Skip to main content
Erschienen in: Inflammation Research 12/2022

25.10.2022 | Review

Immunosenescence of T cells: a key player in rheumatoid arthritis

verfasst von: Yi Gao, Weiwei Cai, Ying Zhou, Yuhui Li, Jingwen Cheng, Fang Wei

Erschienen in: Inflammation Research | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Introduction

The incidence of rheumatoid arthritis (RA) and its complications are expected to increase with age. Remarkably, RA patients were identified features of accelerated aging, particularly in immunosenescence. As is known, T cells in RA patients readily differentiate into pro-inflammatory phenotypes that maintain chronic and persistent inflammatory changes in joints and many other organ systems. Recent evidence suggests that T cells are most sensitive to aging, and aged CD4+ T cells contribute to inflammaging, which plays a crucial role in accelerating the disease process. In recent years, the molecular mechanisms of T cell immunosenescence were beginning to be understood. Immune aging in RA T cells is associated with thymus insufficiency, metabolic abnormalities, shortened telomere length, and chronic energy stress. Therefore, we summarized the role and mechanism of T cell immunosenescence in RA.

Methods

A computer-based online search was performed using the PubMed database for published articles concerning T cells aging and rheumatoid arthritis.

Results

In this review, we assess the roles of CD4+ T cells in the center of inflammaging especially in RA and emphasize arthritogenic effector functions of senescent T cell; also we discuss the possible molecular mechanisms of senescent T cells and therapeutic targets to intervene T cells immunosenescence for improvement of RA.
Literatur
1.
Zurück zum Zitat Smolen, J.S., et al., Rheumatoid arthritis. Nature Reviews Disease Primers, 2018. 4(1). Smolen, J.S., et al., Rheumatoid arthritis. Nature Reviews Disease Primers, 2018. 4(1).
2.
Zurück zum Zitat Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Curr Opin Immunol. 2017;46:112–20.PubMedPubMedCentralCrossRef Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Curr Opin Immunol. 2017;46:112–20.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA. 2018;320(13):1360–72.PubMedCrossRef Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA. 2018;320(13):1360–72.PubMedCrossRef
5.
Zurück zum Zitat McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. The Lancet. 2017;389(10086):2328–37.CrossRef McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. The Lancet. 2017;389(10086):2328–37.CrossRef
6.
Zurück zum Zitat Dedmon LE. The genetics of rheumatoid arthritis. Rheumatol (Oxford). 2020;59(10):2661–70.CrossRef Dedmon LE. The genetics of rheumatoid arthritis. Rheumatol (Oxford). 2020;59(10):2661–70.CrossRef
7.
Zurück zum Zitat Amariuta T, et al. Advances in genetics toward identifying pathogenic cell states of rheumatoid arthritis. Immunol Rev. 2020;294(1):188–204.PubMedCrossRef Amariuta T, et al. Advances in genetics toward identifying pathogenic cell states of rheumatoid arthritis. Immunol Rev. 2020;294(1):188–204.PubMedCrossRef
11.
12.
Zurück zum Zitat Moro-Garcia MA, et al. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9:339.PubMedPubMedCentralCrossRef Moro-Garcia MA, et al. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol. 2018;9:339.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19(1):10–9.PubMedCrossRef Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19(1):10–9.PubMedCrossRef
14.
Zurück zum Zitat Goh J et al. Targeting the molecular and cellular pillars of human aging with exercise. FEBS J. 2021 Goh J et al. Targeting the molecular and cellular pillars of human aging with exercise. FEBS J. 2021
18.
Zurück zum Zitat Gonzalez-Osuna L, et al. Premature senescence of T-cells favors bone loss during osteolytic diseases a new concern in the osteoimmunology arena. Aging Dis. 2021;12(5):1150–61.PubMedPubMedCentralCrossRef Gonzalez-Osuna L, et al. Premature senescence of T-cells favors bone loss during osteolytic diseases a new concern in the osteoimmunology arena. Aging Dis. 2021;12(5):1150–61.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Sood A, Raji MA. Cognitive impairment in elderly patients with rheumatic disease and the effect of disease-modifying anti-rheumatic drugs. Clin Rheumatol. 2021;40(4):1221–31.PubMedCrossRef Sood A, Raji MA. Cognitive impairment in elderly patients with rheumatic disease and the effect of disease-modifying anti-rheumatic drugs. Clin Rheumatol. 2021;40(4):1221–31.PubMedCrossRef
21.
