Skip to main content
Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy 5/2010

01.05.2010 | Ankle

The relation between geometry and function of the ankle joint complex: a biomechanical review

verfasst von: Roeland P. Kleipool, Leendert Blankevoort

Erschienen in: Knee Surgery, Sports Traumatology, Arthroscopy | Ausgabe 5/2010

Einloggen, um Zugang zu erhalten

Abstract

This review deals with the relation between the anatomy and function of the ankle joint complex. The questions addressed are how high do the forces in the ankle joint get, where can the joints go (range of motion) and where do they go during walking and running. Finally the role of the ligaments and the articular surfaces is discussed, i.e. how does it happen. The magnitude of the loads on the ankle joint complex are primarily determined by muscle activity and can be as high as four times the body weight during walking. For the maximal range of motion, plantar and dorsiflexion occurs in the talocrural joint and marginally at the subtalar joint. In-eversion takes place at both levels. The functional range of motion is well within the limits of the maximal range of motion. The ligaments do not contribute to the forces for the functional range of motion but determine the maximal range of motion together with the articular surfaces. The geometry of the articular surfaces primarily determines the kinematics. Clinical studies must include these anatomical aspects to better understand the mechanism of injury, recovery, and interventions. Models can elucidate the mechanism by which the anatomy relates to the function. The relation between the anatomy and mechanical properties of the joint structures and joint function should be considered for diagnosis and treatment of ankle joint pathology.
Literatur
1.
Zurück zum Zitat Arndt A, Westblad P, Winson I, Hashimoto T, Lundberg A (2004) Ankle and subtalar kinematics measured with intracortical pins during the stance phase of walking. Foot Ankle Int 25:357–364PubMed Arndt A, Westblad P, Winson I, Hashimoto T, Lundberg A (2004) Ankle and subtalar kinematics measured with intracortical pins during the stance phase of walking. Foot Ankle Int 25:357–364PubMed
2.
Zurück zum Zitat Arndt A, Wolf P, Liu A, Nester C, Stacoff A, Jones R, Lundgren P, Lundberg A (2007) Intrinsic foot kinematics measured in vivo during the stance phase of slow running. J Biomech 40:2672–2678CrossRefPubMed Arndt A, Wolf P, Liu A, Nester C, Stacoff A, Jones R, Lundgren P, Lundberg A (2007) Intrinsic foot kinematics measured in vivo during the stance phase of slow running. J Biomech 40:2672–2678CrossRefPubMed
3.
Zurück zum Zitat Astion DJ, Deland JT, Otis JC, Kenneally S (1997) Motion of the hindfoot after simulated arthrodesis. J Bone Joint Surg Am 79:241–246PubMed Astion DJ, Deland JT, Otis JC, Kenneally S (1997) Motion of the hindfoot after simulated arthrodesis. J Bone Joint Surg Am 79:241–246PubMed
4.
Zurück zum Zitat Attarian DE, McCrackin HJ, DeVito DP, McElhaney JH, Garrett WE Jr (1985) Biomechanical characteristics of human ankle ligaments. Foot Ankle 6:54–58PubMed Attarian DE, McCrackin HJ, DeVito DP, McElhaney JH, Garrett WE Jr (1985) Biomechanical characteristics of human ankle ligaments. Foot Ankle 6:54–58PubMed
5.
Zurück zum Zitat Bahr R, Pena F, Shine J, Lew WD, Engebretsen L (1998) Ligament force and joint motion in the intact ankle: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 6:115–121CrossRefPubMed Bahr R, Pena F, Shine J, Lew WD, Engebretsen L (1998) Ligament force and joint motion in the intact ankle: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 6:115–121CrossRefPubMed
6.
Zurück zum Zitat Barbaix E, Van Roy P, Clarys JP (2000) Variations of anatomical elements contributing to subtalar joint stability: intrinsic risk factors for post-traumatic lateral instability of the ankle? Ergonomics 43:1718–1725CrossRefPubMed Barbaix E, Van Roy P, Clarys JP (2000) Variations of anatomical elements contributing to subtalar joint stability: intrinsic risk factors for post-traumatic lateral instability of the ankle? Ergonomics 43:1718–1725CrossRefPubMed
7.
Zurück zum Zitat Barnett CH, Napier JR (1952) The axis of rotation at the ankle joint in man; its influence upon the form of the talus and mobility of the fibula. J Anat 86:1–9PubMed Barnett CH, Napier JR (1952) The axis of rotation at the ankle joint in man; its influence upon the form of the talus and mobility of the fibula. J Anat 86:1–9PubMed
8.
Zurück zum Zitat Beimers L, Tuijthof GJ, Blankevoort L, Jonges R, Maas M, van Dijk CN (2008) In vivo range of motion of the subtalar joint using computed tomography. J Biomech 41:1390–1397CrossRefPubMed Beimers L, Tuijthof GJ, Blankevoort L, Jonges R, Maas M, van Dijk CN (2008) In vivo range of motion of the subtalar joint using computed tomography. J Biomech 41:1390–1397CrossRefPubMed
9.
