Skip to main content
Erschienen in: Diabetologia 1/2014

01.01.2014 | Review

A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications

verfasst von: G. P. Fadini

Erschienen in: Diabetologia | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Traditionally, the development of diabetic complications has been attributed to the biochemical pathways driving hyperglycaemic cell damage, while reparatory mechanisms have been long overlooked. A more comprehensive view of the balance between damage and repair suggests that an impaired regenerative capacity of bone marrow (BM)-derived cells strongly contributes to defective re-endothelisation and neoangiogenesis in diabetes. Although recent technological advances have redefined the biology and function of endothelial progenitor cells (EPCs), interest in BM-derived vasculotropic cells in the setting of diabetes and its complications remains high. Several circulating cell types of haematopoietic and non-haematopoietic origin are affected by diabetes and are potentially involved in the pathobiology of chronic complications. In addition to classical EPCs, these include circulating (pro-)angiogenic cells, polarised monocytes/macrophages (M1 and M2), myeloid calcifying cells and smooth muscle progenitor cells, having disparate roles in vascular biology. In parallel with the study of elusive progenitor cell phenotypes, it has been recognised that diabetes induces a profound remodelling of the BM stem cell niche. The alteration of circulating (progenitor) cells in the BM is now believed to be the link among distant end-organ complications. The field is rapidly evolving and interest is shifting from specific cell populations to the complex network of interactions that orchestrate trafficking of circulating vasculotropic cells.
Literatur
1.
Zurück zum Zitat Avogaro A, de Kreutzenberg SV, Fadini G (2008) Endothelial dysfunction: causes and consequences in patients with diabetes mellitus. Diabetes Res Clin Pract 82(Suppl 2):S94–S101PubMed Avogaro A, de Kreutzenberg SV, Fadini G (2008) Endothelial dysfunction: causes and consequences in patients with diabetes mellitus. Diabetes Res Clin Pract 82(Suppl 2):S94–S101PubMed
2.
Zurück zum Zitat Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625PubMed Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625PubMed
3.
Zurück zum Zitat Schaper NC, Havekes B (2012) Diabetes: impaired damage control. Diabetologia 55:18–20PubMed Schaper NC, Havekes B (2012) Diabetes: impaired damage control. Diabetologia 55:18–20PubMed
4.
Zurück zum Zitat Ii M, Takenaka H, Asai J et al (2006) Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ Res 98:697–704PubMed Ii M, Takenaka H, Asai J et al (2006) Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ Res 98:697–704PubMed
5.
Zurück zum Zitat Rivard A, Silver M, Chen D et al (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 154:355–363PubMed Rivard A, Silver M, Chen D et al (1999) Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 154:355–363PubMed
6.
Zurück zum Zitat Ebrahimian TG, Heymes C, You D et al (2006) NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. Am J Pathol 169:719–728PubMed Ebrahimian TG, Heymes C, You D et al (2006) NADPH oxidase-derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. Am J Pathol 169:719–728PubMed
7.
Zurück zum Zitat Hazarika S, Dokun AO, Li Y et al (2007) Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 101:948–956PubMed Hazarika S, Dokun AO, Li Y et al (2007) Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 101:948–956PubMed
8.
Zurück zum Zitat Sorrentino SA, Bahlmann FH, Besler C et al (2007) Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116:163–173PubMed Sorrentino SA, Bahlmann FH, Besler C et al (2007) Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116:163–173PubMed
9.
Zurück zum Zitat Fadini GP, Agostini C, Avogaro A (2005) Endothelial progenitor cells and vascular biology in diabetes mellitus: current knowledge and future perspectives. Curr Diabetes Rev 1:41–58PubMed Fadini GP, Agostini C, Avogaro A (2005) Endothelial progenitor cells and vascular biology in diabetes mellitus: current knowledge and future perspectives. Curr Diabetes Rev 1:41–58PubMed
10.
Zurück zum Zitat Fadini GP, Sartore S, Agostini C, Avogaro A (2007) Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care 30:1305–1313PubMed Fadini GP, Sartore S, Agostini C, Avogaro A (2007) Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care 30:1305–1313PubMed
11.
Zurück zum Zitat Fadini GP, Agostini C, Avogaro A (2010) Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis 209:10–17PubMed Fadini GP, Agostini C, Avogaro A (2010) Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis 209:10–17PubMed
13.
Zurück zum Zitat Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMed Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMed
14.
Zurück zum Zitat Fadini GP, Avogaro A (2010) Potential manipulation of endothelial progenitor cells in diabetes and its complications. Diabetes Obes Metab 12:570–583PubMed Fadini GP, Avogaro A (2010) Potential manipulation of endothelial progenitor cells in diabetes and its complications. Diabetes Obes Metab 12:570–583PubMed
15.
Zurück zum Zitat Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637PubMed Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637PubMed
16.
Zurück zum Zitat Hagensen MK, Raarup MK, Mortensen MB et al (2012) Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury. Cardiovasc Res 93:223–231PubMed Hagensen MK, Raarup MK, Mortensen MB et al (2012) Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury. Cardiovasc Res 93:223–231PubMed
17.
Zurück zum Zitat Hagensen MK, Shim J, Thim T, Falk E, Bentzon JF (2010) Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis. Circulation 121:898–905PubMed Hagensen MK, Shim J, Thim T, Falk E, Bentzon JF (2010) Circulating endothelial progenitor cells do not contribute to plaque endothelium in murine atherosclerosis. Circulation 121:898–905PubMed
18.
