and had data which could be extracted into a 2 × 2 table or complete data which could be obtained from the corresponding author by e-mail. The search was restricted to human subjects. Only papers in English were eligible.

Data extraction

The following variables were recorded or recalculated: study population, sample size, age, sex, baseline IL-18 level, cutoff value for urine IL-18, AKI definition, number of patients who developed AKI, timing of obtaining the specimen, specificity, sensitivity, and area under the ROC curve (AUROC) with 95 % confidence interval (CI). Data for IL-18 sample storage and detection method were also collected. Two reviewers independently excluded articles on the basis of the title and abstract following a custom-made standardized table. The true-positive, true-negative, false-positive, and false-negative results of each included study were quantified. Quality assessment was performed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool [9] and independently by the authors (X. L. and J. Y.).

Statistical analysis

The meta-analysis was conducted using sROC curve as described by Rosman [10] and the computation was performed using Meta-Disc1.4. If multiple cutoff points were adopted in any study, the cutoff point (test threshold), sensitivity and specificity in this analysis were selected according to the Youden index. Heterogeneity was quantitatively assessed using the Q statistic. Fixed or random effects models (FEM or REM) were used on the basis of heterogeneity. We performed subgroup analysis to explore the remarkable heterogeneity in the light of different clinical settings.

Results

Search results and study characteristics

Of 179 primary articles searched, 156 were excluded on the basis of abstract and/or title because they were laboratory studies, genetic studies, review/comment articles, animal studies, or irrelevant to the current analysis; 3 were excluded because non-English articles. Of the 20 remaining articles, 5 studies with accurate diagnostic values of IL-18 missing and 3 studies lacking effective data (though we had contacted the corresponding authors to request the missing information) were excluded. As a result, 11 studies [6, 7, 1119] met the inclusion criteria and were selected for the analysis (Fig. 1).
Characteristics of the included trials are shown in Table 1. Two come from China [6, 11], seven from the USA [7, 13, 14, 1619], one from Taiwan, China [12], and one from Australia [15]. Overall, 2,796 patients were comprised, ranging from newborn to elderly age. Sample sizes were >100 in 7 studies and >1,000 in 1 [14]. Most studies were conducted on critical patients, including those with cardiac surgery (cardiopulmonary bypass) and transplantation, as well as various intensive care patients. Five studies [6, 11, 13, 17, 18] focused on pediatric patients. Males in all studies represented >50 % of the study population. Eight studies defined AKI using acute kidney injury network (AKIN) and/or risk, injury, failure, loss and end-stage renal disease (RIFLE) criteria, two [11, 17] using modified pediatric RIFLE, and one [16] using sCr level which, however, rose to ≥50 % of baseline in the first 72 h. Ten studies harnessed urine IL-18 concentration as the cutoff value and two [11, 15] the ratio of urine IL-18 to urine-creatinine concentration.
Table 1
Characteristics of included studies
Study (first author + year)
Country of origin
Study population
Mean age (years)
Men (%)
Sample size
Number (%) of AKI
Mean baseline IL-18 (pg/ml)
Definition of AKI
IL-18 Assay
Sample storage (°C)
Zheng et al. [6]
China
Children with CHD or undergoing CPB surgery
Non-AKI 11.4 (2.2–47.0)
AKI 5.9 (0.6–44.5)a
39 (67.2)
58
29 (50)
Non-AKI 7.9 (3.8–23.1)
AKI 17.6 (7.2–41.5)
SCr↑ ≥0.3 mg/dl or ≥50 % baseline, urine ≤0.5 ml/kg/6 h AKIN criteria
ELISA
–80
Sirota et al. [7]
USA
Orthotopic liver transplantation patients
56.1 ± 6.8
27 (67.5)
40
7 (17.5)
AKI 0 (0–18.57)
Non-AKI 0 (0–200.10)
SCr↑ ≥50 % baseline, RIFLE and AKIN criteria
ELISA
–80
Li et al. [11]
China
Non-septic critically ill neonates
34.1 ± 3.2b
34 (54.8)
62
11 (17.7)
/
SCr >1.5 mg/dl on the first 3 days of life, after the first 3 days of life, a ≥25 % decrease in eCCl. Modified pediatric RIFLE
ELISA
–80
Chen et al. [12]
Taiwan, China
CCU patients
66 ± 1
113 (75)
150
43 (28.7)
71 ± 5
AKIN criteria
ELISA
–80
Parikh et al. [13]
USA
Pediatric patients with congenital cardiac lesions surgery
3.8 ± 4.5
171 (55)
311
53 (17.0)
/
Receipt of acute dialysis during the entire hospital stay or sCr double baseline. RIFLE R or AKIN stage 2
ELISA
–80
Parikh et al. [14]
USA
Cardiac surgery adults at high risk for AKI
71 ± 10
826 (68)
1219
60 (4.9)
/
Receipt of acute dialysis during the entire hospital stay or sCr double baseline. RIFLE R or AKIN stage 2
ELISA
–80
Endre et al. [15]
Australia
ICU admission
60 ± 17
367 (70.2)
523
147 (28.1)
73 ± 340c
SCr↑ ≥0.3 mg/dl or 50 % baseline
AKIN48 or RIFLE 24 criteria
ELISA
–80
Liangos et al. [16]
USA
Patients undergoing on-pump cardiac surgery
68 ± 11
74 (72)
103
13 (12.6)
/
Scr↑ ≥50 % baseline in the first 72 h following termination of CPB
ELISA
–80
Washburn et al. [17]
USA
PICU children who received mechanical ventilation
6.5 ± 6.4
73 (53)
137
103 (75.2)
179.0 ± 337.9
Paediatric modified RIFLE
ELISA
–80
Parikh et al. [18]
USA
Cardiac surgery children
3.4 ± 5.3
30 (54.5)
55
20 (36.4)
1.65 ± 1.01
SCr↑ ≥50 % baseline
ELISA
–80
Parikh et al. [19]
USA
ARDS and ALI patient
50.2 ± 17.0
72 (52.2)
138
52 (37.7)
AKI 104 (0–955)
Control 0 (0–173)
SCr↑ ≥50 % baseline
ELISA
–80
AKI acute kidney injury, AKIN acute kidney injury network, ELISA enzyme-linked immunosorbent assay, CHD congenital heart disease, CPB cardiopulmonary bypass, sCr serum creatinine, RIFLE risk, injury, failure, loss and end-stage renal disease, eCCl estimated Cr clearance, CCU coronary care unit, ICU intensive care unit, PICU pediatric intensive care unit, ARDS acute respiratory distress syndrome, ALI acute lung injury
aMonths; b Gestational age, weeks; c (pg/ml)/mmol/l Cr