Zurück zum Zitat Beumer A, van Hemert WL, Swierstra BA, Jasper LE, Belkoff SM (2003) A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle. Foot Ankle Int 24:426–429PubMed Beumer A, van Hemert WL, Swierstra BA, Jasper LE, Belkoff SM (2003) A biomechanical evaluation of the tibiofibular and tibiotalar ligaments of the ankle. Foot Ankle Int 24:426–429PubMed
10.
Zurück zum Zitat Blankevoort L, Huiskes R, de Lange A (1988) The envelope of passive knee joint motion. J Biomech 21:705–720CrossRefPubMed Blankevoort L, Huiskes R, de Lange A (1988) The envelope of passive knee joint motion. J Biomech 21:705–720CrossRefPubMed
11.
Zurück zum Zitat Brewster RC, Chao EY, Stauffer RN (1974) Force analysis of the ankle joint during the stance phase of gait. 27th A.C.E.M.B. Alliance for Engineers, Philidelphia Brewster RC, Chao EY, Stauffer RN (1974) Force analysis of the ankle joint during the stance phase of gait. 27th A.C.E.M.B. Alliance for Engineers, Philidelphia
12.
Zurück zum Zitat Budny A (2004) Subtalar joint instabiliy: current clinical concepts. Clin Podiatr Med Surg 21:449–460CrossRefPubMed Budny A (2004) Subtalar joint instabiliy: current clinical concepts. Clin Podiatr Med Surg 21:449–460CrossRefPubMed
13.
Zurück zum Zitat Butler AM, Walsh WR (2004) Mechanical response of ankle ligaments at low loads. Foot Ankle Int 25:8–12PubMed Butler AM, Walsh WR (2004) Mechanical response of ankle ligaments at low loads. Foot Ankle Int 25:8–12PubMed
14.
Zurück zum Zitat Cappozzo A, Catani F, Leardini A, Benedetti MG, Croce UD (1996) Position and orientation in space of bones during movement: experimental artifacts. Clin Biomech 11:90–100CrossRef Cappozzo A, Catani F, Leardini A, Benedetti MG, Croce UD (1996) Position and orientation in space of bones during movement: experimental artifacts. Clin Biomech 11:90–100CrossRef
15.
Zurück zum Zitat Cawley PW, France EP (1991) Biomechanics of the lateral ligaments of the ankle: an evaluation of the effects of axial load and single plane motions on ligament strain patterns. Foot Ankle 12:92–99PubMed Cawley PW, France EP (1991) Biomechanics of the lateral ligaments of the ankle: an evaluation of the effects of axial load and single plane motions on ligament strain patterns. Foot Ankle 12:92–99PubMed
16.
Zurück zum Zitat Chan CW, Rudins A (1994) Foot biomechanics during walking and running. Mayo Clin Proc 69:448–461PubMed Chan CW, Rudins A (1994) Foot biomechanics during walking and running. Mayo Clin Proc 69:448–461PubMed
17.
Zurück zum Zitat Ching RP, Tencer AF, Anderson PA, Daly CH (1995) Comparison of residual stability in thoracolumbar spina fractures using neutral zone measurements. J Orthop Res 13:533–541CrossRefPubMed Ching RP, Tencer AF, Anderson PA, Daly CH (1995) Comparison of residual stability in thoracolumbar spina fractures using neutral zone measurements. J Orthop Res 13:533–541CrossRefPubMed
18.
Zurück zum Zitat Colville MR, Marder RA, Boyle JJ, Zarins B (1990) Strain measurements in lateral ankle ligaments. Am J Sports Med 18:196–200CrossRefPubMed Colville MR, Marder RA, Boyle JJ, Zarins B (1990) Strain measurements in lateral ankle ligaments. Am J Sports Med 18:196–200CrossRefPubMed
19.
Zurück zum Zitat de Asla RJ, Wan L, Rubash HE, Li G (2006) Six DOF in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J Orthop Res 24:1019–1027CrossRefPubMed de Asla RJ, Wan L, Rubash HE, Li G (2006) Six DOF in vivo kinematics of the ankle joint complex: application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J Orthop Res 24:1019–1027CrossRefPubMed
20.
Zurück zum Zitat de Asla RJ, Kozánek M, Wan L, Rubash HE, Li G (2009) Function of anterior talofibular and calcaneofibular ligaments during in vivo motion of the ankle joint complex. J Orthop Surg Res 16:4–7 de Asla RJ, Kozánek M, Wan L, Rubash HE, Li G (2009) Function of anterior talofibular and calcaneofibular ligaments during in vivo motion of the ankle joint complex. J Orthop Surg Res 16:4–7
21.
Zurück zum Zitat Fessy MH, Carret JP, Béjui J (1997) Morphometry of the talocrural joint. Surg Radiol Anat 19:299–302CrossRefPubMed Fessy MH, Carret JP, Béjui J (1997) Morphometry of the talocrural joint. Surg Radiol Anat 19:299–302CrossRefPubMed
22.