Zurück zum Zitat Fessler J, Angiari S. The role of T cell senescence in neurological diseases and its regulation by cellular metabolism. Front Immunol. 2021;12: 706434.PubMedPubMedCentralCrossRef Fessler J, Angiari S. The role of T cell senescence in neurological diseases and its regulation by cellular metabolism. Front Immunol. 2021;12: 706434.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Petersen LE, et al. Characterization of senescence biomarkers in rheumatoid arthritis: relevance to disease progression. Clin Rheumatol. 2019;38(10):2909–15.PubMedCrossRef Petersen LE, et al. Characterization of senescence biomarkers in rheumatoid arthritis: relevance to disease progression. Clin Rheumatol. 2019;38(10):2909–15.PubMedCrossRef
27.
Zurück zum Zitat Plunkett FJ, et al. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol. 2007;178(12):7710–9.PubMedCrossRef Plunkett FJ, et al. The loss of telomerase activity in highly differentiated CD8+CD28-CD27- T cells is associated with decreased Akt (Ser473) phosphorylation. J Immunol. 2007;178(12):7710–9.PubMedCrossRef
29.
Zurück zum Zitat Fessler J, et al. Premature senescence of T-cell subsets in axial spondyloarthritis. Ann Rheum Dis. 2016;75(4):748–54.PubMedCrossRef Fessler J, et al. Premature senescence of T-cell subsets in axial spondyloarthritis. Ann Rheum Dis. 2016;75(4):748–54.PubMedCrossRef
30.
Zurück zum Zitat Luque-Campos N, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Front Immunol. 2019;10:798.PubMedPubMedCentralCrossRef Luque-Campos N, et al. Mesenchymal stem cells improve rheumatoid arthritis progression by controlling memory T cell response. Front Immunol. 2019;10:798.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Wang Y, et al. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjogren’s syndrome highlight T cell-initiated autoimmunity. Ann Rheum Dis. 2020;79(2):268–75.PubMedCrossRef Wang Y, et al. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjogren’s syndrome highlight T cell-initiated autoimmunity. Ann Rheum Dis. 2020;79(2):268–75.PubMedCrossRef
35.
37.
Zurück zum Zitat van der Geest KSM, et al. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp Gerontol. 2014;60:190–6.PubMedCrossRef van der Geest KSM, et al. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp Gerontol. 2014;60:190–6.PubMedCrossRef
38.
Zurück zum Zitat Chemin K, Gerstner C, Malmstrom V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front Immunol. 2019;10:353.PubMedPubMedCentralCrossRef Chemin K, Gerstner C, Malmstrom V. Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front Immunol. 2019;10:353.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Ruterbusch M, et al. In vivo CD4(+) T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu Rev Immunol. 2020;38:705–25.PubMedCrossRef Ruterbusch M, et al. In vivo CD4(+) T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu Rev Immunol. 2020;38:705–25.PubMedCrossRef
40.
Zurück zum Zitat Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol. 2013;48(12):1379–86.PubMedCrossRef Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol. 2013;48(12):1379–86.PubMedCrossRef
41.
Zurück zum Zitat Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and treg homeostasis in autoimmunity and tumor immunity. J Autoimmun. 2018;95:77–99.PubMedPubMedCentralCrossRef Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and treg homeostasis in autoimmunity and tumor immunity. J Autoimmun. 2018;95:77–99.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Bharath LP, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32(1):44–55 (e6).PubMedPubMedCentralCrossRef Bharath LP, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020;32(1):44–55 (e6).PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Ouyang X, et al. Potentiation of Th17 cytokines in aging process contributes to the development of colitis. Cell Immunol. 2011;266(2):208–17.PubMedCrossRef Ouyang X, et al. Potentiation of Th17 cytokines in aging process contributes to the development of colitis. Cell Immunol. 2011;266(2):208–17.PubMedCrossRef
45.
Zurück zum Zitat Lucas C, Perdriger A, Ame P. Definition of B cell helper T cells in rheumatoid arthritis and their behavior during treatment. Semin Arthritis Rheum. 2020;50(5):867–72.PubMedCrossRef Lucas C, Perdriger A, Ame P. Definition of B cell helper T cells in rheumatoid arthritis and their behavior during treatment. Semin Arthritis Rheum. 2020;50(5):867–72.PubMedCrossRef
46.
47.