Quality assessment

Table 2 lists the methodological quality assessment of the included 11 studies. Ten studies enrolled single or multicenter consecutive patients prospectively, one [7] was retrospective and prospective in design. The study by Chen et al. [12] did not define inclusion and exclusion criteria clearly. The reference standards used in the afore-mentioned studies were creatinine based, which currently is the most widely used standard for evaluating kidney function. The conditions of follow-up were reported in the 10 prospective cohort studies; there were no selective losses in them. Overall, the quality of the studies was suboptimal, without sufficient information to assess all the bias, and uninterpretable, indeterminate or intermediate index test results were not reported. The quality assessment was performed independently by the authors (X. L. and J. Y.).
Table 2
Quality assessment of individual studies
Study
Study design
Spectrum biasa
Eligibility criteria clearly defined
Appropriate reference standard
Differential verification biasb
Index test and reference standard sufficiently described
Selective loss during followupc
Important confounders identified
Zheng et al. [6]
Prospective study
No
Yes
Yes
Yes
Yes
No
Yes
Sirota et al. [7]
Retrospective and prospective study
No
Yes
Yes
Yes
Yes
Yes
Li et al. [11]
Prospective study
No
Yes
Yes
Yes
Yes
No
Yes
Chen et al. [12]
Prospective study
No
No
Yes
Yes
Yes
No
Yes
Parikh et al. [13]
Prospective, multicenter cohort study
No
Yes
Yes
Yes
Yes
No
Yes
Parikh et al. [14]
Prospective, multicenter cohort study
No
Yes
Yes
Yes
Yes
No
Yes
Endre et al. [15]
Prospective observational study
No
Yes
Yes
Yes
Yes
No
Yes
Liangos et al. [16]
Prospective cohort study
No
Yes
Yes
Yes
Yes
No
Yes
Washburn et al. [17]
Prospective study
No
Yes
Yes
Yes
Yes
No
Yes
Parikh et al. [18]
Prospective study
No
Yes
Yes
Yes
Yes
No
Yes
Parikh et al. [19]
Prospective study
No
Yes
Yes
Yes
Yes
No
Yes
aThis item is labeled “No” if the spectrum of patients was representative of patients who received the test in practice, otherwise it is labeled “Yes”
bThis item is labeled “No” when all patients received the same reference standard, otherwise it is labeled “Yes”
cThis item is labeled “Yes” if patients who were lost to follow-up differed systematically from those who remained, otherwise it is labeled “No”
“—” This item is not applicable if the study was retrospective in design