Zurück zum Zitat Wickersheim A, Kerber M, de Miguel LS, Plate KH, Machein MR (2009) Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer 125:1771–1777PubMed Wickersheim A, Kerber M, de Miguel LS, Plate KH, Machein MR (2009) Endothelial progenitor cells do not contribute to tumor endothelium in primary and metastatic tumors. Int J Cancer 125:1771–1777PubMed
19.
Zurück zum Zitat Desai A, Glaser A, Liu D et al (2009) Microarray-based characterization of a colony assay used to investigate endothelial progenitor cells and relevance to endothelial function in humans. Arterioscler Thromb Vasc Biol 29:121–127PubMed Desai A, Glaser A, Liu D et al (2009) Microarray-based characterization of a colony assay used to investigate endothelial progenitor cells and relevance to endothelial function in humans. Arterioscler Thromb Vasc Biol 29:121–127PubMed
20.
Zurück zum Zitat Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169PubMed Rehman J, Li J, Orschell CM, March KL (2003) Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107:1164–1169PubMed
21.
Zurück zum Zitat Urbich C, Aicher A, Heeschen C et al (2005) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39:733–742PubMed Urbich C, Aicher A, Heeschen C et al (2005) Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. J Mol Cell Cardiol 39:733–742PubMed
22.
Zurück zum Zitat Ohtani K, Vlachojannis GJ, Koyanagi M et al (2011) Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circ Res 109:1219–1229PubMed Ohtani K, Vlachojannis GJ, Koyanagi M et al (2011) Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells. Circ Res 109:1219–1229PubMed
23.
Zurück zum Zitat Prokopi M, Pula G, Mayr U et al (2009) Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 114:723–732PubMed Prokopi M, Pula G, Mayr U et al (2009) Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood 114:723–732PubMed
24.
Zurück zum Zitat Yoder MC, Mead LE, Prater D et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809PubMed Yoder MC, Mead LE, Prater D et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809PubMed
25.
Zurück zum Zitat He T, Smith LA, Harrington S et al (2004) Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke 35:2378–2384PubMed He T, Smith LA, Harrington S et al (2004) Transplantation of circulating endothelial progenitor cells restores endothelial function of denuded rabbit carotid arteries. Stroke 35:2378–2384PubMed
26.
Zurück zum Zitat Giannotti G, Doerries C, Mocharla PS et al (2010) Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension 55:1389–1397PubMed Giannotti G, Doerries C, Mocharla PS et al (2010) Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension: relation to endothelial dysfunction. Hypertension 55:1389–1397PubMed
27.
Zurück zum Zitat Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103PubMed Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103PubMed
28.
Zurück zum Zitat Mund JA, Estes ML, Yoder MC, Ingram DA Jr, Case J (2012) Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 32:1045–1053PubMed Mund JA, Estes ML, Yoder MC, Ingram DA Jr, Case J (2012) Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 32:1045–1053PubMed
29.
Zurück zum Zitat Tura O, Skinner EM, Barclay GR et al (2013) Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31:338–348PubMed Tura O, Skinner EM, Barclay GR et al (2013) Late outgrowth endothelial cells resemble mature endothelial cells and are not derived from bone marrow. Stem Cells 31:338–348PubMed
30.
Zurück zum Zitat Thebaud NB, Bareille R, Remy M et al (2010) Human progenitor-derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study. J Tissue Eng Regen Med 4:473–484PubMed Thebaud NB, Bareille R, Remy M et al (2010) Human progenitor-derived endothelial cells vs. venous endothelial cells for vascular tissue engineering: an in vitro study. J Tissue Eng Regen Med 4:473–484PubMed
31.
Zurück zum Zitat Fadini GP, Agostini C, Avogaro A (2007) Endothelial progenitor cells in coronary artery disease. J Am Coll Cardiol 49:1585, author reply 1585-1586PubMed Fadini GP, Agostini C, Avogaro A (2007) Endothelial progenitor cells in coronary artery disease. J Am Coll Cardiol 49:1585, author reply 1585-1586PubMed
32.
Zurück zum Zitat Zeisberger SM, Zoller S, Riegel M et al (2010) Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach. Genes Cells 15:671–687PubMed Zeisberger SM, Zoller S, Riegel M et al (2010) Optimization of the culturing conditions of human umbilical cord blood-derived endothelial colony-forming cells under xeno-free conditions applying a transcriptomic approach. Genes Cells 15:671–687PubMed
33.
Zurück zum Zitat Masuda H, Iwasaki H, Kawamoto A et al (2012) Development of serum-free quality and quantity control culture of colony-forming endothelial progenitor cell for vasculogenesis. Stem Cells Transl Med 1:160–171PubMed Masuda H, Iwasaki H, Kawamoto A et al (2012) Development of serum-free quality and quantity control culture of colony-forming endothelial progenitor cell for vasculogenesis. Stem Cells Transl Med 1:160–171PubMed
34.
Zurück zum Zitat Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115PubMed Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115PubMed
35.
Zurück zum Zitat Albiero M, Menegazzo L, Fadini GP (2010) Circulating smooth muscle progenitors and atherosclerosis. Trends Cardiovasc Med 20:133–140PubMed Albiero M, Menegazzo L, Fadini GP (2010) Circulating smooth muscle progenitors and atherosclerosis. Trends Cardiovasc Med 20:133–140PubMed
36.
