Skip to main content
Erschienen in: Diabetologia 2/2012

01.02.2012 | Article

Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice

verfasst von: Y. Takeda, Y. Fujita, J. Honjo, T. Yanagimachi, H. Sakagami, Y. Takiyama, Y. Makino, A. Abiko, T. J. Kieffer, M. Haneda

Erschienen in: Diabetologia | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Incretins stimulate insulin secretion in a glucose-dependent manner but also promote pancreatic beta cell protection. Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new glucose-lowering treatment that blocks incretin degradation by DPP-4. We assessed whether DPP-4 inhibition suppresses the progression to hyperglycaemia in a low-dose streptozotocin (STZ)-induced diabetic mouse model, and then investigated how DPP-4 inhibition affects islet function and morphology.

Methods

The DPP-4 inhibitor, des-fluoro-sitagliptin (SITA), was administered to mice during and after STZ injections, and in some mice also before STZ.

Results

In control mice, STZ resulted in hyperglycaemia associated with impaired insulin secretion and excess glucagon secretion. In SITA-treated STZ mice, these metabolic abnormalities were improved, particularly when SITA administration was initiated before STZ injections. We observed beta cell loss and dramatic alpha cell expansion associated with decreased insulin content and increased glucagon content after STZ administration. In SITA-treated mice, islet architecture and insulin content were preserved, and no significant increase in glucagon content was observed. After STZ exposure, beta cell apoptosis increased before hyperglycaemia, and SITA treatment reduced the number of apoptotic beta cells. Interestingly, alpha cell proliferation was observed in non-treated mice after STZ injection, but the proliferation was not observed in SITA-treated mice.