Data extraction and calculation

As the respective number of true-positive, false-positive, true-negative, and false-negative results was not provided by the studies, these indexes were calculated from available sensitivity, specificity, and sample size values. Results are reported in Table 3 which enumerates specimen obtaining times and AKI predictive times of each study. Cutoff and AUROC values are also included in the table. As can be seen, cutoff values for urine IL-18 varied across studies.
Table 3
Sensitivity and specificity of individual studies for urine IL-18 to predict AKI
Study
Time of obtaining specimen
TP
FP
FN
TN
Cutoff value (pg/ml)
Sensitivity (%)
Specificity (%)
AUROC (95 % CI)
Assess time (h)
Zheng et al. [6]
0, 4, 6, 12, and 24 h after the initiation of CPB
28
11
1
18
49
96.60
62.10
0.835 (0.729–0.940)
4
Sirota1 et al. [7]
24 h after orthotopic liver transplantation
5
7
2
26
/
72
79
0.749
24
Li et al. [11]
48 h admitted
7
4
4
47
1,800a
64
92
0.72 (0.52–0.93)
48
Chen et al. [12]
Admission
22
17
22
90
70
50
84
0.621 (0.504–0.738)
48
Parikh et al. [13]
Admission
37
83
16
175
125
69
68
0.72 (0.64–0.80)
48
Parikh et al. [14]
Admission, every 6 h
32
209
28
950
60
54
82
0.74 (0.66–0.81)
48
Endre et al. [15]
Admission
50
83
97
293
36b
34
78
0.62 (0.56–0.67)
0
Liangos et al. [16]
2 h post-cardiopulmonary bypass
10
31
3
59
92
75
66
0.66 (0.49–0.83)
2
Washburn et al. [17]
2 PM each day
39
7
64
27
75
38
78
0.54 (0.31–0.77)
24
55
10
48
24
75
53
71
0.61 (0.43 –0.78)
48
Parikh et al. [18]
Every 2 h for the first 12 h and then once every 12 h
5
1
15
34
50
25
97
0.61
4
10
2
10
33
50
50
94
0.75
12
12
4
8
31
20
60
89
0.73
24
Parikh et al. [19]
Days 0, 1, and 3
38
29
14
57
25
74
66
0.731
24
IL interleukin, AKI acute kidney injury, AUROC area under the receiver operating characteristic curve, CI confidence interval, CPB cardiopulmonary bypass, FN false-negative, FP false-positive, TN true-negative, TP true-positive
apg/mg uCr
b(pg/ml)/mmol/l Cr