Zurück zum Zitat Hagensen MK, Shim J, Falk E, Bentzon JF (2011) Flanking recipient vasculature, not circulating progenitor cells, contributes to endothelium and smooth muscle in murine allograft vasculopathy. Arterioscler Thromb Vasc Biol 31:808–813PubMed Hagensen MK, Shim J, Falk E, Bentzon JF (2011) Flanking recipient vasculature, not circulating progenitor cells, contributes to endothelium and smooth muscle in murine allograft vasculopathy. Arterioscler Thromb Vasc Biol 31:808–813PubMed
37.
Zurück zum Zitat Delewi R, Andriessen A, Tijssen JG et al (2013) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a meta-analysis of randomised controlled clinical trials. Heart 99:225–232PubMed Delewi R, Andriessen A, Tijssen JG et al (2013) Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a meta-analysis of randomised controlled clinical trials. Heart 99:225–232PubMed
38.
Zurück zum Zitat Jeevanantham V, Butler M, Saad A et al (2012) Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126:551–568PubMed Jeevanantham V, Butler M, Saad A et al (2012) Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126:551–568PubMed
39.
Zurück zum Zitat Fisher SA, Doree C, Brunskill SJ, Mathur A, Martin-Rendon E (2013) Bone marrow stem cell treatment for ischemic heart disease in patients with no option of revascularization: a systematic review and meta-analysis. PLoS One 8:e64669PubMed Fisher SA, Doree C, Brunskill SJ, Mathur A, Martin-Rendon E (2013) Bone marrow stem cell treatment for ischemic heart disease in patients with no option of revascularization: a systematic review and meta-analysis. PLoS One 8:e64669PubMed
40.
Zurück zum Zitat Kandala J, Upadhyay GA, Pokushalov E et al (2013) Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am J Cardiol 112:217–225PubMed Kandala J, Upadhyay GA, Pokushalov E et al (2013) Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am J Cardiol 112:217–225PubMed
41.
Zurück zum Zitat Fadini GP (2008) An underlying principle for the study of circulating progenitor cells in diabetes and its complications. Diabetologia 51:1091–1094PubMed Fadini GP (2008) An underlying principle for the study of circulating progenitor cells in diabetes and its complications. Diabetologia 51:1091–1094PubMed
42.
Zurück zum Zitat Fadini GP, Pucci L, Vanacore R et al (2007) Glucose tolerance is negatively associated with circulating progenitor cell levels. Diabetologia 50:2156–2163PubMed Fadini GP, Pucci L, Vanacore R et al (2007) Glucose tolerance is negatively associated with circulating progenitor cell levels. Diabetologia 50:2156–2163PubMed
43.
Zurück zum Zitat Fadini GP, Miorin M, Facco M et al (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457PubMed Fadini GP, Miorin M, Facco M et al (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457PubMed
44.
Zurück zum Zitat Fadini GP, Boscaro E, de Kreutzenberg S et al (2010) Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care 33:1097–1102PubMed Fadini GP, Boscaro E, de Kreutzenberg S et al (2010) Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care 33:1097–1102PubMed
45.
Zurück zum Zitat Fadini GP, Sartore S, Albiero M et al (2006) Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 26:2140–2146PubMed Fadini GP, Sartore S, Albiero M et al (2006) Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 26:2140–2146PubMed
46.
Zurück zum Zitat Fadini GP, Maruyama S, Ozaki T et al (2010) Circulating progenitor cell count for cardiovascular risk stratification: a pooled analysis. PLoS One 5:e11488PubMed Fadini GP, Maruyama S, Ozaki T et al (2010) Circulating progenitor cell count for cardiovascular risk stratification: a pooled analysis. PLoS One 5:e11488PubMed
47.
Zurück zum Zitat Fadini GP, de Kreutzenberg S, Agostini C et al (2009) Low CD34+ cell count and metabolic syndrome synergistically increase the risk of adverse outcomes. Atherosclerosis 207:213–219PubMed Fadini GP, de Kreutzenberg S, Agostini C et al (2009) Low CD34+ cell count and metabolic syndrome synergistically increase the risk of adverse outcomes. Atherosclerosis 207:213–219PubMed
48.
Zurück zum Zitat Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786PubMed Tepper OM, Galiano RD, Capla JM et al (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106:2781–2786PubMed
49.
Zurück zum Zitat Loomans CJ, de Koning EJ, Staal FJ et al (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:195–199PubMed Loomans CJ, de Koning EJ, Staal FJ et al (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:195–199PubMed
50.
Zurück zum Zitat Hortenhuber T, Rami-Mehar B, Satler M et al (2013) Endothelial progenitor cells are related to glycemic control in children with type 1 diabetes over time. Diabetes Care 36:1647–1653PubMed Hortenhuber T, Rami-Mehar B, Satler M et al (2013) Endothelial progenitor cells are related to glycemic control in children with type 1 diabetes over time. Diabetes Care 36:1647–1653PubMed
51.
Zurück zum Zitat Dessapt C, Karalliedde J, Hernandez-Fuentes M et al (2010) Circulating vascular progenitor cells in patients with type 1 diabetes and microalbuminuria. Diabetes Care 33:875–877PubMed Dessapt C, Karalliedde J, Hernandez-Fuentes M et al (2010) Circulating vascular progenitor cells in patients with type 1 diabetes and microalbuminuria. Diabetes Care 33:875–877PubMed
52.
Zurück zum Zitat Brunner S, Schernthaner GH, Satler M et al (2009) Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data. Invest Ophthalmol Vis Sci 50:392–398PubMed Brunner S, Schernthaner GH, Satler M et al (2009) Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data. Invest Ophthalmol Vis Sci 50:392–398PubMed
53.
