Skip to main content
Erschienen in: Diabetologia 2/2007

01.02.2007 | Article

Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells

verfasst von: E. Vieira, A. Salehi, E. Gylfe

Erschienen in: Diabetologia | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

The mechanisms by which glucose regulates glucagon release are poorly understood. The present study aimed to clarify the direct effects of glucose on the glucagon-releasing alpha cells and those effects mediated by paracrine islet factors.

Materials and methods

Glucagon, insulin and somatostatin release were measured from incubated mouse pancreatic islets and the cytoplasmic Ca2+ concentration ([Ca2+]i) recorded in isolated mouse alpha cells.

Results

Glucose inhibited glucagon release with maximal effect at 7 mmol/l. Since this concentration corresponded to threshold stimulation of insulin secretion, it is unlikely that inhibition of glucagon secretion is mediated by beta cell factors. Although somatostatin secretion data seemed consistent with a role of this hormone in glucose-inhibited glucagon release, a somatostatin receptor type 2 antagonist stimulated glucagon release without diminishing the inhibitory effect of glucose. In islets exposed to tolbutamide plus 8 mmol/l K+, glucose inhibited glucagon secretion without stimulating the release of insulin and somatostatin, indicating a direct inhibitory effect on the alpha cells that was independent of ATP-sensitive K+ channels. Glucose lowered [Ca2+]i of individual alpha cells independently of somatostatin and beta cell factors (insulin, Zn2+ and γ-aminobutyric acid). Glucose suppression of glucagon release was prevented by inhibitors of the sarco(endo)plasmic reticulum Ca2+-ATPase, which abolished the [Ca2+]i-lowering effect of glucose on isolated alpha cells.