Diagnostic value of urine IL-18 in AKI prediction

The distribution of accurate estimator in sROC curve floor plan and the Spearman correlation coefficient (r = 0.764, p = 0.006) of logarithmic sensitivity and logarithm (1-specificity) showed that there was a threshold effect in different studies (Fig. 2; Table 4).
Table 4
Analysis of diagnostic threshold
Spearman correlation coefficient: 0.764, p value = 0.006
Logit (TPR) vs. logit (FPR)
Moses’ model (D = a + bS)
Weighted regression (inverse variance)
Var
Coeff.
Std. error
T
p value
a
1.791
0.254
7.061
0.0001
b(1)
0.224
0.157
1.428
0.1870
Tau-squared estimate = 0.1904 (convergence is achieved after 6 iterations)
Restricted maximum likelihood estimation (REML)
No. studies = 11 add 1/2 to all cells of the studies with zero
Figure 3 shows the forest plots and pooled estimates of sensitivity, specificity and diagnostic odds ratios (ORs) respectively. We found a diagnostic OR of 5.11 (95 % CI 3.22–8.12) for urine IL-18 level to predict AKI (Cochran-Q = 28.19, p = 0.0017) with a sensitivity and specificity respectively of 0.51 (heterogeneity Chi-squared 84.53, p < 0.001) and 0.79 (heterogeneity Chi-squared 62.84, p < 0.001) (Fig. 3). Significant non-threshold effect heterogeneity was also disclosed across these studies. As there was no statistically significant between b and 0 (p = 0.1870), the Mantel–Haenszel model was utilized to draw the fitting curve of sROC (Fig. 4). The pooled AUROC was 0.77 (95 % CI 0.71–0.83, Q = 0.71).
Subgroup analysis (Table 5) showed that urine IL-18 level in pediatric patients (<18 years) was more effective in predicting AKI, with a diagnostic OR of 7.510 (95 % CI 2.988–18.875) compared to 4.652 (2.710–7.987) for the adult group (p = 0.334); the early AKI predictive time (<12 h) subgroup displayed the highest diagnostic OR of 8.176 (95 % CI 2.191–30.507) among the three subgroups (<12, 24 and 48 h, p = 0.037). The pooled estimate diagnostic OR of the admission subgroup was 3.81 (95 % CI 2.08–6.99) and that of the subgroup for other times 7.16 (3.62–14.18). There were no significant differences between the two (p = 0.388). There were significant differences (p = 0.008) between cardiac surgery patients and patients in intensive care unit or coronary care unit patients in the subgroup analysis, with diagnostic ORs of 5.28 (3.59–7.76) and 5.31 (2.59–10.87), respectively.
Table 5
Pooled diagnostic accuracy of IL-18 in various settings
Subgroup factors
Subgroup criteria
Reference numbers
Q value
P value
I2 (%)
Hierarchical summary OR
(95 % CI)
P value for between subgroups
Age
<18 years
5
10.23
0.037
60.9
7.51 (2.99–18.88)
0.334
≥18 years
6
15.54
0.008
67.8
4.32 (2.48–7.51)
Predictive time
≤12 h
5
18.27
0.001
78.1
8.18 (2.19–30.51)
0.037
24 h
4
4.48
0.214
33.0
5.07 (2.58–9.96)
48 h
5
5.04
0.283
20.7
4.95 (3.39–7.24)
Obtaining specimen
Admission
4
13.4
0.004
77.6
3.81 (2.08–6.99)
0.388
Other times
7
10.38
0.109
42.4
7.16 (3.62–14.18)
Patients
Cardiac surgery
4
0.59
0.90
0.01
5.28 (3.593–7.762)
0.008
Other patients
7
23.28
0.001
74.2
5.31 (2.59–10.87)
OR odds ratio, CI confidence interval