Zurück zum Zitat Palombo C, Kozakova M, Morizzo C et al (2011) Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovasc Diabetol 10:88PubMed Palombo C, Kozakova M, Morizzo C et al (2011) Circulating endothelial progenitor cells and large artery structure and function in young subjects with uncomplicated type 1 diabetes. Cardiovasc Diabetol 10:88PubMed
54.
Zurück zum Zitat Sibal L, Aldibbiat A, Agarwal SC et al (2009) Circulating endothelial progenitor cells, endothelial function, carotid intima–media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia 52:1464–1473PubMed Sibal L, Aldibbiat A, Agarwal SC et al (2009) Circulating endothelial progenitor cells, endothelial function, carotid intima–media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia 52:1464–1473PubMed
55.
Zurück zum Zitat Egan CG, Lavery R, Caporali F et al (2008) Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia 51:1296–1305PubMed Egan CG, Lavery R, Caporali F et al (2008) Generalised reduction of putative endothelial progenitors and CXCR4-positive peripheral blood cells in type 2 diabetes. Diabetologia 51:1296–1305PubMed
56.
Zurück zum Zitat Fadini GP, Agostini C, Sartore S, Avogaro A (2007) Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis 194:46–54PubMed Fadini GP, Agostini C, Sartore S, Avogaro A (2007) Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis 194:46–54PubMed
57.
Zurück zum Zitat Choi JH, Kim KL, Huh W et al (2004) Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 24:1246–1252PubMed Choi JH, Kim KL, Huh W et al (2004) Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 24:1246–1252PubMed
58.
Zurück zum Zitat Reinhard H, Jacobsen PK, Lajer M et al (2011) Endothelial progenitor cells in long-standing asymptomatic type 1 diabetic patients with or without diabetic nephropathy. Nephron Clin Pract 118:c309–c314PubMed Reinhard H, Jacobsen PK, Lajer M et al (2011) Endothelial progenitor cells in long-standing asymptomatic type 1 diabetic patients with or without diabetic nephropathy. Nephron Clin Pract 118:c309–c314PubMed
59.
Zurück zum Zitat Makino H, Okada S, Nagumo A et al (2009) Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy. Diabet Med 26:171–173PubMed Makino H, Okada S, Nagumo A et al (2009) Decreased circulating CD34+ cells are associated with progression of diabetic nephropathy. Diabet Med 26:171–173PubMed
60.
Zurück zum Zitat Fadini GP, Sartore S, Baesso I et al (2006) Endothelial progenitor cells and the diabetic paradox. Diabetes Care 29:714–716PubMed Fadini GP, Sartore S, Baesso I et al (2006) Endothelial progenitor cells and the diabetic paradox. Diabetes Care 29:714–716PubMed
61.
Zurück zum Zitat Tan K, Lessieur E, Cutler A et al (2010) Impaired function of circulating CD34+ CD45– cells in patients with proliferative diabetic retinopathy. Exp Eye Res 91:229–237PubMed Tan K, Lessieur E, Cutler A et al (2010) Impaired function of circulating CD34+ CD45 cells in patients with proliferative diabetic retinopathy. Exp Eye Res 91:229–237PubMed
62.
Zurück zum Zitat Asnaghi V, Lattanzio R, Mazzolari G et al (2006) Increased clonogenic potential of circulating endothelial progenitor cells in patients with type 1 diabetes and proliferative retinopathy. Diabetologia 49:1109–1111PubMed Asnaghi V, Lattanzio R, Mazzolari G et al (2006) Increased clonogenic potential of circulating endothelial progenitor cells in patients with type 1 diabetes and proliferative retinopathy. Diabetologia 49:1109–1111PubMed
63.
Zurück zum Zitat Brunner S, Hoellerl F, Schmid-Kubista KE et al (2011) Circulating angiopoietic cells and diabetic retinopathy in type 2 diabetes mellitus, with or without macrovascular disease. Invest Ophthalmol Vis Sci 52:4655–4662PubMed Brunner S, Hoellerl F, Schmid-Kubista KE et al (2011) Circulating angiopoietic cells and diabetic retinopathy in type 2 diabetes mellitus, with or without macrovascular disease. Invest Ophthalmol Vis Sci 52:4655–4662PubMed
64.
Zurück zum Zitat Liu X, Li Y, Liu Y et al (2010) Endothelial progenitor cells (EPCs) mobilized and activated by neurotrophic factors may contribute to pathologic neovascularization in diabetic retinopathy. Am J Pathol 176:504–515PubMed Liu X, Li Y, Liu Y et al (2010) Endothelial progenitor cells (EPCs) mobilized and activated by neurotrophic factors may contribute to pathologic neovascularization in diabetic retinopathy. Am J Pathol 176:504–515PubMed
65.
Zurück zum Zitat Butler JM, Guthrie SM, Koc M et al (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115:86–93PubMed Butler JM, Guthrie SM, Koc M et al (2005) SDF-1 is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest 115:86–93PubMed
66.
Zurück zum Zitat Jeong JO, Kim MO, Kim H et al (2009) Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation 119:699–708PubMed Jeong JO, Kim MO, Kim H et al (2009) Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation 119:699–708PubMed
67.
Zurück zum Zitat Naruse K, Hamada Y, Nakashima E et al (2005) Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes 54:1823–1828PubMed Naruse K, Hamada Y, Nakashima E et al (2005) Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes 54:1823–1828PubMed
68.