Conclusions/interpretation

Beta cell factors or somatostatin do not seem to mediate glucose inhibition of glucagon secretion. We instead propose that glucose has a direct inhibitory effect on mouse alpha cells by suppressing a depolarising Ca2+ store-operated current.
Literatur
1.
Zurück zum Zitat Gerich JE, Charles A, Grodsky GM (1976) Regulation of pancreatic insulin and glucagon secretion. Annu Rev Physiol 38:353–388PubMedCrossRef Gerich JE, Charles A, Grodsky GM (1976) Regulation of pancreatic insulin and glucagon secretion. Annu Rev Physiol 38:353–388PubMedCrossRef
2.
Zurück zum Zitat Buchanan KD, McCarroll AM (1972) Abnormalities of glucagon metabolism in untreated diabetes mellitus. Lancet 300:1394–1395CrossRef Buchanan KD, McCarroll AM (1972) Abnormalities of glucagon metabolism in untreated diabetes mellitus. Lancet 300:1394–1395CrossRef
3.
Zurück zum Zitat Ohneda A, Watanabe K, Horigome K, Sakai T, Kai Y, Oikawa S (1978) Abnormal response of pancreatic glucagon to glycemic changes in diabetes mellitus. J Clin Endocrinol Metab 46:504–510PubMed Ohneda A, Watanabe K, Horigome K, Sakai T, Kai Y, Oikawa S (1978) Abnormal response of pancreatic glucagon to glycemic changes in diabetes mellitus. J Clin Endocrinol Metab 46:504–510PubMed
4.
Zurück zum Zitat Mitrakou A, Kelley D, Veneman T et al (1990) Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes 39:1381–1390PubMedCrossRef Mitrakou A, Kelley D, Veneman T et al (1990) Contribution of abnormal muscle and liver glucose metabolism to postprandial hyperglycemia in NIDDM. Diabetes 39:1381–1390PubMedCrossRef
5.
Zurück zum Zitat Salehi A, Vieira E, Gylfe E (2006) Paradoxical stimulation of glucagon secretion by high glucose concentrations. Diabetes 55:2318–2323PubMedCrossRef Salehi A, Vieira E, Gylfe E (2006) Paradoxical stimulation of glucagon secretion by high glucose concentrations. Diabetes 55:2318–2323PubMedCrossRef
6.
7.
Zurück zum Zitat Cryer PE (2002) Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes. Diabetologia 45:937–948PubMedCrossRef Cryer PE (2002) Hypoglycaemia: the limiting factor in the glycaemic management of Type I and Type II diabetes. Diabetologia 45:937–948PubMedCrossRef
8.
Zurück zum Zitat Pipeleers DG, Schuit FC, Van Schravendijk CFH, Van de Winkel M (1985) Interplay of nutrients and hormones in the regulation of glucagon release. Endocrinology 117:817–823PubMedCrossRef Pipeleers DG, Schuit FC, Van Schravendijk CFH, Van de Winkel M (1985) Interplay of nutrients and hormones in the regulation of glucagon release. Endocrinology 117:817–823PubMedCrossRef
9.
Zurück zum Zitat Unger RH (1985) Glucagon physiology and pathophysiology in the light of new advances. Diabetologia 28:574–578PubMedCrossRef Unger RH (1985) Glucagon physiology and pathophysiology in the light of new advances. Diabetologia 28:574–578PubMedCrossRef
10.
Zurück zum Zitat Johansson H, Gylfe E, Hellman B (1987) The actions of arginine and glucose on glucagon secretion are mediated by opposite effects on cytoplasmic Ca2+. Biochem Biophys Res Commun 147:309–314PubMedCrossRef Johansson H, Gylfe E, Hellman B (1987) The actions of arginine and glucose on glucagon secretion are mediated by opposite effects on cytoplasmic Ca2+. Biochem Biophys Res Commun 147:309–314PubMedCrossRef
11.
Zurück zum Zitat Bode HP, Weber S, Fehmann HC, Göke B (1999) A nutrient-regulated cytosolic calcium oscillator in endocrine pancreatic glucagon-secreting cells. Pflügers Arch 437:324–334PubMedCrossRef Bode HP, Weber S, Fehmann HC, Göke B (1999) A nutrient-regulated cytosolic calcium oscillator in endocrine pancreatic glucagon-secreting cells. Pflügers Arch 437:324–334PubMedCrossRef
12.
Zurück zum Zitat Barg S, Galvanovskis J, Göpel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting α-cells. Diabetes 49:1500–1510PubMedCrossRef Barg S, Galvanovskis J, Göpel SO, Rorsman P, Eliasson L (2000) Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting α-cells. Diabetes 49:1500–1510PubMedCrossRef
13.
Zurück zum Zitat Göpel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P (2000) Regulation of glucagon secretion in mouse α-cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol (Lond) 528:509–520CrossRef Göpel SO, Kanno T, Barg S, Weng XG, Gromada J, Rorsman P (2000) Regulation of glucagon secretion in mouse α-cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J Physiol (Lond) 528:509–520CrossRef