Discussion

The current study presents a meta-analysis of urine IL-18 for predicting AKI development via the sROC analysis approach, both overall and across a range of subgroups. Studies committed to direct comparisons between urine IL-18 and the “gold standard” sCr were included. The finding derived is consistent with previous studies, which lends more force to the use of urine IL-18 as a marker of AKI in clinical practice. The results of this meta-analysis indicate that urine IL-18 had a pooled diagnostic OR of 5.11 and the estimated area under the curve (AUC) of the mean ROC plot was 0.77 (Q = 0.71), with a high heterogeneity in pooled sensitivity and specificity. This suggests that urine IL-18 has a higher chance of early detecting an AKI compared to sCr, but the application of this biomarker in the diagnosis of AKI should be limited to a certain range in the light of limitations intrinsic to such studies. Since pooled results may increase statistical power and lead to more precise estimates of a treatment effect and the pooled random or fixed effect models reflect the between-study variance [20], this may shed light on larger populations.
Due to the presence of a threshold effect, we used sROC curve fitting, the area under ROC and Q index, to merge the data. In the studies included, cutoff values were expressed in two types, urinary concentration or ratio of urine IL-18 and creatinine concentration, and identified as varying across studies (11.25–125 pg/ml). Such differences can be explained by: (1) use of different reagents in these studies though the assay methods were enzyme-linked immunosorbent assay (ELISA); and (2) differences in clinical settings and study population. Therefore, it might be necessary for each center using urine IL-18 level for early AKI diagnosis to define a specific reference range and cutoff value for each clinical setting.
In addition, a significant non-threshold effect heterogeneity exists across these studies. Since these studies were based on different institutions across the world, heterogeneity was inevitable concerning differences in AKI definitions, AKI settings, times for obtaining specimen, and experimental groups admitted to assess the predictive value of urine IL-18. We attempted to use meta-regression to explore the sources of heterogeneity, but failed. So subgroup analysis was performed and proved that urine IL-18 level in pediatric patients and the early AKI predictive time group (<12 h) was more effective in predicting AKI, which might principally account for the heterogeneity. Nevertheless, as the kidney undergoes growth and maturation in neonates who manifest different physiological states due to the abrupt changes at birth, many risk factors are correlated with AKI and the timing of kidney injury remains unknown [21]. The metabolic capacity and compensatory ability of neonates and children are also different from those of adults [22]. Subgroup analysis of age should be more specific if more clinical trials are conducted. Regarding AKI definition, AKIN, RIFLE, AKIN and/or RIFLE, and modified pediatric RIFLE criteria were adopted in the different included studies. The pooled diagnostic OR of AKI within 12 h was greater than that of 24 or 48 h in subgroup analysis. This is useful in clinical processing since preventive strategies can be formulated if AKI can be predicted in advance.
Using sCr level as the “gold standard” of diagnosis of AKI is another limitation of such studies because sCr is not an ideal marker of early loss of glomerular filtration or kidney injury [23]. The best method is to use radio-labeled tracer clearances to define AKI. However, its use in routine clinical practice is restrained because it is invasive, time-consuming and radioactive.
Another limitation lies in IL-18 itself. Cross-sectional studies indicate that urinary IL-18 levels are markedly elevated in patients with acute tubular necrosis compared with healthy controls and a variety of other renal pathologies, including urinary tract infection, chronic renal insufficiency, and pre-renal azotemia [24]. Therefore, the pathophysiology of IL-18 still remains incompletely understood and the true role of IL-18 may be as a mediator of specific injury subtypes rather than as a marker of injury. Though IL-18 can be induced in the proximal tubule after AKI, and released into urine after cleavage by caspase-1 [25, 26], it can also be derived from lung injury and myocardial ischemia, etc. Thus, further studies are required to understand these differences.
Generally speaking, the cost of a single creatinine test is less than a dollar, while that of IL-18 is five times higher. In the course of AKI, biochemical indices need to be monitored and detected many times; given the modest clinical value of IL-18 and its high cost, serum creatinine concentration and change might still be a good indicator rather than IL-18.

Conclusion

In conclusion, this meta-analysis included more than 2,700 patients from 11 studies. The result shows that urine IL-18 level is of diagnostic value for AKI. The diagnostic accuracy for AKI tends to be more effective in pediatric patients and early AKI predictive time. To improve the diagnostic value of urine IL-18, more appropriately designed investigations (e.g. with randomized design and eliminating potential confounders) should be performed.

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Urologie

Kombi-Abonnement

Mit e.Med Urologie erhalten Sie Zugang zu den urologischen CME-Fortbildungen und Premium-Inhalten der urologischen Fachzeitschriften.