Zurück zum Zitat Kerola AM, et al. Incidence, sociodemographic factors and treatment penetration of rheumatoid arthritis and psoriatic arthritis in Norway. Semin Arthritis Rheum. 2021;51(5):1081–8.PubMedCrossRef Kerola AM, et al. Incidence, sociodemographic factors and treatment penetration of rheumatoid arthritis and psoriatic arthritis in Norway. Semin Arthritis Rheum. 2021;51(5):1081–8.PubMedCrossRef
49.
Zurück zum Zitat Lenaers G, et al. Dysfunctional T cell mitochondria lead to premature aging. Trends Mol Med. 2020;26(9):799–800.PubMedCrossRef Lenaers G, et al. Dysfunctional T cell mitochondria lead to premature aging. Trends Mol Med. 2020;26(9):799–800.PubMedCrossRef
50.
Zurück zum Zitat Shao L, Goronzy JJ, Weyand CM. DNA-dependent protein kinase catalytic subunit mediates T-cell loss in rheumatoid arthritis. EMBO Mol Med. 2010;2(10):415–27.PubMedPubMedCentralCrossRef Shao L, Goronzy JJ, Weyand CM. DNA-dependent protein kinase catalytic subunit mediates T-cell loss in rheumatoid arthritis. EMBO Mol Med. 2010;2(10):415–27.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Costenbader KH, et al. Immunosenescence and rheumatoid arthritis: does telomere shortening predict impending disease? Autoimmun Rev. 2011;10(9):569–73.PubMedPubMedCentralCrossRef Costenbader KH, et al. Immunosenescence and rheumatoid arthritis: does telomere shortening predict impending disease? Autoimmun Rev. 2011;10(9):569–73.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Chavez MD, Tse HM. Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front Immunol. 2021;12: 703972.PubMedPubMedCentralCrossRef Chavez MD, Tse HM. Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front Immunol. 2021;12: 703972.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Papadaki HA, et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha-mediated effect. Blood. 2002;99(5):1610–9.PubMedCrossRef Papadaki HA, et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor alpha-mediated effect. Blood. 2002;99(5):1610–9.PubMedCrossRef
55.
Zurück zum Zitat Goronzy JJ, Weyand CM. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther. 2003;5(5):225–34.PubMedPubMedCentralCrossRef Goronzy JJ, Weyand CM. Aging, autoimmunity and arthritis: T-cell senescence and contraction of T-cell repertoire diversity—catalysts of autoimmunity and chronic inflammation. Arthritis Res Ther. 2003;5(5):225–34.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother. 2020;130: 110542.PubMedCrossRef Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother. 2020;130: 110542.PubMedCrossRef
57.
Zurück zum Zitat Patlán M, et al. Relative increase of Th17 phenotype in senescent CD4+CD28null T cells from peripheral blood of patients with rheumatoid arthritis. Clin Exp Rheumatol. 2021;39(4):925–6.PubMedCrossRef Patlán M, et al. Relative increase of Th17 phenotype in senescent CD4+CD28null T cells from peripheral blood of patients with rheumatoid arthritis. Clin Exp Rheumatol. 2021;39(4):925–6.PubMedCrossRef
60.
Zurück zum Zitat ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat Rev Immunol. 2021;21(4):257–67.PubMedCrossRef ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell’s journey. Nat Rev Immunol. 2021;21(4):257–67.PubMedCrossRef
61.
Zurück zum Zitat Darrigues J, van Meerwijk JPM, Romagnoli P. Age-dependent changes in regulatory t lymphocyte development and function: a mini-review. Gerontology. 2018;64(1):28–35.PubMedCrossRef Darrigues J, van Meerwijk JPM, Romagnoli P. Age-dependent changes in regulatory t lymphocyte development and function: a mini-review. Gerontology. 2018;64(1):28–35.PubMedCrossRef
63.
Zurück zum Zitat Wang T, et al. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 2015;74(6):1293–301.PubMedCrossRef Wang T, et al. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis. 2015;74(6):1293–301.PubMedCrossRef
65.
Zurück zum Zitat Robbins PD, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021;61:779–803.PubMedCrossRef Robbins PD, et al. Senolytic drugs: reducing senescent cell viability to extend health span. Annu Rev Pharmacol Toxicol. 2021;61:779–803.PubMedCrossRef
66.
Zurück zum Zitat Novais EJ, et al. Long-term treatment with senolytic drugs dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021;12(1):5213.PubMedPubMedCentralCrossRef Novais EJ, et al. Long-term treatment with senolytic drugs dasatinib and quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun. 2021;12(1):5213.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Mannick JB, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268):268ra179.PubMedCrossRef Mannick JB, et al. mTOR inhibition improves immune function in the elderly. Sci Transl Med. 2014;6(268):268ra179.PubMedCrossRef
70.