Zurück zum Zitat Franci R, Parenti-Castelli V, Belvedere C, Leardini A (2009) A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint. J Biomech 42:1403–1408CrossRefPubMed Franci R, Parenti-Castelli V, Belvedere C, Leardini A (2009) A new one-DOF fully parallel mechanism for modelling passive motion at the human tibiotalar joint. J Biomech 42:1403–1408CrossRefPubMed
23.
Zurück zum Zitat Frigg A, Frigg R, Hintermann B, Barg A, Valderrabano V (2007) The biomechanical influence of tibio-talar containment on stability of the ankle joint. Knee Surg Sports Traumatol Arthrosc 15:1355–1366CrossRefPubMed Frigg A, Frigg R, Hintermann B, Barg A, Valderrabano V (2007) The biomechanical influence of tibio-talar containment on stability of the ankle joint. Knee Surg Sports Traumatol Arthrosc 15:1355–1366CrossRefPubMed
24.
Zurück zum Zitat Fujii T, Luo ZP, Kitaoka HB, An KN (2000) The manual stress test may not be sufficient to differentiate ankle ligament injuries. Clin Biomech (Bristol, Avon) 15:619–623CrossRef Fujii T, Luo ZP, Kitaoka HB, An KN (2000) The manual stress test may not be sufficient to differentiate ankle ligament injuries. Clin Biomech (Bristol, Avon) 15:619–623CrossRef
25.
Zurück zum Zitat Fujii T, Kitaoka HB, Luo ZP, Kura H, An KN (2005) Analysis of ankle-hindfoot stability in multiple planes: an in vitro study. Foot Ankle Int 26:633–637PubMed Fujii T, Kitaoka HB, Luo ZP, Kura H, An KN (2005) Analysis of ankle-hindfoot stability in multiple planes: an in vitro study. Foot Ankle Int 26:633–637PubMed
26.
Zurück zum Zitat Funk JR, Hall GW, Crandall JR, Pilkey WD (2000) Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng 122:15–22CrossRefPubMed Funk JR, Hall GW, Crandall JR, Pilkey WD (2000) Linear and quasi-linear viscoelastic characterization of ankle ligaments. J Biomech Eng 122:15–22CrossRefPubMed
27.
Zurück zum Zitat Goto A, Moritomo H, Itohara T, Watanabe T, Sugamoto K (2009) Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion. Foot Ankle Int 30:432–438CrossRefPubMed Goto A, Moritomo H, Itohara T, Watanabe T, Sugamoto K (2009) Three-dimensional in vivo kinematics of the subtalar joint during dorsi-plantarflexion and inversion-eversion. Foot Ankle Int 30:432–438CrossRefPubMed
28.
Zurück zum Zitat Hamel AJ, Sharkey NA, Buczek FL, Michelson J (2004) Relative motions of the tibia, talus, and calcaneus during the stance phase of gait: a cadaver study. Gait Posture 20:147–153CrossRefPubMed Hamel AJ, Sharkey NA, Buczek FL, Michelson J (2004) Relative motions of the tibia, talus, and calcaneus during the stance phase of gait: a cadaver study. Gait Posture 20:147–153CrossRefPubMed
29.
Zurück zum Zitat Haraguchi N, Arminger RS, Myerson MS, Campbell JT, Chao EY (2009) Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling. Foot Ankle Int 30:177–185CrossRefPubMed Haraguchi N, Arminger RS, Myerson MS, Campbell JT, Chao EY (2009) Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling. Foot Ankle Int 30:177–185CrossRefPubMed
30.
Zurück zum Zitat Hayes A, Tochigi Y, Saltzman CL (2006) Ankle morphometry on 3D-CT images. Iowa Orthop J 26:1–4PubMed Hayes A, Tochigi Y, Saltzman CL (2006) Ankle morphometry on 3D-CT images. Iowa Orthop J 26:1–4PubMed
31.
Zurück zum Zitat Hurschler C, Emmerich J, Wülker N (2003) In vitro simulation of stance phase gait part I: model verification. Foot Ankle Int 24:614–622PubMed Hurschler C, Emmerich J, Wülker N (2003) In vitro simulation of stance phase gait part I: model verification. Foot Ankle Int 24:614–622PubMed
32.
Zurück zum Zitat Imai K, Tokunaga D, Takatori R, Ikoma K, Maki M, Ohkawa H, Ogura A, Tsuji Y, Inoue N, Kubo T (2009) In vivo three-dimensional analysis of hindfoot kinematics. Foot Ankle Int 30:1094–1100CrossRefPubMed Imai K, Tokunaga D, Takatori R, Ikoma K, Maki M, Ohkawa H, Ogura A, Tsuji Y, Inoue N, Kubo T (2009) In vivo three-dimensional analysis of hindfoot kinematics. Foot Ankle Int 30:1094–1100CrossRefPubMed
33.
Zurück zum Zitat Imhauser CW, Siegler S, Udupa JK, Toy JR (2008) Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties. J Biomch 41:1341–1349CrossRef Imhauser CW, Siegler S, Udupa JK, Toy JR (2008) Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties. J Biomch 41:1341–1349CrossRef
34.