14.
Zurück zum Zitat Hjortoe GM, Hagel GM, Terry BR, Thastrup O, Arkhammar PO (2004) Functional identification and monitoring of individual α and β cells in cultured mouse islets of Langerhans. Acta Diabetol 41:185–193PubMedCrossRef Hjortoe GM, Hagel GM, Terry BR, Thastrup O, Arkhammar PO (2004) Functional identification and monitoring of individual α and β cells in cultured mouse islets of Langerhans. Acta Diabetol 41:185–193PubMedCrossRef
15.
Zurück zum Zitat Liu YJ, Vieira E, Gylfe E (2004) A store-operated mechanism determines the activity of the electrically excitable glucagon-secreting pancreatic α-cell. Cell Calcium 35:357–365PubMedCrossRef Liu YJ, Vieira E, Gylfe E (2004) A store-operated mechanism determines the activity of the electrically excitable glucagon-secreting pancreatic α-cell. Cell Calcium 35:357–365PubMedCrossRef
16.
Zurück zum Zitat Gromada J, Ma X, Hoy M et al (2004) ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1−/− mouse α-cells. Diabetes 53(Suppl 3):S181–S189PubMedCrossRef Gromada J, Ma X, Hoy M et al (2004) ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1−/− mouse α-cells. Diabetes 53(Suppl 3):S181–S189PubMedCrossRef
17.
Zurück zum Zitat Ravier MA, Rutter GA (2005) Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic α-cells. Diabetes 54:1789–1797PubMedCrossRef Ravier MA, Rutter GA (2005) Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic α-cells. Diabetes 54:1789–1797PubMedCrossRef
18.
Zurück zum Zitat Starke A, Imamura T, Unger RH (1987) Relationship of glucagon suppression by insulin and somatostatin to the ambient glucose concentration. J Clin Invest 79:20–24PubMed Starke A, Imamura T, Unger RH (1987) Relationship of glucagon suppression by insulin and somatostatin to the ambient glucose concentration. J Clin Invest 79:20–24PubMed
19.
Zurück zum Zitat Östenson CG (1979) Regulation of glucagon release: effects of insulin on the pancreatic A2-cell of the guinea pig. Diabetologia 17:325–330PubMedCrossRef Östenson CG (1979) Regulation of glucagon release: effects of insulin on the pancreatic A2-cell of the guinea pig. Diabetologia 17:325–330PubMedCrossRef
20.
Zurück zum Zitat Berts A, Ball A, Gylfe E, Hellman B (1996) Suppression of Ca2+ oscillations in glucagon-producing α2-cells by insulin/glucagon and amino acids. Biochim Biophys Acta 1310:212–216PubMedCrossRef Berts A, Ball A, Gylfe E, Hellman B (1996) Suppression of Ca2+ oscillations in glucagon-producing α2-cells by insulin/glucagon and amino acids. Biochim Biophys Acta 1310:212–216PubMedCrossRef
21.
Zurück zum Zitat Diao J, Asghar Z, Chan CB, Wheeler MB (2005) Glucose-regulated glucagon secretion requires insulin receptor expression in pancreatic α-cells. J Biol Chem 280:33487–33496PubMedCrossRef Diao J, Asghar Z, Chan CB, Wheeler MB (2005) Glucose-regulated glucagon secretion requires insulin receptor expression in pancreatic α-cells. J Biol Chem 280:33487–33496PubMedCrossRef
22.
Zurück zum Zitat Xu E, Kumar M, Zhang Y et al (2006) Intra-islet insulin suppresses glucagon release via GABA–GABAA receptor system. Cell Metabolism 3:47–58PubMedCrossRef Xu E, Kumar M, Zhang Y et al (2006) Intra-islet insulin suppresses glucagon release via GABA–GABAA receptor system. Cell Metabolism 3:47–58PubMedCrossRef
23.
Zurück zum Zitat Rorsman P, Berggren PO, Bokvist K et al (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341:233–236PubMedCrossRef Rorsman P, Berggren PO, Bokvist K et al (1989) Glucose-inhibition of glucagon secretion involves activation of GABAA-receptor chloride channels. Nature 341:233–236PubMedCrossRef
24.
Zurück zum Zitat Wendt A, Birnir B, Buschard K et al (2004) Glucose inhibition of glucagon secretion from rat α-cells is mediated by GABA released from neighboring β-cells. Diabetes 53:1038–1045PubMedCrossRef Wendt A, Birnir B, Buschard K et al (2004) Glucose inhibition of glucagon secretion from rat α-cells is mediated by GABA released from neighboring β-cells. Diabetes 53:1038–1045PubMedCrossRef
25.