Conclusions/interpretation

Our results suggest that the ability of DPP-4 inhibition to suppress the progression to STZ-induced hyperglycaemia involves both alleviation of beta cell death and alpha cell proliferation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef
2.
Zurück zum Zitat Mathis D, Vence L, Benoist C (2001) β-cell death during progression to diabetes. Nature 414:792–798PubMedCrossRef Mathis D, Vence L, Benoist C (2001) β-cell death during progression to diabetes. Nature 414:792–798PubMedCrossRef
3.
Zurück zum Zitat Tripathy D, Carlsson M, Almgren P et al (2000) Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes 49:975–980PubMedCrossRef Tripathy D, Carlsson M, Almgren P et al (2000) Insulin secretion and insulin sensitivity in relation to glucose tolerance: lessons from the Botnia Study. Diabetes 49:975–980PubMedCrossRef
4.
Zurück zum Zitat Fukushima M, Usami M, Ikeda M et al (2004) Insulin secretion and insulin sensitivity at different stages of glucose tolerance: a cross-sectional study of Japanese type 2 diabetes. Metabolism 53:831–835PubMedCrossRef Fukushima M, Usami M, Ikeda M et al (2004) Insulin secretion and insulin sensitivity at different stages of glucose tolerance: a cross-sectional study of Japanese type 2 diabetes. Metabolism 53:831–835PubMedCrossRef
6.
Zurück zum Zitat Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157PubMedCrossRef Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157PubMedCrossRef
7.
Zurück zum Zitat Pospisilik JA, Martin J, Doty T et al (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates β-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52:741–750PubMedCrossRef Pospisilik JA, Martin J, Doty T et al (2003) Dipeptidyl peptidase IV inhibitor treatment stimulates β-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52:741–750PubMedCrossRef
8.
Zurück zum Zitat Mu J, Woods J, Zhou YP et al (2006) Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes 55:1695–1704PubMedCrossRef Mu J, Woods J, Zhou YP et al (2006) Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic β-cell mass and function in a rodent model of type 2 diabetes. Diabetes 55:1695–1704PubMedCrossRef
9.
Zurück zum Zitat Kim SJ, Nian C, Doudet DJ, Mclntosh CH (2008) Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes 57:1331–1339PubMedCrossRef Kim SJ, Nian C, Doudet DJ, Mclntosh CH (2008) Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes 57:1331–1339PubMedCrossRef
10.
Zurück zum Zitat Sudre B, Broqua P, White RB et al (2002) Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 51:1461–1469PubMedCrossRef Sudre B, Broqua P, White RB et al (2002) Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. Diabetes 51:1461–1469PubMedCrossRef
11.
Zurück zum Zitat Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546 Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:536–546
12.
Zurück zum Zitat Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226PubMedCrossRef Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51:216–226PubMedCrossRef
13.
Zurück zum Zitat Breyer MD, Böttinger E, Brosius FC 3rd et al (2005) Mouse models of diabetic nephropathy. J Am Soc Nephrol 16:27–45PubMedCrossRef Breyer MD, Böttinger E, Brosius FC 3rd et al (2005) Mouse models of diabetic nephropathy. J Am Soc Nephrol 16:27–45PubMedCrossRef
14.
Zurück zum Zitat Fujita Y, Wideman RD, Asadi A et al (2010) Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet α-cells and promotes insulin secretion. Gastroenterology 138:1966–1975PubMedCrossRef Fujita Y, Wideman RD, Asadi A et al (2010) Glucose-dependent insulinotropic polypeptide is expressed in pancreatic islet α-cells and promotes insulin secretion. Gastroenterology 138:1966–1975PubMedCrossRef
15.
Zurück zum Zitat Riedel MJ, Lee CW, Kieffer TJ (2008) Engineered glucagon-like peptide-1-producing hepatocytes lower plasma glucose levels in mice. Am J Physiol Endocrinol Metab 296:E936–E944CrossRef Riedel MJ, Lee CW, Kieffer TJ (2008) Engineered glucagon-like peptide-1-producing hepatocytes lower plasma glucose levels in mice. Am J Physiol Endocrinol Metab 296:E936–E944CrossRef
16.
Zurück zum Zitat Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM (1970) Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 49:837–848PubMedCrossRef Unger RH, Aguilar-Parada E, Müller WA, Eisentraut AM (1970) Studies of pancreatic alpha cell function in normal and diabetic subjects. J Clin Invest 49:837–848PubMedCrossRef
17.
Zurück zum Zitat Unger RH (1976) The Banting Memorial Lecture 1975. Diabetes and the alpha cell. Diabetes 25:136–151PubMed Unger RH (1976) The Banting Memorial Lecture 1975. Diabetes and the alpha cell. Diabetes 25:136–151PubMed
18.
Zurück zum Zitat Unger RH (1985) Glucagon physiology and pathophysiology in the light of new advances. Diabetologia 28:574–578PubMedCrossRef Unger RH (1985) Glucagon physiology and pathophysiology in the light of new advances. Diabetologia 28:574–578PubMedCrossRef
19.
20.
Zurück zum Zitat Baron AD, Schaeffer L, Shragg P, Kolterman OG (1987) Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type 2 diabetics. Diabetes 36:274–283PubMedCrossRef Baron AD, Schaeffer L, Shragg P, Kolterman OG (1987) Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type 2 diabetics. Diabetes 36:274–283PubMedCrossRef
21.