Zurück zum Zitat Inman VT (1976) The joints of the ankle. Williams and Wilkins, Baltimore Inman VT (1976) The joints of the ankle. Williams and Wilkins, Baltimore
35.
Zurück zum Zitat Kanbe K, Hasegawa A, Nakajima Y, Takagishi K (2002) The relationship of the anterior drawer sign to the shape of the tibial plafond in chronic lateral instability of the ankle. Foot Ankle Int 23:118–122PubMed Kanbe K, Hasegawa A, Nakajima Y, Takagishi K (2002) The relationship of the anterior drawer sign to the shape of the tibial plafond in chronic lateral instability of the ankle. Foot Ankle Int 23:118–122PubMed
36.
Zurück zum Zitat Kerkhoffs GM, Blankevoort L, van Poll D, Marti RK, van Dijk CN (2001) Anterior lateral ankle ligament damage and anterior talocrural-joint laxity: an overview of the in vitro reports in literature. Clin Biomech (Bristol, Avon) 16:635–643CrossRef Kerkhoffs GM, Blankevoort L, van Poll D, Marti RK, van Dijk CN (2001) Anterior lateral ankle ligament damage and anterior talocrural-joint laxity: an overview of the in vitro reports in literature. Clin Biomech (Bristol, Avon) 16:635–643CrossRef
37.
Zurück zum Zitat Kerkhoffs G, Blankevoort L, Kingma I, van Dijk N (2007) Three-dimensional bone kinematics in an anterior laxity test of the ankle joint. Knee Surg Sports Traumatol Arthrosc 15:817–824CrossRefPubMed Kerkhoffs G, Blankevoort L, Kingma I, van Dijk N (2007) Three-dimensional bone kinematics in an anterior laxity test of the ankle joint. Knee Surg Sports Traumatol Arthrosc 15:817–824CrossRefPubMed
38.
Zurück zum Zitat Kim W, Voloshin AS (1995) Role of plantar fascia in the load bearing capacity of the human foot. J Biomech 28:1025–1033CrossRefPubMed Kim W, Voloshin AS (1995) Role of plantar fascia in the load bearing capacity of the human foot. J Biomech 28:1025–1033CrossRefPubMed
39.
Zurück zum Zitat Kjaersgaard-Anderson P, Wethelund JO, Helming P, Søballe K (1988) The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi in movements in the hindfoot. An experimental study. Am J Sports Med 16:512–516CrossRef Kjaersgaard-Anderson P, Wethelund JO, Helming P, Søballe K (1988) The stabilizing effect of the ligamentous structures in the sinus and canalis tarsi in movements in the hindfoot. An experimental study. Am J Sports Med 16:512–516CrossRef
40.
Zurück zum Zitat Komi PV (1990) Relevance of in vivo force measurements to human biomechanics. J Biomech 23(Suppl 1):23–34CrossRefPubMed Komi PV (1990) Relevance of in vivo force measurements to human biomechanics. J Biomech 23(Suppl 1):23–34CrossRefPubMed
41.
Zurück zum Zitat Leardini A, O’Connor JJ, Catani F, Giannini S (2000) The role of passive structures in the mobility and stability of the human ankle joint: a literature review. Foot Ankle Int 21:602–615PubMed Leardini A, O’Connor JJ, Catani F, Giannini S (2000) The role of passive structures in the mobility and stability of the human ankle joint: a literature review. Foot Ankle Int 21:602–615PubMed
42.
Zurück zum Zitat Leardini A, Stagni R, O’Connor JJ (2001) Mobility of the subtalar joint in the intact ankle complex. J Biomech 34:805–809CrossRefPubMed Leardini A, Stagni R, O’Connor JJ (2001) Mobility of the subtalar joint in the intact ankle complex. J Biomech 34:805–809CrossRefPubMed
43.
Zurück zum Zitat Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225CrossRefPubMed Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21:212–225CrossRefPubMed
44.
Zurück zum Zitat Lundberg A (1989) Kinematics of the ankle and foot. In vivo roentgen stereophotogrammetry. Acta Orthop Scand Suppl 233:1–24PubMed Lundberg A (1989) Kinematics of the ankle and foot. In vivo roentgen stereophotogrammetry. Acta Orthop Scand Suppl 233:1–24PubMed
45.
Zurück zum Zitat Lundgren P, Nester C, Liu A, Arndt A, Jones R, Stacoff A, Wolf P, Lundberg A (2008) Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture 28:93–100CrossRefPubMed Lundgren P, Nester C, Liu A, Arndt A, Jones R, Stacoff A, Wolf P, Lundberg A (2008) Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture 28:93–100CrossRefPubMed
46.
Zurück zum Zitat Martin LP, Wayne JS, Monahan TJ, Adelaars RS (1998) Elongation behavior of calcaneofibular and cervical ligaments during inversion loads applied in a open kinetic chain. Foot Ankle Int 19:232–239PubMed Martin LP, Wayne JS, Monahan TJ, Adelaars RS (1998) Elongation behavior of calcaneofibular and cervical ligaments during inversion loads applied in a open kinetic chain. Foot Ankle Int 19:232–239PubMed
47.