Zurück zum Zitat Rohde E, Malischnik C, Thaler D et al (2006) Blood monocytes mimic endothelial progenitor cells. Stem Cells 24:357–367PubMed Rohde E, Malischnik C, Thaler D et al (2006) Blood monocytes mimic endothelial progenitor cells. Stem Cells 24:357–367PubMed
69.
Zurück zum Zitat Asakage M, Tsuno NH, Kitayama J et al (2006) Early-outgrowth of endothelial progenitor cells can function as antigen-presenting cells. Cancer Immunol Immunother 55:708–716PubMed Asakage M, Tsuno NH, Kitayama J et al (2006) Early-outgrowth of endothelial progenitor cells can function as antigen-presenting cells. Cancer Immunol Immunother 55:708–716PubMed
70.
Zurück zum Zitat Urbich C, Heeschen C, Aicher A et al (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108:2511–2516PubMed Urbich C, Heeschen C, Aicher A et al (2003) Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108:2511–2516PubMed
71.
Zurück zum Zitat Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795PubMed Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795PubMed
72.
Zurück zum Zitat Mantovani A, Locati M (2013) Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol 33:1478–1483PubMed Mantovani A, Locati M (2013) Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol 33:1478–1483PubMed
73.
Zurück zum Zitat Tan K, Lessieur E, Cutler A (2013) Macrophages and chemokines as mediators of angiogenesis. Front Physiol 4:159 Tan K, Lessieur E, Cutler A (2013) Macrophages and chemokines as mediators of angiogenesis. Front Physiol 4:159
75.
Zurück zum Zitat Venneri MA, de Palma M, Ponzoni M et al (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109:5276–5285PubMed Venneri MA, de Palma M, Ponzoni M et al (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109:5276–5285PubMed
76.
Zurück zum Zitat He H, Xu J, Warren CM et al (2012) Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood 120:3152–3162PubMed He H, Xu J, Warren CM et al (2012) Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood 120:3152–3162PubMed
77.
Zurück zum Zitat Loomans CJ, van Haperen R, Duijs JM et al (2009) Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol Med 15:152–159PubMed Loomans CJ, van Haperen R, Duijs JM et al (2009) Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol Med 15:152–159PubMed
78.
Zurück zum Zitat Fadini GP, Albiero M, Boscaro E et al (2010) Rosuvastatin stimulates clonogenic potential and anti-inflammatory properties of endothelial progenitor cells. Cell Biol Int 34:709–715PubMed Fadini GP, Albiero M, Boscaro E et al (2010) Rosuvastatin stimulates clonogenic potential and anti-inflammatory properties of endothelial progenitor cells. Cell Biol Int 34:709–715PubMed
79.
Zurück zum Zitat Bories G, Caiazzo R, Derudas B et al (2012) Impaired alternative macrophage differentiation of peripheral blood mononuclear cells from obese subjects. Diab Vasc Dis Res 9:189–195PubMed Bories G, Caiazzo R, Derudas B et al (2012) Impaired alternative macrophage differentiation of peripheral blood mononuclear cells from obese subjects. Diab Vasc Dis Res 9:189–195PubMed
80.
Zurück zum Zitat Satoh N, Shimatsu A, Himeno A et al (2010) Unbalanced M1/M2 phenotype of peripheral blood monocytes in obese diabetic patients: effect of pioglitazone. Diabetes Care 33:e7PubMed Satoh N, Shimatsu A, Himeno A et al (2010) Unbalanced M1/M2 phenotype of peripheral blood monocytes in obese diabetic patients: effect of pioglitazone. Diabetes Care 33:e7PubMed
81.
Zurück zum Zitat Fadini GP, de Kreutzenberg SV, Boscaro E et al (2013) An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia 56:1856–1866PubMed Fadini GP, de Kreutzenberg SV, Boscaro E et al (2013) An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia 56:1856–1866PubMed
82.
83.
Zurück zum Zitat Fadini GP, Albiero M, Menegazzo L et al (2012) Procalcific phenotypic drift of circulating progenitor cells in type 2 diabetes with coronary artery disease. Exp Diabetes Res 2012:921685PubMed Fadini GP, Albiero M, Menegazzo L et al (2012) Procalcific phenotypic drift of circulating progenitor cells in type 2 diabetes with coronary artery disease. Exp Diabetes Res 2012:921685PubMed
84.
Zurück zum Zitat Cui Y, Madeddu P (2011) The role of chemokines, cytokines and adhesion molecules in stem cell trafficking and homing. Curr Pharm Des 17:3271–3279PubMed Cui Y, Madeddu P (2011) The role of chemokines, cytokines and adhesion molecules in stem cell trafficking and homing. Curr Pharm Des 17:3271–3279PubMed
85.
Zurück zum Zitat Hristov M, Weber C (2009) Progenitor cell trafficking in the vascular wall. J Thromb Haemost 7(1):31–34PubMed Hristov M, Weber C (2009) Progenitor cell trafficking in the vascular wall. J Thromb Haemost 7(1):31–34PubMed
86.
Zurück zum Zitat Gossl M, Modder UI, Gulati R et al (2010) Coronary endothelial dysfunction in humans is associated with coronary retention of osteogenic endothelial progenitor cells. Eur Heart J 31:2909–2914PubMed Gossl M, Modder UI, Gulati R et al (2010) Coronary endothelial dysfunction in humans is associated with coronary retention of osteogenic endothelial progenitor cells. Eur Heart J 31:2909–2914PubMed
87.