Zurück zum Zitat Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB (2003) Islet β-cell secretion determines glucagon release from neighbouring α-cells. Nat Cell Biol 5:330–335PubMedCrossRef Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB (2003) Islet β-cell secretion determines glucagon release from neighbouring α-cells. Nat Cell Biol 5:330–335PubMedCrossRef
26.
Zurück zum Zitat Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB (2005) β-cell secretory products activate α-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808–1815PubMedCrossRef Franklin I, Gromada J, Gjinovci A, Theander S, Wollheim CB (2005) β-cell secretory products activate α-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes 54:1808–1815PubMedCrossRef
27.
Zurück zum Zitat Cejvan K, Coy DH, Efendic S (2003) Intra-islet somatostatin regulates glucagon release via type 2 somatostatin receptors in rats. Diabetes 52:1176–1181PubMedCrossRef Cejvan K, Coy DH, Efendic S (2003) Intra-islet somatostatin regulates glucagon release via type 2 somatostatin receptors in rats. Diabetes 52:1176–1181PubMedCrossRef
28.
Zurück zum Zitat Miki T, Liss B, Minami K et al (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512PubMed Miki T, Liss B, Minami K et al (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512PubMed
29.
Zurück zum Zitat Liu YJ, Hellman B, Gylfe E (1999) Ca2+ signaling in mouse pancreatic polypeptide cells. Endocrinology 140:5524–5529PubMedCrossRef Liu YJ, Hellman B, Gylfe E (1999) Ca2+ signaling in mouse pancreatic polypeptide cells. Endocrinology 140:5524–5529PubMedCrossRef
30.
Zurück zum Zitat Bergsten P, Grapengiesser E, Gylfe E, Tengholm A, Hellman B (1994) Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem 269:8749–8753PubMed Bergsten P, Grapengiesser E, Gylfe E, Tengholm A, Hellman B (1994) Synchronous oscillations of cytoplasmic Ca2+ and insulin release in glucose-stimulated pancreatic islets. J Biol Chem 269:8749–8753PubMed
31.
Zurück zum Zitat Göpel S, Zhang Q, Eliasson L et al (2004) Capacitance measurements of exocytosis in mouse pancreatic α-, β- and δ-cells within intact islets of Langerhans. J Physiol 556:711–726PubMedCrossRef Göpel S, Zhang Q, Eliasson L et al (2004) Capacitance measurements of exocytosis in mouse pancreatic α-, β- and δ-cells within intact islets of Langerhans. J Physiol 556:711–726PubMedCrossRef
32.
Zurück zum Zitat Johansson H, Gylfe E, Hellman B (1989) Cyclic AMP raises cytoplasmic calcium in pancreatic α2-cells by mobilizing calcium incorporated in response to glucose. Cell Calcium 10:205–211PubMedCrossRef Johansson H, Gylfe E, Hellman B (1989) Cyclic AMP raises cytoplasmic calcium in pancreatic α2-cells by mobilizing calcium incorporated in response to glucose. Cell Calcium 10:205–211PubMedCrossRef
33.
Zurück zum Zitat Berts A, Ball A, Dryselius S, Gylfe E, Hellman B (1996) Glucose stimulation of somatostatin-producing islet cells involves oscillatory Ca2+ signalling. Endocrinology 137:693–697PubMedCrossRef Berts A, Ball A, Dryselius S, Gylfe E, Hellman B (1996) Glucose stimulation of somatostatin-producing islet cells involves oscillatory Ca2+ signalling. Endocrinology 137:693–697PubMedCrossRef
34.
Zurück zum Zitat Panagiotidis G, Salehi AA, Westermark P, Lundquist I (1992) Homologous islet amyloid polypeptide: effects on plasma levels of glucagon, insulin and glucose in the mouse. Diabetes Res Clin Pract 18:167–171PubMedCrossRef Panagiotidis G, Salehi AA, Westermark P, Lundquist I (1992) Homologous islet amyloid polypeptide: effects on plasma levels of glucagon, insulin and glucose in the mouse. Diabetes Res Clin Pract 18:167–171PubMedCrossRef
35.
Zurück zum Zitat Etzrodt H, Rosenthal J, Schroder KE, Pfeiffer EF (1983) Radioimmunoassay of somatostatin in human plasma. Clin Chim Acta 133:241–251PubMedCrossRef Etzrodt H, Rosenthal J, Schroder KE, Pfeiffer EF (1983) Radioimmunoassay of somatostatin in human plasma. Clin Chim Acta 133:241–251PubMedCrossRef
36.
Zurück zum Zitat Braun M, Wendt A, Birnir B et al (2004) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic β-cells. J Gen Physiol 123:191–204PubMedCrossRef Braun M, Wendt A, Birnir B et al (2004) Regulated exocytosis of GABA-containing synaptic-like microvesicles in pancreatic β-cells. J Gen Physiol 123:191–204PubMedCrossRef
37.