Zurück zum Zitat Boothby IC, Cohen JN, Rosenblum MD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci Immunol. 2020;5(47):eaaz9631.PubMedPubMedCentralCrossRef Boothby IC, Cohen JN, Rosenblum MD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair. Sci Immunol. 2020;5(47):eaaz9631.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765–74.PubMedCrossRef Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016;17(7):765–74.PubMedCrossRef
72.
73.
74.
Zurück zum Zitat Pandya JM, et al. Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. J Leukoc Biol. 2016;100(4):823–33.PubMedCrossRef Pandya JM, et al. Circulating T helper and T regulatory subsets in untreated early rheumatoid arthritis and healthy control subjects. J Leukoc Biol. 2016;100(4):823–33.PubMedCrossRef
75.
77.
Zurück zum Zitat Salminen A. Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl). 2021;99(1):1–20.CrossRef Salminen A. Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl). 2021;99(1):1–20.CrossRef
78.
Zurück zum Zitat Chen Z, et al. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol. 2019;15(1):9–17.PubMedCrossRef Chen Z, et al. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol. 2019;15(1):9–17.PubMedCrossRef
79.
Zurück zum Zitat Fessler J, et al. Novel senescent regulatory T-cell subset with impaired suppressive function in rheumatoid arthritis. Front Immunol. 2017;8:300.PubMedPubMedCentralCrossRef Fessler J, et al. Novel senescent regulatory T-cell subset with impaired suppressive function in rheumatoid arthritis. Front Immunol. 2017;8:300.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Meyer A, et al. Kinase activity profiling reveals contribution of G-protein signaling modulator 2 deficiency to impaired regulatory T cell migration in rheumatoid arthritis. J Autoimmun. 2021;124:102726.PubMedCrossRef Meyer A, et al. Kinase activity profiling reveals contribution of G-protein signaling modulator 2 deficiency to impaired regulatory T cell migration in rheumatoid arthritis. J Autoimmun. 2021;124:102726.PubMedCrossRef
81.
Zurück zum Zitat Corrado M, Pearce EL. Targeting memory T cell metabolism to improve immunity. J Clin Invest, 2022;132(1):e148546. Corrado M, Pearce EL. Targeting memory T cell metabolism to improve immunity. J Clin Invest, 2022;132(1):e148546.
82.
Zurück zum Zitat Fardellone P, et al. Bone Loss, Osteoporosis, and Fractures in Patients with Rheumatoid Arthritis: A Review. J Clin Med. 2020;9(10):3361.PubMedCentralCrossRef Fardellone P, et al. Bone Loss, Osteoporosis, and Fractures in Patients with Rheumatoid Arthritis: A Review. J Clin Med. 2020;9(10):3361.PubMedCentralCrossRef
83.
Zurück zum Zitat Komatsu N et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Invest, 2021;131(6):e143060. Komatsu N et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Invest, 2021;131(6):e143060.
85.
Zurück zum Zitat Cho SK, et al. Effectiveness of bazedoxifene in preventing glucocorticoid-induced bone loss in rheumatoid arthritis patients. Arthritis Res Ther. 2021;23(1):176.PubMedPubMedCentralCrossRef Cho SK, et al. Effectiveness of bazedoxifene in preventing glucocorticoid-induced bone loss in rheumatoid arthritis patients. Arthritis Res Ther. 2021;23(1):176.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Wang G, et al. Cycloastragenol attenuates osteoclastogenesis and bone loss by targeting RANKL-induced Nrf2/Keap1/ARE, NF-kappaB, calcium, and NFATc1 pathways. Front Pharmacol. 2021;12: 810322.PubMedCrossRef Wang G, et al. Cycloastragenol attenuates osteoclastogenesis and bone loss by targeting RANKL-induced Nrf2/Keap1/ARE, NF-kappaB, calcium, and NFATc1 pathways. Front Pharmacol. 2021;12: 810322.PubMedCrossRef
88.
Zurück zum Zitat Zerbini CAF, et al. Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int. 2017;28(2):429–46.PubMedCrossRef Zerbini CAF, et al. Biologic therapies and bone loss in rheumatoid arthritis. Osteoporos Int. 2017;28(2):429–46.PubMedCrossRef
90.
