Skip to main content
Erschienen in: Experimental Brain Research 3/2004

01.10.2004 | Research Article

Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey

verfasst von: M. D. Crutcher, G. S. Russo, S. Ye, D. A. Backus

Erschienen in: Experimental Brain Research | Ausgabe 3/2004

Einloggen, um Zugang zu erhalten

Abstract

Very little is known about the role of the cingulate motor area (CMA) in visually guided reaching compared to other cortical motor areas. To investigate the hierarchical role of the caudal CMA (CMAc) during reaching we recorded the activity of neurons in CMAc in comparison to the supplementary motor area proper (SMA) while a monkey performed an instructed delay task that required it to position a cursor over visual targets on a computer screen using two-dimensional (2D) joystick movements. The direction of the monkey’s arm movement was dissociated from the direction of the visual target by periodically reversing the relationship between the direction of movement of the joystick and that of the cursor. Neurons that responded maximally with a particular limb movement direction regardless of target location were classified as limb-dependent, whereas neurons that responded maximally to a particular target direction regardless of the direction of limb movement were classified as target-dependent. Neurons whose activity was directional in one of the two visuomotor mapping conditions and non-directional or inactive in the other were categorized as context-dependent. Limb-dependent activity was observed more frequently than target-dependent activity in both CMAc and SMA proper during both the delay period (preparatory activity; CMAc, 17%; SMA, 31%) and during movement execution (CMAc, 49%, SMA, 48%). A modest percentage of neurons with preparatory activity were target-dependent in both CMAc (11%) and SMA proper (8%) and a similar percentage of neurons in both areas demonstrated target-dependent, movement activity (CMAc, 8%; SMA, 10%). The surprising finding was that a very large percentage of neurons in both areas displayed context-dependent activity either during the preparatory (CMAc, 72%; SMA, 61%) or movement (CMAc, 43%, SMA 42%) epochs of the task. These results show that neural activity in both CMAc and SMA can directly represent movement direction in either limb-centered or target-centered coordinates. The presence of target-dependent activity in CMAc, as well as SMA, suggests that both are involved in the transformation of visual target information into appropriate motor commands. Target-dependent activity has been found in the putamen, SMA, CMAc, dorsal and ventral premotor cortex, as well as primary motor cortex. This indicates that the visuomotor transformations required for visually guided reaching are carried out by a distributed network of interconnected motor areas. The large proportion of neurons with context-dependent activity suggests, however, that while both CMAc and SMA may play a role in the visuomotor transformation of target information into movement parameters, their activity is not solely coding parameters of movement, since their involvement in this process is highly condition-dependent.
Literatur
Zurück zum Zitat Alexander GE, Crutcher MD (1990) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. J Neurophysiol 64:164–178PubMed Alexander GE, Crutcher MD (1990) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. J Neurophysiol 64:164–178PubMed
Zurück zum Zitat Alexander GE, DeLong MR, Crutcher MD (1992) Do cortical and basal ganglionic motor areas use “motor programs” to control movement? Behav Brain Sci 15:656–665 Alexander GE, DeLong MR, Crutcher MD (1992) Do cortical and basal ganglionic motor areas use “motor programs” to control movement? Behav Brain Sci 15:656–665
Zurück zum Zitat Backus DA, Ye S, Russo GS, Crutcher MD (2001) Neural activity correlated with the preparation and execution of visually guided arm movements in the cingulate motor area of the monkey: preliminary findings. Exp Brain Res 140:182–189CrossRefPubMed Backus DA, Ye S, Russo GS, Crutcher MD (2001) Neural activity correlated with the preparation and execution of visually guided arm movements in the cingulate motor area of the monkey: preliminary findings. Exp Brain Res 140:182–189CrossRefPubMed
Zurück zum Zitat Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256:211–228PubMed Barbas H, Pandya DN (1987) Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J Comp Neurol 256:211–228PubMed