Zurück zum Zitat Ashcroft FM, Rorsman P (1990) ATP-sensitive K+ channels: a link between B-cell metabolism and insulin secretion. Biochem Soc Trans 18:109–111PubMed Ashcroft FM, Rorsman P (1990) ATP-sensitive K+ channels: a link between B-cell metabolism and insulin secretion. Biochem Soc Trans 18:109–111PubMed
38.
Zurück zum Zitat Göpel SO, Kanno T, Barg S, Rorsman P (2000) Patch-clamp characterisation of somatostatin-secreting δ-cells in intact mouse pancreatic islets. J Physiol (Lond) 528:497–507CrossRef Göpel SO, Kanno T, Barg S, Rorsman P (2000) Patch-clamp characterisation of somatostatin-secreting δ-cells in intact mouse pancreatic islets. J Physiol (Lond) 528:497–507CrossRef
39.
Zurück zum Zitat Rorsman P, Hellman B (1988) Voltage-activated currents in guinea pig pancreatic α2 cells. Evidence for Ca2+-dependent action potentials. J Gen Physiol 91:223–242PubMedCrossRef Rorsman P, Hellman B (1988) Voltage-activated currents in guinea pig pancreatic α2 cells. Evidence for Ca2+-dependent action potentials. J Gen Physiol 91:223–242PubMedCrossRef
40.
Zurück zum Zitat Gromada J, Bokvist K, Ding WG et al (1997) Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol 110:217–228PubMedCrossRef Gromada J, Bokvist K, Ding WG et al (1997) Adrenaline stimulates glucagon secretion in pancreatic A-cells by increasing the Ca2+ current and the number of granules close to the L-type Ca2+ channels. J Gen Physiol 110:217–228PubMedCrossRef
41.
Zurück zum Zitat Gerich JE, Charles A, Grodsky GM (1974) Characterization of the effects of arginine and glucose on glucagon and insulin release from the perfused rat pancreas. J Clin Invest 54:833–841PubMedCrossRef Gerich JE, Charles A, Grodsky GM (1974) Characterization of the effects of arginine and glucose on glucagon and insulin release from the perfused rat pancreas. J Clin Invest 54:833–841PubMedCrossRef
43.
Zurück zum Zitat Bokvist K, Olsen HL, Høy M et al (1999) Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflügers Arch 438:428–436PubMedCrossRef Bokvist K, Olsen HL, Høy M et al (1999) Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflügers Arch 438:428–436PubMedCrossRef
44.
Zurück zum Zitat Quesada I, Nadal A, Soria B (1999) Different effects of tolbutamide and diazoxide in α-, β- and δ-cells within intact islets of Langerhans. Diabetes 48:2390–2397PubMedCrossRef Quesada I, Nadal A, Soria B (1999) Different effects of tolbutamide and diazoxide in α-, β- and δ-cells within intact islets of Langerhans. Diabetes 48:2390–2397PubMedCrossRef
45.
Zurück zum Zitat Høy M, Olsen HL, Bokvist K et al (2000) Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells. J Physiol (Lond) 527:109–120CrossRef Høy M, Olsen HL, Bokvist K et al (2000) Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic A-cells. J Physiol (Lond) 527:109–120CrossRef
46.
Zurück zum Zitat Olsen HL, Theander S, Bokvist K, Buschard K, Wollheim CB, Gromada J (2005) Glucose stimulates glucagon release in single rat α-cells by mechanisms that mirror the stimulus-secretion coupling in β-cells. Endocrinology 146:4861–4870PubMedCrossRef Olsen HL, Theander S, Bokvist K, Buschard K, Wollheim CB, Gromada J (2005) Glucose stimulates glucagon release in single rat α-cells by mechanisms that mirror the stimulus-secretion coupling in β-cells. Endocrinology 146:4861–4870PubMedCrossRef
47.
Zurück zum Zitat Shiota C, Rocheleau JV, Shiota M, Piston DW, Magnuson MA (2005) Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor. Am J Physiol Endocrinol Metab 289:E570–E577PubMedCrossRef Shiota C, Rocheleau JV, Shiota M, Piston DW, Magnuson MA (2005) Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor. Am J Physiol Endocrinol Metab 289:E570–E577PubMedCrossRef
48.
Zurück zum Zitat Muñoz A, Hu M, Hussain K, Bryan J, Aguilar-Bryan L, Rajan AS (2005) Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Endocrinology 146:5514–5521PubMedCrossRef Muñoz A, Hu M, Hussain K, Bryan J, Aguilar-Bryan L, Rajan AS (2005) Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Endocrinology 146:5514–5521PubMedCrossRef
Metadaten
Titel
Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells
verfasst von
E. Vieira
A. Salehi
E. Gylfe
Publikationsdatum
01.02.2007
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 2/2007
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0511-1

Weitere Artikel der Ausgabe 2/2007

Diabetologia 2/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.