Zurück zum Zitat Mattingly B, Talwalkar V, Tylkowski C, Stevens DB, Hardy PA, Pienkowski D (2006) Three-dimensional in vivo motion of adult hind foot bones. J Biomech 39:726–733CrossRefPubMed Mattingly B, Talwalkar V, Tylkowski C, Stevens DB, Hardy PA, Pienkowski D (2006) Three-dimensional in vivo motion of adult hind foot bones. J Biomech 39:726–733CrossRefPubMed
48.
Zurück zum Zitat Michael JM, Golshani A, Gargac S, Goswami T (2008) Biomechanics of the ankle joint and clinical outcomes of total ankle replacement. J Mech Behav Biomed Mater 1:276–294CrossRefPubMed Michael JM, Golshani A, Gargac S, Goswami T (2008) Biomechanics of the ankle joint and clinical outcomes of total ankle replacement. J Mech Behav Biomed Mater 1:276–294CrossRefPubMed
49.
Zurück zum Zitat Michelson JD, Hutchins C (1995) Mechanoreceptors in human ankle ligaments. J Bone Joint Surg Br 77:219–224PubMed Michelson JD, Hutchins C (1995) Mechanoreceptors in human ankle ligaments. J Bone Joint Surg Br 77:219–224PubMed
50.
Zurück zum Zitat Michelson JD, Hamel AJ, Buczek FL, Sharkey NA (2002) Kinematic behavior of the ankle following malleolar fracture repair in a high-fidelity cadaver model. J Bone Joint Surg Am 84-A:2029–2038PubMed Michelson JD, Hamel AJ, Buczek FL, Sharkey NA (2002) Kinematic behavior of the ankle following malleolar fracture repair in a high-fidelity cadaver model. J Bone Joint Surg Am 84-A:2029–2038PubMed
51.
Zurück zum Zitat Moraes MR, Cavalcante ML, Leite JA, Ferreira FV, Castro AJ, Santana MG (2008) Histomorphometric evaluation of mechanoreceptors and free nerve endings in human lateral ankle ligaments. Foot Ankle Int 29:87–90CrossRefPubMed Moraes MR, Cavalcante ML, Leite JA, Ferreira FV, Castro AJ, Santana MG (2008) Histomorphometric evaluation of mechanoreceptors and free nerve endings in human lateral ankle ligaments. Foot Ankle Int 29:87–90CrossRefPubMed
52.
Zurück zum Zitat Morris JM (1977) Biomechanics of the foot and ankle. Clin Orthop Relat Res 10–17 Morris JM (1977) Biomechanics of the foot and ankle. Clin Orthop Relat Res 10–17
53.
Zurück zum Zitat Nester CJ (1997) Rearfoot complex: a review of its interdependent components, axis orientation and functional model. Foot 7:86–96CrossRef Nester CJ (1997) Rearfoot complex: a review of its interdependent components, axis orientation and functional model. Foot 7:86–96CrossRef
54.
Zurück zum Zitat Nester CJ (1998) Review of literature on the axis of rotation at the sub talar joint. Foot 8:111–118CrossRef Nester CJ (1998) Review of literature on the axis of rotation at the sub talar joint. Foot 8:111–118CrossRef
55.
Zurück zum Zitat Nester CJ, Liu AM, Ward E, Howard D, Cocheba J, Derrick T, Patterson P (2007) In vitro study of foot kinematics using a dynamic walking cadaver model. J Biomech 40:1927–1937CrossRefPubMed Nester CJ, Liu AM, Ward E, Howard D, Cocheba J, Derrick T, Patterson P (2007) In vitro study of foot kinematics using a dynamic walking cadaver model. J Biomech 40:1927–1937CrossRefPubMed
56.
Zurück zum Zitat Nigg BM, Skarvan G, Frank CB, Yeadon MR (1990) Elongation and forces of ankle ligaments in a physiological range of motion. Foot Ankle 11:30–40PubMed Nigg BM, Skarvan G, Frank CB, Yeadon MR (1990) Elongation and forces of ankle ligaments in a physiological range of motion. Foot Ankle 11:30–40PubMed
57.
Zurück zum Zitat Okita N, Meyers SA, Challis JH, Sharkey NA (2009) An objective evaluation of a segmented foot model. Gait Posture 30:27–34CrossRefPubMed Okita N, Meyers SA, Challis JH, Sharkey NA (2009) An objective evaluation of a segmented foot model. Gait Posture 30:27–34CrossRefPubMed
58.
Zurück zum Zitat Ozeki S, Yasuda K, Kaneda K, Yamkoshi K, Yamanoi T (2002) Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle. Foot Ankle Int 825–832 Ozeki S, Yasuda K, Kaneda K, Yamkoshi K, Yamanoi T (2002) Simultaneous strain measurement with determination of a zero strain reference for the medial and lateral ligaments of the ankle. Foot Ankle Int 825–832
59.