Zurück zum Zitat Basu A, Shah P, Nielsen M, Basu R, Rizza RA (2004) Effects of type 2 diabetes on the regulation of hepatic glucose metabolism. J Investig Med 52:366–374PubMed Basu A, Shah P, Nielsen M, Basu R, Rizza RA (2004) Effects of type 2 diabetes on the regulation of hepatic glucose metabolism. J Investig Med 52:366–374PubMed
22.
Zurück zum Zitat Gastaldelli A, Baldi S, Pettiti M et al (2000) Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49:1367–1373PubMedCrossRef Gastaldelli A, Baldi S, Pettiti M et al (2000) Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49:1367–1373PubMedCrossRef
23.
Zurück zum Zitat Ali S, Drucker DJ (2009) Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 296:E415–E421PubMedCrossRef Ali S, Drucker DJ (2009) Benefits and limitations of reducing glucagon action for the treatment of type 2 diabetes. Am J Physiol Endocrinol Metab 296:E415–E421PubMedCrossRef
24.
Zurück zum Zitat Dunning BE, Foley JE, Ahrén B (2005) Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 48:1700–1713PubMedCrossRef Dunning BE, Foley JE, Ahrén B (2005) Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 48:1700–1713PubMedCrossRef
25.
Zurück zum Zitat Waget A, Cabou C, Masseboeuf M et al (2011) Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152:3018–3029PubMedCrossRef Waget A, Cabou C, Masseboeuf M et al (2011) Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology 152:3018–3029PubMedCrossRef
26.
Zurück zum Zitat Trumper A, Trumper K, Horsch D (2002) Mechanisms of mitogenic and anti-apoptotic signaling by glucose dependent insulinotropic polypeptide in β(INS-1)-cells. J Endocrinol 174:233–246PubMedCrossRef Trumper A, Trumper K, Horsch D (2002) Mechanisms of mitogenic and anti-apoptotic signaling by glucose dependent insulinotropic polypeptide in β(INS-1)-cells. J Endocrinol 174:233–246PubMedCrossRef
27.
Zurück zum Zitat Hui H, Nourparvar A, Zhao X, Perfetti R (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase dependent pathway. Endocrinology 144:1444–1455PubMedCrossRef Hui H, Nourparvar A, Zhao X, Perfetti R (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase dependent pathway. Endocrinology 144:1444–1455PubMedCrossRef
28.
Zurück zum Zitat Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ (2003) Glucagon-like peptide-1 receptor signaling modulates β-cell apoptosis. J Biol Chem 278:471–478PubMedCrossRef Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ (2003) Glucagon-like peptide-1 receptor signaling modulates β-cell apoptosis. J Biol Chem 278:471–478PubMedCrossRef
29.
Zurück zum Zitat Ehses JA, Casilla VR, Doty T et al (2003) Glucose-dependent insulinotropic polypeptide promotes β-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase. Endocrinology 144:4433–4445PubMedCrossRef Ehses JA, Casilla VR, Doty T et al (2003) Glucose-dependent insulinotropic polypeptide promotes β-(INS-1) cell survival via cyclic adenosine monophosphate-mediated caspase-3 inhibition and regulation of p38 mitogen-activated protein kinase. Endocrinology 144:4433–4445PubMedCrossRef
30.
Zurück zum Zitat Kwon G, Pappan KL, Marshall CA, Schaffer JE, McDaniel ML (2004) Cyclic AMP dose-dependently prevents palmitate-induced apoptosis by both PKA and cAMP-GEF-dependent pathways in β-cells. J Biol Chem 279:8938–8945PubMedCrossRef Kwon G, Pappan KL, Marshall CA, Schaffer JE, McDaniel ML (2004) Cyclic AMP dose-dependently prevents palmitate-induced apoptosis by both PKA and cAMP-GEF-dependent pathways in β-cells. J Biol Chem 279:8938–8945PubMedCrossRef
31.
Zurück zum Zitat Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M (2004) Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47:806–815PubMedCrossRef Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M (2004) Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia 47:806–815PubMedCrossRef
32.
Zurück zum Zitat Ferdaoussi M, Abdelli S, Yang JY et al (2008) Exendin-4 protects β-cells from interleukin-1β-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway. Diabetes 57:1205–1215PubMedCrossRef Ferdaoussi M, Abdelli S, Yang JY et al (2008) Exendin-4 protects β-cells from interleukin-1β-induced apoptosis by interfering with the c-Jun NH2-terminal kinase pathway. Diabetes 57:1205–1215PubMedCrossRef
33.
Zurück zum Zitat Cornu M, Yang JY, Jaccard E, Poussin C, Widmann C, Thorens B (2009) Glucagon-like peptide-1 protects β-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop. Diabetes 58:1816–1825PubMedCrossRef Cornu M, Yang JY, Jaccard E, Poussin C, Widmann C, Thorens B (2009) Glucagon-like peptide-1 protects β-cells against apoptosis by increasing the activity of an IGF-2/IGF-1 receptor autocrine loop. Diabetes 58:1816–1825PubMedCrossRef
34.
Zurück zum Zitat Cornu M, Modi H, Kawamori D, Kulkani RN, Joffraud M, Thorens B (2010) Glucagon-like peptide-1 increases β-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem 285:10538–10545PubMedCrossRef Cornu M, Modi H, Kawamori D, Kulkani RN, Joffraud M, Thorens B (2010) Glucagon-like peptide-1 increases β-cell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. J Biol Chem 285:10538–10545PubMedCrossRef
35.
Zurück zum Zitat Widenmaier SB, Sampaio AV, Underhill TM, McIntosh CH (2009) Noncanonical activation of Akt/protein kinase B in β-cells by the incretin hormone glucose-dependent insulinotropic polypeptide. J Biol Chem 284:10764–10773PubMedCrossRef Widenmaier SB, Sampaio AV, Underhill TM, McIntosh CH (2009) Noncanonical activation of Akt/protein kinase B in β-cells by the incretin hormone glucose-dependent insulinotropic polypeptide. J Biol Chem 284:10764–10773PubMedCrossRef