Zurück zum Zitat Finzel S, et al. Comparison of the effects of tocilizumab monotherapy and adalimumab in combination with methotrexate on bone erosion repair in rheumatoid arthritis. Ann Rheum Dis. 2019;78(9):1186–91.PubMedCrossRef Finzel S, et al. Comparison of the effects of tocilizumab monotherapy and adalimumab in combination with methotrexate on bone erosion repair in rheumatoid arthritis. Ann Rheum Dis. 2019;78(9):1186–91.PubMedCrossRef
91.
Zurück zum Zitat Adam S, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med. 2020;12(530):eaay4447.PubMedCrossRef Adam S, et al. JAK inhibition increases bone mass in steady-state conditions and ameliorates pathological bone loss by stimulating osteoblast function. Sci Transl Med. 2020;12(530):eaay4447.PubMedCrossRef
92.
Zurück zum Zitat Shim JH, Stavre Z, Gravallese EM. Bone loss in rheumatoid arthritis: basic mechanisms and clinical implications. Calcif Tissue Int. 2018;102(5):533–46.PubMedCrossRef Shim JH, Stavre Z, Gravallese EM. Bone loss in rheumatoid arthritis: basic mechanisms and clinical implications. Calcif Tissue Int. 2018;102(5):533–46.PubMedCrossRef
93.
Zurück zum Zitat Cici D, et al. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci. 2019;20(22):5552.PubMedCentralCrossRef Cici D, et al. Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci. 2019;20(22):5552.PubMedCentralCrossRef
94.
Zurück zum Zitat Szentpetery A, et al. Effects of targeted therapies on the bone in arthritides. Autoimmun Rev. 2017;16(3):313–20.PubMedCrossRef Szentpetery A, et al. Effects of targeted therapies on the bone in arthritides. Autoimmun Rev. 2017;16(3):313–20.PubMedCrossRef
95.
Zurück zum Zitat Najm A, et al. MicroRNA-17-5p reduces inflammation and bone erosions in mice with collagen-induced arthritis and directly targets the JAK/STAT pathway in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 2020;72(12):2030–9.PubMedCrossRef Najm A, et al. MicroRNA-17-5p reduces inflammation and bone erosions in mice with collagen-induced arthritis and directly targets the JAK/STAT pathway in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 2020;72(12):2030–9.PubMedCrossRef
96.
Zurück zum Zitat Bhadricha H, et al. Increased frequency of Th17 cells and IL-17 levels are associated with low bone mineral density in postmenopausal women. Sci Rep. 2021;11(1):16155.PubMedPubMedCentralCrossRef Bhadricha H, et al. Increased frequency of Th17 cells and IL-17 levels are associated with low bone mineral density in postmenopausal women. Sci Rep. 2021;11(1):16155.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–17.PubMedCrossRef Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 2017;66(6):801–17.PubMedCrossRef
98.
Zurück zum Zitat Li Y, Goronzy JJ, Weyand CM. DNA damage, metabolism and aging in pro-inflammatory T cells: rheumatoid arthritis as a model system. Exp Gerontol. 2018;105:118–27.PubMedCrossRef Li Y, Goronzy JJ, Weyand CM. DNA damage, metabolism and aging in pro-inflammatory T cells: rheumatoid arthritis as a model system. Exp Gerontol. 2018;105:118–27.PubMedCrossRef
99.
100.
Zurück zum Zitat Ummarino D. Rheumatoid arthritis: DNA repair links T-cell ageing to inflammation. Nat Rev Rheumatol. 2016;12(12):694.PubMedCrossRef Ummarino D. Rheumatoid arthritis: DNA repair links T-cell ageing to inflammation. Nat Rev Rheumatol. 2016;12(12):694.PubMedCrossRef
101.
Zurück zum Zitat Li Y, et al. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity. 2016;45(4):903–16.PubMedPubMedCentralCrossRef Li Y, et al. Deficient activity of the nuclease MRE11A induces T cell aging and promotes arthritogenic effector functions in patients with rheumatoid arthritis. Immunity. 2016;45(4):903–16.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Wiley CD, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23(2):303–14.PubMedCrossRef Wiley CD, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23(2):303–14.PubMedCrossRef
103.
Zurück zum Zitat Li Y, et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 2019;30(3):477–92 (e6).PubMedPubMedCentralCrossRef Li Y, et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 2019;30(3):477–92 (e6).PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Certo M, et al. Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol. 2021;178(10):2041–59.PubMedCrossRef Certo M, et al. Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol. 2021;178(10):2041–59.PubMedCrossRef
105.
106.