Zurück zum Zitat Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE, Southwick WO (1986) Three-dimensional load-displacement curves due to forces on the cervical spine. J Orthop Res 4:152–161CrossRefPubMed Panjabi MM, Summers DJ, Pelker RR, Videman T, Friedlaender GE, Southwick WO (1986) Three-dimensional load-displacement curves due to forces on the cervical spine. J Orthop Res 4:152–161CrossRefPubMed
60.
Zurück zum Zitat Perry J (1983) Anatomy and biomechanics of the hindfoot. Clin Orthop Relat Res 9–15 Perry J (1983) Anatomy and biomechanics of the hindfoot. Clin Orthop Relat Res 9–15
61.
Zurück zum Zitat Potthast W, Lersch C, Segesser B, Koebke J, Brüggemann GP (2008) Intraarticular pressure distribution in the talocrural joint is related to lower leg muscle forces. Clin Biomech (Bristol, Avon) 23:632–639CrossRef Potthast W, Lersch C, Segesser B, Koebke J, Brüggemann GP (2008) Intraarticular pressure distribution in the talocrural joint is related to lower leg muscle forces. Clin Biomech (Bristol, Avon) 23:632–639CrossRef
63.
Zurück zum Zitat Pyar E (1900) Der Heutige Stand der Gelenckchirurgic. Arch Klin Chir 48:404–451 Pyar E (1900) Der Heutige Stand der Gelenckchirurgic. Arch Klin Chir 48:404–451
64.
Zurück zum Zitat Rasmussen O (1985) Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments. Acta Orthop Scand Suppl 211:1–75PubMed Rasmussen O (1985) Stability of the ankle joint. Analysis of the function and traumatology of the ankle ligaments. Acta Orthop Scand Suppl 211:1–75PubMed
65.
Zurück zum Zitat Reinschmidt C, van den Bogert AJ, Murphy N, Lundberg A, Nigg BM (1997) Tibiocalcaneal motion during running, measured with external and bone markers. Clin Biomech 12:8–16CrossRef Reinschmidt C, van den Bogert AJ, Murphy N, Lundberg A, Nigg BM (1997) Tibiocalcaneal motion during running, measured with external and bone markers. Clin Biomech 12:8–16CrossRef
66.
Zurück zum Zitat Renstrom P, Wertz M, Incavo S, Pope M, Ostgaard HC, Arms S, Haugh L (1988) Strain in the lateral ligaments of the ankle. Foot Ankle 9:59–63PubMed Renstrom P, Wertz M, Incavo S, Pope M, Ostgaard HC, Arms S, Haugh L (1988) Strain in the lateral ligaments of the ankle. Foot Ankle 9:59–63PubMed
67.
Zurück zum Zitat Ringleb SI, Udupa JK, Siegler S, Imhauser CW, Hirsch BE, Liu J, Odhner D, Okereke E, Roach N (2005) The effect of ankle ligament damage and surgical reconstructions on the mechanics of the ankle and subtalar joints revealed by three-dimensional stress MRI. J Orthop Res 23:743–749CrossRefPubMed Ringleb SI, Udupa JK, Siegler S, Imhauser CW, Hirsch BE, Liu J, Odhner D, Okereke E, Roach N (2005) The effect of ankle ligament damage and surgical reconstructions on the mechanics of the ankle and subtalar joints revealed by three-dimensional stress MRI. J Orthop Res 23:743–749CrossRefPubMed
68.
Zurück zum Zitat Rosenbaum D, Becker HP, Wilke HJ, Claes LE (1998) Tenodeses destroy the kinematic coupling of the ankle joint complex. A three-dimensional in vitro analysis of joint movement. J Bone Joint Surg Br 80:162–168CrossRefPubMed Rosenbaum D, Becker HP, Wilke HJ, Claes LE (1998) Tenodeses destroy the kinematic coupling of the ankle joint complex. A three-dimensional in vitro analysis of joint movement. J Bone Joint Surg Br 80:162–168CrossRefPubMed
69.
Zurück zum Zitat Sarrafian SK (1993) Biomechanics of the subtalar joint complex. Clin Orthop Relat Res 290:17–26PubMed Sarrafian SK (1993) Biomechanics of the subtalar joint complex. Clin Orthop Relat Res 290:17–26PubMed
70.
Zurück zum Zitat Sheehan FT, Seisler AR, Siegel KL (2007) In vivo talocrural and subtalar kinematics: a non-invasive 3D dynamic MRI study. Foot Ankle Int 28:323–335CrossRefPubMed Sheehan FT, Seisler AR, Siegel KL (2007) In vivo talocrural and subtalar kinematics: a non-invasive 3D dynamic MRI study. Foot Ankle Int 28:323–335CrossRefPubMed
71.
Zurück zum Zitat Shybut GT, Hayes WC, White AA (1993) Normal patterns of ligament loading among the collateral ligaments. 29th Annual ORS, Anaheim, CA Shybut GT, Hayes WC, White AA (1993) Normal patterns of ligament loading among the collateral ligaments. 29th Annual ORS, Anaheim, CA
72.