36.
Zurück zum Zitat Kim SJ, Winter K, Nian C, Tsuneoka M, Koda Y, McIntosh CH (2005) Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic β-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 280:22297–22307PubMedCrossRef Kim SJ, Winter K, Nian C, Tsuneoka M, Koda Y, McIntosh CH (2005) Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic β-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J Biol Chem 280:22297–22307PubMedCrossRef
37.
Zurück zum Zitat Rahier J, Goebbels RM, Henquin JC (1983) Cellular composition of the human diabetic pancreas. Diabetologia 24:366–371PubMedCrossRef Rahier J, Goebbels RM, Henquin JC (1983) Cellular composition of the human diabetic pancreas. Diabetologia 24:366–371PubMedCrossRef
38.
Zurück zum Zitat Clark A, Wells CA, Buley ID et al (1988) Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159PubMed Clark A, Wells CA, Buley ID et al (1988) Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 9:151–159PubMed
39.
Zurück zum Zitat Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type 2 diabetic patients. Diabetologia 45:85–96PubMedCrossRef Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type 2 diabetic patients. Diabetologia 45:85–96PubMedCrossRef
40.
Zurück zum Zitat Yoon KH, Ko SH, Cho JH et al (2003) Selevtive β-cell loss and α-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308PubMedCrossRef Yoon KH, Ko SH, Cho JH et al (2003) Selevtive β-cell loss and α-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308PubMedCrossRef
41.
Zurück zum Zitat Iki K, Pour PM (2007) Distribution of pancreatic endocrine cells including IAPP-expressing cells in non-diabetic and type 2 diabetic cases. J Histochem Cytochem 55:111–118PubMedCrossRef Iki K, Pour PM (2007) Distribution of pancreatic endocrine cells including IAPP-expressing cells in non-diabetic and type 2 diabetic cases. J Histochem Cytochem 55:111–118PubMedCrossRef
42.
Zurück zum Zitat Hoftiezer V, Carpenter AM (1973) Comparison of streptozotocin and alloxan-induced diabetes in the rat, including volumetric quantitation of the pancreatic islets. Diabetologia 9:178–184PubMedCrossRef Hoftiezer V, Carpenter AM (1973) Comparison of streptozotocin and alloxan-induced diabetes in the rat, including volumetric quantitation of the pancreatic islets. Diabetologia 9:178–184PubMedCrossRef
43.
Zurück zum Zitat Li Z, Karlsson FA, Sandler S (2000) Islet loss and alpha cell expansion in type 1 diabetes induced by multiple low-dose streptozotocin administration in mice. J Endocrinol 165:93–99PubMedCrossRef Li Z, Karlsson FA, Sandler S (2000) Islet loss and alpha cell expansion in type 1 diabetes induced by multiple low-dose streptozotocin administration in mice. J Endocrinol 165:93–99PubMedCrossRef
44.
Zurück zum Zitat Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic α-cell mass expansion. Proc Natl Acad Sci USA 105:13163–13168PubMedCrossRef Ellingsgaard H, Ehses JA, Hammar EB et al (2008) Interleukin-6 regulates pancreatic α-cell mass expansion. Proc Natl Acad Sci USA 105:13163–13168PubMedCrossRef
45.
Zurück zum Zitat Gelling RW, Du XQ, Dichmann DS et al (2003) Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 100:1438–1443PubMedCrossRef Gelling RW, Du XQ, Dichmann DS et al (2003) Lower blood glucose, hyperglucagonemia, and pancreatic α cell hyperplasia in glucagon receptor knockout mice. Proc Natl Acad Sci USA 100:1438–1443PubMedCrossRef
46.
Zurück zum Zitat Hansen AM, Bödvarsdottir TB, Nordestgaard DN et al (2011) Upregulation of alpha cell glucagon-like peptide 1 (GLP-1) in Psammomys obesus—an adaptive response to hyperglycaemia? Diabetologia 54:1379–1387PubMedCrossRef Hansen AM, Bödvarsdottir TB, Nordestgaard DN et al (2011) Upregulation of alpha cell glucagon-like peptide 1 (GLP-1) in Psammomys obesus—an adaptive response to hyperglycaemia? Diabetologia 54:1379–1387PubMedCrossRef
47.
Zurück zum Zitat Kawamori D, Kurpad AJ, Hu J et al (2009) Insulin signaling in α-cells modulates glucagon secretion in vivo. Cell Metab 9:350–361PubMedCrossRef Kawamori D, Kurpad AJ, Hu J et al (2009) Insulin signaling in α-cells modulates glucagon secretion in vivo. Cell Metab 9:350–361PubMedCrossRef
48.
Zurück zum Zitat Thorel F, Nepote V, Avril I et al (2010) Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464:1149–1154PubMedCrossRef Thorel F, Nepote V, Avril I et al (2010) Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464:1149–1154PubMedCrossRef
49.
Zurück zum Zitat Prasadan K, Daume E, Preuett B et al (2002) Glucagon is required for early insulin-positive differentiation in the developing mouse pancreas. Diabetes 51:3229–3236PubMedCrossRef Prasadan K, Daume E, Preuett B et al (2002) Glucagon is required for early insulin-positive differentiation in the developing mouse pancreas. Diabetes 51:3229–3236PubMedCrossRef
Metadaten
Titel
Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice
verfasst von
Y. Takeda
Y. Fujita
J. Honjo
T. Yanagimachi
H. Sakagami
Y. Takiyama
Y. Makino
A. Abiko
T. J. Kieffer
M. Haneda
Publikationsdatum
01.02.2012
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 2/2012
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2365-4

Weitere Artikel der Ausgabe 2/2012

Diabetologia 2/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.