Zurück zum Zitat Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann N Y Acad Sci. 2015;1346(1):33–44.PubMedPubMedCentralCrossRef Perl A. mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging. Ann N Y Acad Sci. 2015;1346(1):33–44.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Yang H, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy. 2020;16(2):271–88.PubMedCrossRef Yang H, et al. MTORC1 coordinates the autophagy and apoptosis signaling in articular chondrocytes in osteoarthritic temporomandibular joint. Autophagy. 2020;16(2):271–88.PubMedCrossRef
108.
Zurück zum Zitat Nnah IC, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15(1):151–64.PubMedCrossRef Nnah IC, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15(1):151–64.PubMedCrossRef
109.
Zurück zum Zitat Reznick RM, et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007;5(2):151–6.PubMedPubMedCentralCrossRef Reznick RM, et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007;5(2):151–6.PubMedPubMedCentralCrossRef
110.
112.
Zurück zum Zitat Xiong Y, et al. hPMSCs-derived exosomal miRNA-21 protects against aging-related oxidative damage of CD4(+) T cells by targeting the PTEN/PI3K-Nrf2 axis. Front Immunol. 2021;12: 780897.PubMedPubMedCentralCrossRef Xiong Y, et al. hPMSCs-derived exosomal miRNA-21 protects against aging-related oxidative damage of CD4(+) T cells by targeting the PTEN/PI3K-Nrf2 axis. Front Immunol. 2021;12: 780897.PubMedPubMedCentralCrossRef
113.
115.
Zurück zum Zitat Gamal RM, et al. Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol. 2018;37(12):3239–46.PubMedCrossRef Gamal RM, et al. Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol. 2018;37(12):3239–46.PubMedCrossRef
116.
Zurück zum Zitat Cao D, et al. Disruption of telomere Integrity and DNA repair machineries by KML001 induces T cell senescence, apoptosis, and cellular dysfunctions. Front Immunol. 2019;10:1152.PubMedPubMedCentralCrossRef Cao D, et al. Disruption of telomere Integrity and DNA repair machineries by KML001 induces T cell senescence, apoptosis, and cellular dysfunctions. Front Immunol. 2019;10:1152.PubMedPubMedCentralCrossRef
117.
118.
Zurück zum Zitat Wang Y, et al. Cytoplasmic DNA sensing by KU complex in aged CD4(+) T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity. 2021;54(4):632–47 (e9).PubMedCrossRef Wang Y, et al. Cytoplasmic DNA sensing by KU complex in aged CD4(+) T cell potentiates T cell activation and aging-related autoimmune inflammation. Immunity. 2021;54(4):632–47 (e9).PubMedCrossRef
120.
Zurück zum Zitat Cai WW, et al. Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm Res. 2020;69(11):1087–101.PubMedCrossRef Cai WW, et al. Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm Res. 2020;69(11):1087–101.PubMedCrossRef
121.
Zurück zum Zitat Franco F, et al. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2020;2(10):1001–12.PubMedCrossRef Franco F, et al. Metabolic and epigenetic regulation of T-cell exhaustion. Nat Metab. 2020;2(10):1001–12.PubMedCrossRef
124.
Zurück zum Zitat McGuire PJ. Mitochondrial dysfunction and the aging immune system. Biol (Basel). 2019;8(2):26. McGuire PJ. Mitochondrial dysfunction and the aging immune system. Biol (Basel). 2019;8(2):26.
125.
Zurück zum Zitat Pucino V, et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 2019;30(6):1055–74 (e8).PubMedPubMedCentralCrossRef Pucino V, et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4(+) T cell metabolic rewiring. Cell Metab. 2019;30(6):1055–74 (e8).PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Yang Z, et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med. 2016;8(331):331ra38.PubMedPubMedCentralCrossRef Yang Z, et al. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med. 2016;8(331):331ra38.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Davalli P, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127.PubMedPubMedCentralCrossRef Davalli P, et al. ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases. Oxid Med Cell Longev. 2016;2016:3565127.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Lavin MF, et al. ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor. Biomolecules. 2015;5(4):2877–902.PubMedPubMedCentralCrossRef Lavin MF, et al. ATM-dependent phosphorylation of all three members of the MRN complex: from sensor to adaptor. Biomolecules. 2015;5(4):2877–902.PubMedPubMedCentralCrossRef
129.
130.
Zurück zum Zitat Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev. 2019;291(1):134–53.PubMedPubMedCentralCrossRef Myers DR, Wheeler B, Roose JP. mTOR and other effector kinase signals that impact T cell function and activity. Immunol Rev. 2019;291(1):134–53.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.PubMedCrossRef Lin SC, Hardie DG. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 2018;27(2):299–313.PubMedCrossRef
133.