Literatur
1.
Zurück zum Zitat Fuchs L, Lee J, Novack V et al (2013) Severity of acute kidney injury and two-year outcomes in critically ill patients. Chest 144(3):866–875CrossRefPubMed Fuchs L, Lee J, Novack V et al (2013) Severity of acute kidney injury and two-year outcomes in critically ill patients. Chest 144(3):866–875CrossRefPubMed
2.
Zurück zum Zitat Herget-Rosenthal S, Marggraf G, Hüsing J et al (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66(3):1115–1122CrossRefPubMed Herget-Rosenthal S, Marggraf G, Hüsing J et al (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66(3):1115–1122CrossRefPubMed
3.
Zurück zum Zitat Dinarello CA (2007) Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephron 27(1):98–114CrossRef Dinarello CA (2007) Interleukin-18 and the pathogenesis of inflammatory diseases. Semin Nephron 27(1):98–114CrossRef
4.
Zurück zum Zitat Award AS, El-sharif AA (2011) Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. Int Immunopharmacol 11(8):992–996CrossRef Award AS, El-sharif AA (2011) Curcumin immune-mediated and anti-apoptotic mechanisms protect against renal ischemia/reperfusion and distant organ induced injuries. Int Immunopharmacol 11(8):992–996CrossRef
5.
Zurück zum Zitat Luo Q, Zhou F, Dong H et al (2013) Implication of combined urinary biomarkers in early diagnosis of acute kidney injury following percutaneous coronary intervention. Clin Nephrol 79(2):85–92CrossRefPubMed Luo Q, Zhou F, Dong H et al (2013) Implication of combined urinary biomarkers in early diagnosis of acute kidney injury following percutaneous coronary intervention. Clin Nephrol 79(2):85–92CrossRefPubMed
6.
Zurück zum Zitat Zheng J, Xiao Y, Yao Y et al (2013) Comparison of urinary biomarkers for early detection of acute kidney injury after cardiopulmonary bypass surgery in infants and young children. Pediatr Cardiol 34(4):880–886CrossRefPubMed Zheng J, Xiao Y, Yao Y et al (2013) Comparison of urinary biomarkers for early detection of acute kidney injury after cardiopulmonary bypass surgery in infants and young children. Pediatr Cardiol 34(4):880–886CrossRefPubMed
7.
Zurück zum Zitat Sirota JC, Walcher A, Faubel S et al (2013) Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation. BMC Nephrol 14:17CrossRefPubMedCentralPubMed Sirota JC, Walcher A, Faubel S et al (2013) Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation. BMC Nephrol 14:17CrossRefPubMedCentralPubMed
8.
Zurück zum Zitat Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefPubMed Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283(15):2008–2012CrossRefPubMed
9.
Zurück zum Zitat Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536CrossRefPubMed Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536CrossRefPubMed
10.
Zurück zum Zitat Rosman AS, Korsten MA (2007) Application of summary receiver operating characteristics (sROC) analysis to diagnostic clinical testing. Adv Med Sci 52:76–82PubMed Rosman AS, Korsten MA (2007) Application of summary receiver operating characteristics (sROC) analysis to diagnostic clinical testing. Adv Med Sci 52:76–82PubMed
11.
Zurück zum Zitat Li Y, Fu C, Zhou X et al (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27(5):851–860CrossRefPubMedCentralPubMed Li Y, Fu C, Zhou X et al (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27(5):851–860CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Chen TH, Chang CH, Lin CY et al (2012) Acute kidney injury biomarkers for patients in a coronary care unit: a prospective cohort study. PLoS ONE 7(2):e32328CrossRefPubMedCentralPubMed Chen TH, Chang CH, Lin CY et al (2012) Acute kidney injury biomarkers for patients in a coronary care unit: a prospective cohort study. PLoS ONE 7(2):e32328CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Parikh CR, Devarajan P, Zappitelli M et al (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol 22(9):1737–1747CrossRefPubMedCentralPubMed Parikh CR, Devarajan P, Zappitelli M et al (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J Am Soc Nephrol 22(9):1737–1747CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Parikh CR, Coca SG, Thiessen-Philbrook H et al (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol 22(9):1748–1757CrossRefPubMedCentralPubMed Parikh CR, Coca SG, Thiessen-Philbrook H et al (2011) Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J Am Soc Nephrol 22(9):1748–1757CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Endre ZH, Pickering JW, Walker RJ et al (2011) Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int 79(10):1119–1130CrossRefPubMed Endre ZH, Pickering JW, Walker RJ et al (2011) Improved performance of urinary biomarkers of acute kidney injury in the critically ill by stratification for injury duration and baseline renal function. Kidney Int 79(10):1119–1130CrossRefPubMed