Zurück zum Zitat Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228PubMed Bates JF, Goldman-Rakic PS (1993) Prefrontal connections of medial motor areas in the rhesus monkey. J Comp Neurol 336:211–228PubMed
Zurück zum Zitat Battaglia Mayer A, Ferraina S, Marconi B, Bullis JB, Lacquaniti F, Burnod Y, Baraduc P, Caminiti R (1998) Early motor influences on visuomotor transformations for reaching: a positive image of optic ataxia. Exp Brain Res 123:172–189CrossRefPubMed Battaglia Mayer A, Ferraina S, Marconi B, Bullis JB, Lacquaniti F, Burnod Y, Baraduc P, Caminiti R (1998) Early motor influences on visuomotor transformations for reaching: a positive image of optic ataxia. Exp Brain Res 123:172–189CrossRefPubMed
Zurück zum Zitat Boussaoud D, Wise SP (1993a) Primate frontal cortex: effects of stimulus and movement. Exp Brain Res 95:28–40PubMed Boussaoud D, Wise SP (1993a) Primate frontal cortex: effects of stimulus and movement. Exp Brain Res 95:28–40PubMed
Zurück zum Zitat Boussaoud D, Wise SP (1993b) Primate frontal cortex: neuronal activity following attentional versus intentional cues. Exp Brain Res 95:15–27PubMed Boussaoud D, Wise SP (1993b) Primate frontal cortex: neuronal activity following attentional versus intentional cues. Exp Brain Res 95:15–27PubMed
Zurück zum Zitat Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47CrossRef Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12:1–47CrossRef
Zurück zum Zitat Cadoret G, Smith A (1995) Input-output properties of hand-related cells in the ventral cingulate cortex in the monkey. J Neurophysiol 73:2584–2590PubMed Cadoret G, Smith A (1995) Input-output properties of hand-related cells in the ventral cingulate cortex in the monkey. J Neurophysiol 73:2584–2590PubMed
Zurück zum Zitat Cadoret G, Smith AM (1997) Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey. J Neurophysiol 77:153–166PubMed Cadoret G, Smith AM (1997) Comparison of the neuronal activity in the SMA and the ventral cingulate cortex during prehension in the monkey. J Neurophysiol 77:153–166PubMed
Zurück zum Zitat Caminiti R, Ferraina S, Mayer AB (1998) Visuomotor transformations: early cortical mechanisms of reaching. Curr Opin Neurobiol 8:753–761CrossRefPubMed Caminiti R, Ferraina S, Mayer AB (1998) Visuomotor transformations: early cortical mechanisms of reaching. Curr Opin Neurobiol 8:753–761CrossRefPubMed
Zurück zum Zitat Crammond DJ, Kalaska JF (1994) Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. J Neurophysiol 71:1281–1284PubMed Crammond DJ, Kalaska JF (1994) Modulation of preparatory neuronal activity in dorsal premotor cortex due to stimulus-response compatibility. J Neurophysiol 71:1281–1284PubMed
Zurück zum Zitat Crutcher MD, Alexander GE (1990) Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. J Neurophysiol 64:151–163PubMed Crutcher MD, Alexander GE (1990) Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. J Neurophysiol 64:151–163PubMed
Zurück zum Zitat di Pellegrino G, Wise SP (1993) Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate. Somatosens Mot Res 10:245–262PubMed di Pellegrino G, Wise SP (1993) Effects of attention on visuomotor activity in the premotor and prefrontal cortex of a primate. Somatosens Mot Res 10:245–262PubMed
Zurück zum Zitat Dominey PF, Boussaoud D (1997) Encoding behavioral context in recurrent networks of the fronto-striatal system: a simulation study. Brain Res Cogn Brain Res 6:53–65CrossRefPubMed Dominey PF, Boussaoud D (1997) Encoding behavioral context in recurrent networks of the fronto-striatal system: a simulation study. Brain Res Cogn Brain Res 6:53–65CrossRefPubMed
Zurück zum Zitat Doricchi F, Perani D, Incoccia C, Grassi F, Cappa SF, Bettinardi V, Galati G, Pizzamiglio L, Fazio F (1997) Neural control of fast-regular saccades and antisaccades: an investigation using positron emission tomography. Exp Brain Res 116:50–62PubMed Doricchi F, Perani D, Incoccia C, Grassi F, Cappa SF, Bettinardi V, Galati G, Pizzamiglio L, Fazio F (1997) Neural control of fast-regular saccades and antisaccades: an investigation using positron emission tomography. Exp Brain Res 116:50–62PubMed
Zurück zum Zitat Dum RP, Strick PL (1991a) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689PubMed Dum RP, Strick PL (1991a) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11:667–689PubMed
Zurück zum Zitat Dum RP, Strick PL (1991b) Premotor areas: nodal points for parallel efferent systems involved in the central control of movement. In: Humphrey DR, Freund HJ (eds) Motor control: concepts and issues. John Wiley, Chichester, pp 383–397 Dum RP, Strick PL (1991b) Premotor areas: nodal points for parallel efferent systems involved in the central control of movement. In: Humphrey DR, Freund HJ (eds) Motor control: concepts and issues. John Wiley, Chichester, pp 383–397