134.
Zurück zum Zitat Kundu-Raychaudhuri S, Abria C, Raychaudhuri SP. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine. 2016;79:45–51.PubMedCrossRef Kundu-Raychaudhuri S, Abria C, Raychaudhuri SP. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine. 2016;79:45–51.PubMedCrossRef
135.
136.
138.
Zurück zum Zitat Callender LA, et al. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19(2): e13067.PubMedCrossRef Callender LA, et al. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2020;19(2): e13067.PubMedCrossRef
140.
141.
Zurück zum Zitat Jiang Y, et al. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission-fusion dynamics and mitophagy. Redox Biol. 2022;52: 102304.PubMedPubMedCentralCrossRef Jiang Y, et al. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission-fusion dynamics and mitophagy. Redox Biol. 2022;52: 102304.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Fakouri NB, et al. Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS J. 2019;286(6):1058–73.PubMedCrossRef Fakouri NB, et al. Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS J. 2019;286(6):1058–73.PubMedCrossRef
144.
Zurück zum Zitat Raz Y, et al. Activation-induced autophagy Is preserved in CD4+ T-cells in familial longevity. J Gerontol A Biol Sci Med Sci. 2017;72(9):1201–6.PubMedPubMedCentralCrossRef Raz Y, et al. Activation-induced autophagy Is preserved in CD4+ T-cells in familial longevity. J Gerontol A Biol Sci Med Sci. 2017;72(9):1201–6.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Bektas A, et al. Age-associated changes in human CD4(+) T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging (Albany NY). 2019;11(21):9234–63.CrossRef Bektas A, et al. Age-associated changes in human CD4(+) T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging (Albany NY). 2019;11(21):9234–63.CrossRef
146.
Zurück zum Zitat Vaena S, et al. Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor T cell response. Cell Rep. 2021;35(5): 109076.PubMedPubMedCentralCrossRef Vaena S, et al. Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor T cell response. Cell Rep. 2021;35(5): 109076.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Wyman B, Perl A. Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases. Curr Opin Rheumatol. 2020;32(2):184–91.PubMedPubMedCentralCrossRef Wyman B, Perl A. Metabolic pathways mediate pathogenesis and offer targets for treatment in rheumatic diseases. Curr Opin Rheumatol. 2020;32(2):184–91.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Tan S, et al. Platelet factor 4 enhances CD4(+) T effector memory cell responses via Akt-PGC1alpha-TFAM signaling-mediated mitochondrial biogenesis. J Thromb Haemost. 2020;18(10):2685–700.PubMedCrossRef Tan S, et al. Platelet factor 4 enhances CD4(+) T effector memory cell responses via Akt-PGC1alpha-TFAM signaling-mediated mitochondrial biogenesis. J Thromb Haemost. 2020;18(10):2685–700.PubMedCrossRef
150.
Zurück zum Zitat Willinger T, Flavell RA. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc Natl Acad Sci USA. 2012;109(22):8670–5.PubMedPubMedCentralCrossRef Willinger T, Flavell RA. Canonical autophagy dependent on the class III phosphoinositide-3 kinase Vps34 is required for naive T-cell homeostasis. Proc Natl Acad Sci USA. 2012;109(22):8670–5.PubMedPubMedCentralCrossRef
151.
152.
Zurück zum Zitat Wu D, Prives C. Relevance of the p53-MDM2 axis to aging. Cell Death Differ. 2018;25(1):169–79.PubMedCrossRef Wu D, Prives C. Relevance of the p53-MDM2 axis to aging. Cell Death Differ. 2018;25(1):169–79.PubMedCrossRef
153.
Zurück zum Zitat Blandino G, et al. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Semin Cell Dev Biol. 2020;98:105–17.PubMedCrossRef Blandino G, et al. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Semin Cell Dev Biol. 2020;98:105–17.PubMedCrossRef
154.
Zurück zum Zitat Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15(1):1–19.PubMedCrossRef Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15(1):1–19.PubMedCrossRef
155.
Zurück zum Zitat Kabekkodu SP, et al. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc. 2018;93(4):1955–86.PubMedCrossRef Kabekkodu SP, et al. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc. 2018;93(4):1955–86.PubMedCrossRef
156.