Zurück zum Zitat Siegler S, Chen J, Schneck CD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–part I: kinematics. J Biomch Eng 110:364–373CrossRef Siegler S, Chen J, Schneck CD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–part I: kinematics. J Biomch Eng 110:364–373CrossRef
73.
Zurück zum Zitat Siegler S, Blcok H, Schneck CD (1988) The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 8:234–242PubMed Siegler S, Blcok H, Schneck CD (1988) The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle 8:234–242PubMed
74.
Zurück zum Zitat Siegler S, Udupa JK, Ringleb SI, Imhauser CW, HJirsch BE, Odhner D, Saha PK, Okereke E, Roach N (2005) Mechanics of the ankle and subtalar joints revealed through a 3D quasi-static stress MRI technique. 38:567–578 Siegler S, Udupa JK, Ringleb SI, Imhauser CW, HJirsch BE, Odhner D, Saha PK, Okereke E, Roach N (2005) Mechanics of the ankle and subtalar joints revealed through a 3D quasi-static stress MRI technique. 38:567–578
75.
Zurück zum Zitat Solomonow M, Lewis J (2002) Reflex from the ankle ligaments of the feline. J Electromyogr Kinesiol 12:193–198CrossRefPubMed Solomonow M, Lewis J (2002) Reflex from the ankle ligaments of the feline. J Electromyogr Kinesiol 12:193–198CrossRefPubMed
76.
Zurück zum Zitat Stacoff A, Nigg BM, Reinschmidt C, van den Bogert AJ, Lundberg A (2000) Tibiocalcaneal kinematics of barefoot versus shod running. J Biomech 33:1387–1395CrossRefPubMed Stacoff A, Nigg BM, Reinschmidt C, van den Bogert AJ, Lundberg A (2000) Tibiocalcaneal kinematics of barefoot versus shod running. J Biomech 33:1387–1395CrossRefPubMed
77.
Zurück zum Zitat Stagni R, Leardini A, Ensini A (2004) Ligament recruitment at the human ankle joint complex in passive flexion. J Biomech 37:1823–1829CrossRefPubMed Stagni R, Leardini A, Ensini A (2004) Ligament recruitment at the human ankle joint complex in passive flexion. J Biomech 37:1823–1829CrossRefPubMed
78.
Zurück zum Zitat Stagni R, Leardini A, Ensini A, Cappello A (2005) Ankle morphometry evaluated using a new semi-automated technique based on X-ray pictures. Clin Biomech (Bristol, Avon) 20:307–311CrossRef Stagni R, Leardini A, Ensini A, Cappello A (2005) Ankle morphometry evaluated using a new semi-automated technique based on X-ray pictures. Clin Biomech (Bristol, Avon) 20:307–311CrossRef
79.
Zurück zum Zitat Stauffer RN, Chao ES, Brewster RC (1977) Force and motion analysis of the normal, diseased, and prostetic ankle joint. Clin Orthop Relat Res 127:189–196PubMed Stauffer RN, Chao ES, Brewster RC (1977) Force and motion analysis of the normal, diseased, and prostetic ankle joint. Clin Orthop Relat Res 127:189–196PubMed
80.
Zurück zum Zitat Stindel E, Udupa JK, Hirsch BE, Odhner D (2001) An in vivo analysis of the motion of the peri-talar joint complex based on MR imaging. IEEE Trans Biomed Eng 48:236–247CrossRefPubMed Stindel E, Udupa JK, Hirsch BE, Odhner D (2001) An in vivo analysis of the motion of the peri-talar joint complex based on MR imaging. IEEE Trans Biomed Eng 48:236–247CrossRefPubMed
81.
Zurück zum Zitat Stormont DM, Morrey BF, An KN, Cass JR (1985) Stability of the loaded ankle. Relation between articular restraint and primary and secondary static restraints. Am J Spots Med 13:295–300CrossRef Stormont DM, Morrey BF, An KN, Cass JR (1985) Stability of the loaded ankle. Relation between articular restraint and primary and secondary static restraints. Am J Spots Med 13:295–300CrossRef
82.
Zurück zum Zitat Sugimoto K, Samoto N, Takakura Y, Tamai S (1997) Varus tilt of the tibial plafond as a factor in chronic ligament instability of the ankle. Foot Ankle Int 18:402–405PubMed Sugimoto K, Samoto N, Takakura Y, Tamai S (1997) Varus tilt of the tibial plafond as a factor in chronic ligament instability of the ankle. Foot Ankle Int 18:402–405PubMed
83.
Zurück zum Zitat Takebayashi T, Yamashita T, Minaki Y, Ishii S (1997) Mechanosensitive afferent units in the lateral ligament of the ankle. J Bone Joint Surg Br 79:490–493CrossRefPubMed Takebayashi T, Yamashita T, Minaki Y, Ishii S (1997) Mechanosensitive afferent units in the lateral ligament of the ankle. J Bone Joint Surg Br 79:490–493CrossRefPubMed
84.