16.
Zurück zum Zitat Liangos O, Tighiouart H, Perianayagam MC et al (2009) Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers 14(6):423–431CrossRefPubMedCentralPubMed Liangos O, Tighiouart H, Perianayagam MC et al (2009) Comparative analysis of urinary biomarkers for early detection of acute kidney injury following cardiopulmonary bypass. Biomarkers 14(6):423–431CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Washburn KK, Zappitelli M, Arikan AA et al (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23(2):566–572CrossRefPubMed Washburn KK, Zappitelli M, Arikan AA et al (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23(2):566–572CrossRefPubMed
18.
Zurück zum Zitat Parikh CR, Mishra J, Thiessen-Philbrook H et al (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 70(1):199–203CrossRefPubMed Parikh CR, Mishra J, Thiessen-Philbrook H et al (2006) Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int 70(1):199–203CrossRefPubMed
19.
Zurück zum Zitat Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16(10):3046–3052CrossRefPubMed Parikh CR, Abraham E, Ancukiewicz M, Edelstein CL (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16(10):3046–3052CrossRefPubMed
20.
Zurück zum Zitat Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826CrossRefPubMed Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826CrossRefPubMed
21.
Zurück zum Zitat Zelenina M, Li Y, Glorieux I et al (2006) Urinary aquaporin-2 excretion during early human development. Pediatr Nephrol 21(7):947–952CrossRefPubMed Zelenina M, Li Y, Glorieux I et al (2006) Urinary aquaporin-2 excretion during early human development. Pediatr Nephrol 21(7):947–952CrossRefPubMed
22.
Zurück zum Zitat Nash MA, Edelmann JRCM (1973) The developing kidney. Nephron 11(2–4):71–90CrossRef Nash MA, Edelmann JRCM (1973) The developing kidney. Nephron 11(2–4):71–90CrossRef
23.
Zurück zum Zitat Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40(2):221–226CrossRefPubMed Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40(2):221–226CrossRefPubMed
24.
Zurück zum Zitat Parikh CR, Jani A, Melnikov VY et al (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43(3):405–414CrossRefPubMed Parikh CR, Jani A, Melnikov VY et al (2004) Urinary interleukin-18 is a marker of human acute tubular necrosis. Am J Kidney Dis 43(3):405–414CrossRefPubMed
25.
Zurück zum Zitat Melnikov VY, Faubel S, Siegmund B et al (2002) Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Investig 110(8):1083–1091CrossRefPubMedCentralPubMed Melnikov VY, Faubel S, Siegmund B et al (2002) Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Investig 110(8):1083–1091CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat Tschoeke SK, Oberholzer A, Moldawer LL (2006) Interleukin-18: a novel prognostic cytokine in bacteria-induced sepsis. Crit Care Med 34(4):1225–1233CrossRefPubMed Tschoeke SK, Oberholzer A, Moldawer LL (2006) Interleukin-18: a novel prognostic cytokine in bacteria-induced sepsis. Crit Care Med 34(4):1225–1233CrossRefPubMed
Metadaten
Titel
Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis
verfasst von
Xin Lin
Jing Yuan
Yingting Zhao
Yan Zha
Publikationsdatum
01.02.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Nephrology / Ausgabe 1/2015
Print ISSN: 1121-8428
Elektronische ISSN: 1724-6059
DOI
https://doi.org/10.1007/s40620-014-0113-9

Weitere Artikel der Ausgabe 1/2015

Journal of Nephrology 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Frühzeitige HbA1c-Kontrolle macht sich lebenslang bemerkbar

22.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes von Anfang an intensiv BZ-senkend zu behandeln, wirkt sich positiv auf Komplikationen und Mortalität aus – und das offenbar lebenslang, wie eine weitere Nachfolgeuntersuchung der UKPD-Studie nahelegt.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.