Zurück zum Zitat Lu Q, et al. miRNAs as therapeutic targets in inflammatory disease. Trends Pharmacol Sci. 2019;40(11):853–65.PubMedCrossRef Lu Q, et al. miRNAs as therapeutic targets in inflammatory disease. Trends Pharmacol Sci. 2019;40(11):853–65.PubMedCrossRef
157.
Zurück zum Zitat Kroesen BJ, et al. Immuno-miRs: critical regulators of T-cell development, function and ageing. Immunology. 2015;144(1):1–10.PubMedCrossRef Kroesen BJ, et al. Immuno-miRs: critical regulators of T-cell development, function and ageing. Immunology. 2015;144(1):1–10.PubMedCrossRef
159.
Zurück zum Zitat Gustafson CE, et al. Functional pathways regulated by microRNA networks in CD8 T-cell aging. Aging Cell. 2019;18(1): e12879.PubMedCrossRef Gustafson CE, et al. Functional pathways regulated by microRNA networks in CD8 T-cell aging. Aging Cell. 2019;18(1): e12879.PubMedCrossRef
161.
162.
Zurück zum Zitat Yang P, et al. MicroRNA let-7g-5p alleviates murine collagen-induced arthritis by inhibiting Th17 cell differentiation. Biochem Pharmacol. 2020;174: 113822.PubMedCrossRef Yang P, et al. MicroRNA let-7g-5p alleviates murine collagen-induced arthritis by inhibiting Th17 cell differentiation. Biochem Pharmacol. 2020;174: 113822.PubMedCrossRef
163.
Zurück zum Zitat Jin S, et al. Protectin DX restores Treg/Th17 cell balance in rheumatoid arthritis by inhibiting NLRP3 inflammasome via miR-20a. Cell Death Dis. 2021;12(3):280.PubMedPubMedCentralCrossRef Jin S, et al. Protectin DX restores Treg/Th17 cell balance in rheumatoid arthritis by inhibiting NLRP3 inflammasome via miR-20a. Cell Death Dis. 2021;12(3):280.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Cheng NL, et al. MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age. Aging Cell. 2015;14(2):200–8.PubMedPubMedCentralCrossRef Cheng NL, et al. MicroRNA-125b modulates inflammatory chemokine CCL4 expression in immune cells and its reduction causes CCL4 increase with age. Aging Cell. 2015;14(2):200–8.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Evangelatos G, et al. MicroRNAs in rheumatoid arthritis: from pathogenesis to clinical impact. Autoimmun Rev. 2019;18(11): 102391.PubMedCrossRef Evangelatos G, et al. MicroRNAs in rheumatoid arthritis: from pathogenesis to clinical impact. Autoimmun Rev. 2019;18(11): 102391.PubMedCrossRef
166.
167.
Zurück zum Zitat Guo D, et al. Study of miRNA interactome in active rheumatoid arthritis patients reveals key pathogenic roles of dysbiosis in the infection-immune network. Rheumatol (Oxford). 2021;60(3):1512–22.CrossRef Guo D, et al. Study of miRNA interactome in active rheumatoid arthritis patients reveals key pathogenic roles of dysbiosis in the infection-immune network. Rheumatol (Oxford). 2021;60(3):1512–22.CrossRef
168.
Zurück zum Zitat Hanlon P, et al. Frailty in rheumatoidrmdopen arthritis and its relationship with disease activity, hospitalisation and mortality: a longitudinal analysis of the scottish early rheumatoid arthritis cohort and UK Biobank. RMD Open. 2022;8(1):e002111.PubMedPubMedCentralCrossRef Hanlon P, et al. Frailty in rheumatoidrmdopen arthritis and its relationship with disease activity, hospitalisation and mortality: a longitudinal analysis of the scottish early rheumatoid arthritis cohort and UK Biobank. RMD Open. 2022;8(1):e002111.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Salaffi F et al. Inflammaging and frailty in immune-mediated rheumatic diseases: how to address and score the issue. Clin Rev Allergy Immunol. 2022;8(1):e002111. Salaffi F et al. Inflammaging and frailty in immune-mediated rheumatic diseases: how to address and score the issue. Clin Rev Allergy Immunol. 2022;8(1):e002111.
Metadaten
Titel
Immunosenescence of T cells: a key player in rheumatoid arthritis
verfasst von
Yi Gao
Weiwei Cai
Ying Zhou
Yuhui Li
Jingwen Cheng
Fang Wei
Publikationsdatum
25.10.2022
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 12/2022
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-022-01649-0

Weitere Artikel der Ausgabe 12/2022

Inflammation Research 12/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.