Zurück zum Zitat Tochigi Y, Takahashi K, Yamagata M, Tamaki T (2000) Influence of the interosseous talocalcaneal ligament injury on stability of the ankle-subtalar joint complex–a cadaveric experimental study. Foot Ankle Int 21:486–491PubMed Tochigi Y, Takahashi K, Yamagata M, Tamaki T (2000) Influence of the interosseous talocalcaneal ligament injury on stability of the ankle-subtalar joint complex–a cadaveric experimental study. Foot Ankle Int 21:486–491PubMed
85.
Zurück zum Zitat Tochigi Y, Rudert MJ, Amendola A, Brown TD, Saltzman CL (2005) Tensile engagement of the peri-ankle ligaments in stance phase. Foot Ankle Int 26:1067–1073PubMed Tochigi Y, Rudert MJ, Amendola A, Brown TD, Saltzman CL (2005) Tensile engagement of the peri-ankle ligaments in stance phase. Foot Ankle Int 26:1067–1073PubMed
86.
Zurück zum Zitat Tochigi Y, Rudert MJ, Saltzman CL, Amendola A, Brown TD (2006) Contribution of articular geometry to ankle stabilization. J Bone Joint Surg Am 88:2704–2713CrossRefPubMed Tochigi Y, Rudert MJ, Saltzman CL, Amendola A, Brown TD (2006) Contribution of articular geometry to ankle stabilization. J Bone Joint Surg Am 88:2704–2713CrossRefPubMed
87.
Zurück zum Zitat Tochigi Y, Rudert MJ, McKinley TO, Pedersen DR, Brown TD (2008) Correlation of dynamic cartilage contact stress aberrations with severity of instability in ankle inconguity. J Orthop Res 26:1186–1193CrossRefPubMed Tochigi Y, Rudert MJ, McKinley TO, Pedersen DR, Brown TD (2008) Correlation of dynamic cartilage contact stress aberrations with severity of instability in ankle inconguity. J Orthop Res 26:1186–1193CrossRefPubMed
88.
Zurück zum Zitat Tuijthof GJ, Zengerink M, Beimers L, Jonges R, Maas M, van Dijk CN, Blankevoort L (2009) Determination of consistent patterns of range of motion in the ankle joint with a computed tomography stress-test. Clin Biomech (Bristol, Avon) 24:517–523CrossRef Tuijthof GJ, Zengerink M, Beimers L, Jonges R, Maas M, van Dijk CN, Blankevoort L (2009) Determination of consistent patterns of range of motion in the ankle joint with a computed tomography stress-test. Clin Biomech (Bristol, Avon) 24:517–523CrossRef
89.
Zurück zum Zitat Walker PS (1977) Human joints and their artificial replacement. Charles C. Thomas, Springfield Walker PS (1977) Human joints and their artificial replacement. Charles C. Thomas, Springfield
90.
Zurück zum Zitat Watanabe K, Crevoisier XM, Kitaoka HB, Zhao KD, Berglund LJ, Kaufman KR, An KN (2009) Analysis of joint laxity after total ankle arthroplasty: cadaver study. Clin Biomech (Bristol, Avon) 24:655–660CrossRef Watanabe K, Crevoisier XM, Kitaoka HB, Zhao KD, Berglund LJ, Kaufman KR, An KN (2009) Analysis of joint laxity after total ankle arthroplasty: cadaver study. Clin Biomech (Bristol, Avon) 24:655–660CrossRef
91.
92.
Zurück zum Zitat Westland P, Hashimoto T, Winson I, Lundberg A, Arndt A (2002) Differences in ankle-joint complex motion during the stance phase of walking as measured by superficial and bone-archored markers. Foot Ankle Int 23:856–863 Westland P, Hashimoto T, Winson I, Lundberg A, Arndt A (2002) Differences in ankle-joint complex motion during the stance phase of walking as measured by superficial and bone-archored markers. Foot Ankle Int 23:856–863
93.
Zurück zum Zitat Wolf P, Luechinger R, Boesiger P, Stuessi E, Stacoff A (2007) A MR imaging procedure to measure tarsal bone rotations. J Biomech Eng 129:931–936CrossRefPubMed Wolf P, Luechinger R, Boesiger P, Stuessi E, Stacoff A (2007) A MR imaging procedure to measure tarsal bone rotations. J Biomech Eng 129:931–936CrossRefPubMed
Metadaten
Titel
The relation between geometry and function of the ankle joint complex: a biomechanical review
verfasst von
Roeland P. Kleipool
Leendert Blankevoort
Publikationsdatum
01.05.2010
Verlag
Springer-Verlag
Erschienen in
Knee Surgery, Sports Traumatology, Arthroscopy / Ausgabe 5/2010
Print ISSN: 0942-2056
Elektronische ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-010-1088-2

Weitere Artikel der Ausgabe 5/2010

Knee Surgery, Sports Traumatology, Arthroscopy 5/2010 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.