Zurück zum Zitat Flammer AJ, Gossl M, Li J et al (2012) Patients with an HbA1c in the prediabetic and diabetic range have higher numbers of circulating cells with osteogenic and endothelial progenitor cell markers. J Clin Endocrinol Metab 97:4761–4768PubMed Flammer AJ, Gossl M, Li J et al (2012) Patients with an HbA1c in the prediabetic and diabetic range have higher numbers of circulating cells with osteogenic and endothelial progenitor cell markers. J Clin Endocrinol Metab 97:4761–4768PubMed
88.
Zurück zum Zitat Gossl M, Khosla S, Zhang X et al (2012) Role of circulating osteogenic progenitor cells in calcific aortic stenosis. J Am Coll Cardiol 60:1945–1953PubMed Gossl M, Khosla S, Zhang X et al (2012) Role of circulating osteogenic progenitor cells in calcific aortic stenosis. J Am Coll Cardiol 60:1945–1953PubMed
89.
Zurück zum Zitat Gossl M, Modder UI, Atkinson EJ, Lerman A, Khosla S (2008) Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol 52:1314–1325PubMed Gossl M, Modder UI, Atkinson EJ, Lerman A, Khosla S (2008) Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis. J Am Coll Cardiol 52:1314–1325PubMed
90.
Zurück zum Zitat Flammer AJ, Gossl M, Widmer RJ et al (2012) Osteocalcin positive CD133+/CD34–/KDR + progenitor cells as an independent marker for unstable atherosclerosis. Eur Heart J 33:2963–2969PubMed Flammer AJ, Gossl M, Widmer RJ et al (2012) Osteocalcin positive CD133+/CD34–/KDR + progenitor cells as an independent marker for unstable atherosclerosis. Eur Heart J 33:2963–2969PubMed
91.
Zurück zum Zitat Fadini GP, Rattazzi M, Matsumoto T, Asahara T, Khosla S (2012) Emerging role of circulating calcifying cells in the bone-vascular axis. Circulation 125:2772–2781PubMed Fadini GP, Rattazzi M, Matsumoto T, Asahara T, Khosla S (2012) Emerging role of circulating calcifying cells in the bone-vascular axis. Circulation 125:2772–2781PubMed
92.
Zurück zum Zitat Fadini GP, Albiero M, Menegazzo L et al (2011) Widespread increase in myeloid calcifying cells contributes to ectopic vascular calcification in type 2 diabetes. Circ Res 108:1112–1121PubMed Fadini GP, Albiero M, Menegazzo L et al (2011) Widespread increase in myeloid calcifying cells contributes to ectopic vascular calcification in type 2 diabetes. Circ Res 108:1112–1121PubMed
93.
Zurück zum Zitat Albiero M, Rattazzi M, Menegazzo L et al (2013) Myeloid calcifying cells promote atherosclerotic calcification via paracrine activity and allograft inflammatory factor-1 overexpression. Basic Res Cardiol 108:368PubMed Albiero M, Rattazzi M, Menegazzo L et al (2013) Myeloid calcifying cells promote atherosclerotic calcification via paracrine activity and allograft inflammatory factor-1 overexpression. Basic Res Cardiol 108:368PubMed
94.
Zurück zum Zitat Hellings WE, Peeters W, Moll FL et al (2010) Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation 121:1941–1950PubMed Hellings WE, Peeters W, Moll FL et al (2010) Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation 121:1941–1950PubMed
95.
Zurück zum Zitat Ehara S, Kobayashi Y, Yoshiyama M et al (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110:3424–3429PubMed Ehara S, Kobayashi Y, Yoshiyama M et al (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110:3424–3429PubMed
96.
Zurück zum Zitat Menegazzo L, Albiero M, Millioni R et al (2013) Circulating myeloid calcifying cells have anti-angiogenic activity via thrombospondin-1 overexpression. FASEB J. doi:10.1096/fj.12-223719 PubMed Menegazzo L, Albiero M, Millioni R et al (2013) Circulating myeloid calcifying cells have anti-angiogenic activity via thrombospondin-1 overexpression. FASEB J. doi:10.​1096/​fj.​12-223719 PubMed
97.
Zurück zum Zitat Kato K, Yonetsu T, Kim SJ et al (2012) Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv 5:1150–1158PubMed Kato K, Yonetsu T, Kim SJ et al (2012) Comparison of nonculprit coronary plaque characteristics between patients with and without diabetes: a 3-vessel optical coherence tomography study. JACC Cardiovasc Interv 5:1150–1158PubMed
98.
Zurück zum Zitat Abaci A, Oguzhan A, Kahraman S et al (1999) Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99:2239–2242PubMed Abaci A, Oguzhan A, Kahraman S et al (1999) Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99:2239–2242PubMed
99.
Zurück zum Zitat Fadini GP (2013) A diseased bone marrow fuels atherosclerosis in diabetes. Atherosclerosis 226:337–338PubMed Fadini GP (2013) A diseased bone marrow fuels atherosclerosis in diabetes. Atherosclerosis 226:337–338PubMed
100.
Zurück zum Zitat van Ark J, Moser J, Lexis CP et al (2012) Type 2 diabetes mellitus is associated with an imbalance in circulating endothelial and smooth muscle progenitor cell numbers. Diabetologia 55:2501–2512PubMed van Ark J, Moser J, Lexis CP et al (2012) Type 2 diabetes mellitus is associated with an imbalance in circulating endothelial and smooth muscle progenitor cell numbers. Diabetologia 55:2501–2512PubMed
101.
Zurück zum Zitat Fledderus JO, van Oostrom O, de Kleijn DP et al (2013) Increased amount of bone marrow-derived smooth muscle-like cells and accelerated atherosclerosis in diabetic apoE-deficient mice. Atherosclerosis 226:341–347PubMed Fledderus JO, van Oostrom O, de Kleijn DP et al (2013) Increased amount of bone marrow-derived smooth muscle-like cells and accelerated atherosclerosis in diabetic apoE-deficient mice. Atherosclerosis 226:341–347PubMed
102.
Zurück zum Zitat Yu H, Stoneman V, Clarke M et al (2011) Bone marrow-derived smooth muscle-like cells are infrequent in advanced primary atherosclerotic plaques but promote atherosclerosis. Arterioscler Thromb Vasc Biol 31:1291–1299PubMed Yu H, Stoneman V, Clarke M et al (2011) Bone marrow-derived smooth muscle-like cells are infrequent in advanced primary atherosclerotic plaques but promote atherosclerosis. Arterioscler Thromb Vasc Biol 31:1291–1299PubMed
103.
Zurück zum Zitat Bentzon JF, Sondergaard CS, Kassem M, Falk E (2007) Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation 116:2053–2061PubMed Bentzon JF, Sondergaard CS, Kassem M, Falk E (2007) Smooth muscle cells healing atherosclerotic plaque disruptions are of local, not blood, origin in apolipoprotein E knockout mice. Circulation 116:2053–2061PubMed
104.
Zurück zum Zitat Bentzon JF, Weile C, Sondergaard CS et al (2006) Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler Thromb Vasc Biol 26:2696–2702PubMed Bentzon JF, Weile C, Sondergaard CS et al (2006) Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler Thromb Vasc Biol 26:2696–2702PubMed
105.
Zurück zum Zitat Fadini GP, Tjwa M (2010) A role for TGF-beta in transforming endothelial progenitor cells into neointimal smooth muscle cells. Atherosclerosis 211:32–35PubMed Fadini GP, Tjwa M (2010) A role for TGF-beta in transforming endothelial progenitor cells into neointimal smooth muscle cells. Atherosclerosis 211:32–35PubMed
106.
Zurück zum Zitat Imamura H, Ohta T, Tsunetoshi K et al (2010) Transdifferentiation of bone marrow-derived endothelial progenitor cells into the smooth muscle cell lineage mediated by tansforming growth factor-beta1. Atherosclerosis 211:114–121PubMed Imamura H, Ohta T, Tsunetoshi K et al (2010) Transdifferentiation of bone marrow-derived endothelial progenitor cells into the smooth muscle cell lineage mediated by tansforming growth factor-beta1. Atherosclerosis 211:114–121PubMed
107.
Zurück zum Zitat Westerweel PE, van Velthoven CT, Nguyen TQ et al (2010) Modulation of TGF-beta/BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model. Cardiovasc Diabetol 9:55PubMed Westerweel PE, van Velthoven CT, Nguyen TQ et al (2010) Modulation of TGF-beta/BMP-6 expression and increased levels of circulating smooth muscle progenitor cells in a type I diabetes mouse model. Cardiovasc Diabetol 9:55PubMed
108.
Zurück zum Zitat Nguyen TQ, Chon H, van Nieuwenhoven FA et al (2006) Myofibroblast progenitor cells are increased in number in patients with type 1 diabetes and express less bone morphogenetic protein 6: a novel clue to adverse tissue remodelling? Diabetologia 49:1039–1048PubMed Nguyen TQ, Chon H, van Nieuwenhoven FA et al (2006) Myofibroblast progenitor cells are increased in number in patients with type 1 diabetes and express less bone morphogenetic protein 6: a novel clue to adverse tissue remodelling? Diabetologia 49:1039–1048PubMed
109.
Zurück zum Zitat Zheng F, Cornacchia F, Schulman I et al (2004) Development of albuminuria and glomerular lesions in normoglycemic B6 recipients of db/db mice bone marrow: the role of mesangial cell progenitors. Diabetes 53:2420–2427PubMed Zheng F, Cornacchia F, Schulman I et al (2004) Development of albuminuria and glomerular lesions in normoglycemic B6 recipients of db/db mice bone marrow: the role of mesangial cell progenitors. Diabetes 53:2420–2427PubMed
110.
Zurück zum Zitat Menegazzo L, Albiero M, Avogaro A, Fadini GP (2012) Endothelial progenitor cells in diabetes mellitus. Biofactors 38:194–202PubMed Menegazzo L, Albiero M, Avogaro A, Fadini GP (2012) Endothelial progenitor cells in diabetes mellitus. Biofactors 38:194–202PubMed
111.
Zurück zum Zitat Fadini GP (2011) Is bone marrow another target of diabetic complications? Eur J Clin Invest 41:457–463PubMed Fadini GP (2011) Is bone marrow another target of diabetic complications? Eur J Clin Invest 41:457–463PubMed
112.
Zurück zum Zitat Fadini GP, Sartore S, Schiavon M et al (2006) Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 49:3075–3084PubMed Fadini GP, Sartore S, Schiavon M et al (2006) Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 49:3075–3084PubMed
113.
Zurück zum Zitat Ferraro F, Lymperi S, Mendez-Ferrer S et al (2011) Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 3:104ra101PubMed Ferraro F, Lymperi S, Mendez-Ferrer S et al (2011) Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med 3:104ra101PubMed
114.
Zurück zum Zitat Fadini GP, Avogaro A (2013) Diabetes impairs mobilization of stem cells for the treatment of cardiovascular disease: a meta-regression analysis. Int J Cardiol 168:892–897PubMed Fadini GP, Avogaro A (2013) Diabetes impairs mobilization of stem cells for the treatment of cardiovascular disease: a meta-regression analysis. Int J Cardiol 168:892–897PubMed
115.
Zurück zum Zitat Fadini GP, Albiero M, Vigili de Kreutzenberg S et al (2013) Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 36:943–949PubMed Fadini GP, Albiero M, Vigili de Kreutzenberg S et al (2013) Diabetes impairs stem cell and proangiogenic cell mobilization in humans. Diabetes Care 36:943–949PubMed
116.
Zurück zum Zitat Oikawa A, Siragusa M, Quaini F et al (2010) Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 30:498–508PubMed Oikawa A, Siragusa M, Quaini F et al (2010) Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 30:498–508PubMed
117.
Zurück zum Zitat Spinetti G, Cordella D, Fortunato O et al (2013) Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res 112:510–522PubMed Spinetti G, Cordella D, Fortunato O et al (2013) Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res 112:510–522PubMed
118.
Zurück zum Zitat Mangialardi G, Katare R, Oikawa A et al (2013) Diabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway. Arterioscler Thromb Vasc Biol 33:555–564PubMed Mangialardi G, Katare R, Oikawa A et al (2013) Diabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway. Arterioscler Thromb Vasc Biol 33:555–564PubMed
119.
Zurück zum Zitat Fadini GP, Avogaro A (2013) Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis 229:23–29PubMed Fadini GP, Avogaro A (2013) Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis 229:23–29PubMed
120.
Zurück zum Zitat Esposito K, Maiorino MI, Di Palo C et al (2011) Effects of pioglitazone versus metformin on circulating endothelial microparticles and progenitor cells in patients with newly diagnosed type 2 diabetes–a randomized controlled trial. Diabetes Obes Metab 13:439–445PubMed Esposito K, Maiorino MI, Di Palo C et al (2011) Effects of pioglitazone versus metformin on circulating endothelial microparticles and progenitor cells in patients with newly diagnosed type 2 diabetes–a randomized controlled trial. Diabetes Obes Metab 13:439–445PubMed
121.
Zurück zum Zitat Zhao CT, Wang M, Siu CW et al (2012) Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress. Cardiovasc Diabetol 11:147PubMed Zhao CT, Wang M, Siu CW et al (2012) Myocardial dysfunction in patients with type 2 diabetes mellitus: role of endothelial progenitor cells and oxidative stress. Cardiovasc Diabetol 11:147PubMed
122.
Zurück zum Zitat Hazra S, Jarajapu YP, Stepps V et al (2013) Long-term type 1 diabetes influences haematopoietic stem cells by reducing vascular repair potential and increasing inflammatory monocyte generation in a murine model. Diabetologia 56:644–653PubMed Hazra S, Jarajapu YP, Stepps V et al (2013) Long-term type 1 diabetes influences haematopoietic stem cells by reducing vascular repair potential and increasing inflammatory monocyte generation in a murine model. Diabetologia 56:644–653PubMed
123.
Zurück zum Zitat Orlandi A, Chavakis E, Seeger F et al (2010) Long-term diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol 105:703–712PubMed Orlandi A, Chavakis E, Seeger F et al (2010) Long-term diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol 105:703–712PubMed
124.
Zurück zum Zitat Westerweel PE, Teraa M, Rafii S et al (2013) Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus. PLoS One 8:e60357PubMed Westerweel PE, Teraa M, Rafii S et al (2013) Impaired endothelial progenitor cell mobilization and dysfunctional bone marrow stroma in diabetes mellitus. PLoS One 8:e60357PubMed
125.
Zurück zum Zitat Fadini GP, Albiero M, Seeger F et al (2013) Stem cell compartmentalization in diabetes and high cardiovascular risk reveals the role of DPP-4 in diabetic stem cell mobilopathy. Basic Res Cardiol 108:313PubMed Fadini GP, Albiero M, Seeger F et al (2013) Stem cell compartmentalization in diabetes and high cardiovascular risk reveals the role of DPP-4 in diabetic stem cell mobilopathy. Basic Res Cardiol 108:313PubMed
126.
Zurück zum Zitat Busik JV, Tikhonenko M, Bhatwadekar A et al (2009) Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med 206:2897–2906PubMed Busik JV, Tikhonenko M, Bhatwadekar A et al (2009) Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med 206:2897–2906PubMed
127.
Zurück zum Zitat Ling L, Shen Y, Wang K et al (2012) Worse clinical outcomes in acute myocardial infarction patients with type 2 diabetes mellitus: relevance to impaired endothelial progenitor cells mobilization. PLoS One 7:e50739PubMed Ling L, Shen Y, Wang K et al (2012) Worse clinical outcomes in acute myocardial infarction patients with type 2 diabetes mellitus: relevance to impaired endothelial progenitor cells mobilization. PLoS One 7:e50739PubMed
Metadaten
Titel
A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications
verfasst von
G. P. Fadini
Publikationsdatum
01.01.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 1/2014
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-013-3087-6

Weitere Artikel der Ausgabe 1/2014

Diabetologia 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.