Zurück zum Zitat Dum RP, Strick PL (1992) Medial wall motor areas and skeletomotor control. Curr Opin Neurobiol 2:836–839CrossRefPubMed Dum RP, Strick PL (1992) Medial wall motor areas and skeletomotor control. Curr Opin Neurobiol 2:836–839CrossRefPubMed
Zurück zum Zitat Dum R, Strick P (1993) Cingulate motor areas. In: Vogt B, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook. Birkhäuser, Boston, pp 415–441 Dum R, Strick P (1993) Cingulate motor areas. In: Vogt B, Gabriel M (eds) Neurobiology of cingulate cortex and limbic thalamus: a comprehensive handbook. Birkhäuser, Boston, pp 415–441
Zurück zum Zitat Dum R, Strick P (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525PubMed Dum R, Strick P (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525PubMed
Zurück zum Zitat Fu Q-G, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J Neurophysiol 73:836–854PubMed Fu Q-G, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J Neurophysiol 73:836–854PubMed
Zurück zum Zitat Fujii N, Mushiake H, Tanji J (2002) Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and pre-SMA of monkeys. J Neurophysiol 87:2158–2166PubMed Fujii N, Mushiake H, Tanji J (2002) Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and pre-SMA of monkeys. J Neurophysiol 87:2158–2166PubMed
Zurück zum Zitat Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831PubMed Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831PubMed
Zurück zum Zitat Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483PubMed Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye movements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483PubMed
Zurück zum Zitat Galea M, Smith ID (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194PubMed Galea M, Smith ID (1994) Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex 4:166–194PubMed
Zurück zum Zitat Gdowski MJ, Miller LE, Parrish T, Nenonene EK, Houk JC (2001) Context dependency in the globus pallidus internal segment during targeted arm movements. J Neurophysiol 85:998–1004PubMed Gdowski MJ, Miller LE, Parrish T, Nenonene EK, Houk JC (2001) Context dependency in the globus pallidus internal segment during targeted arm movements. J Neurophysiol 85:998–1004PubMed
Zurück zum Zitat Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537PubMed Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537PubMed
Zurück zum Zitat Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam M (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122:1093–1106CrossRefPubMed Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam M (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122:1093–1106CrossRefPubMed
Zurück zum Zitat He S-Q, Dum R, Strick P (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306PubMed He S-Q, Dum R, Strick P (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15:3284–3306PubMed
Zurück zum Zitat Hepp-Reymond M, Kirkpatrick-Tanner M, Gabernet L, Qi HX, Weber B (1999) Context-dependent force coding in motor and premotor cortical areas. Exp Brain Res 128:123–133CrossRefPubMed Hepp-Reymond M, Kirkpatrick-Tanner M, Gabernet L, Qi HX, Weber B (1999) Context-dependent force coding in motor and premotor cortical areas. Exp Brain Res 128:123–133CrossRefPubMed
Zurück zum Zitat Hollerbach JM (1982) Computers, brains and the control of movement. Trends Neurosci 5:189–192CrossRef Hollerbach JM (1982) Computers, brains and the control of movement. Trends Neurosci 5:189–192CrossRef
Zurück zum Zitat Hoshi E, Tanji J (2000) Integration of target and body-part information in the premotor cortex when planning action. Nature 408:466–470CrossRefPubMed Hoshi E, Tanji J (2000) Integration of target and body-part information in the premotor cortex when planning action. Nature 408:466–470CrossRefPubMed
Zurück zum Zitat Hoshi E, Tanji J (2002) Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J Neurophysiol 87:1123–1128PubMed Hoshi E, Tanji J (2002) Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J Neurophysiol 87:1123–1128PubMed
Zurück zum Zitat Hutchins KD, Martino AM, Strick PL (1988) Corticospinal projections from the medial wall of the hemisphere. Exp Brain Res 71:667–672PubMed Hutchins KD, Martino AM, Strick PL (1988) Corticospinal projections from the medial wall of the hemisphere. Exp Brain Res 71:667–672PubMed
Zurück zum Zitat Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285:2136–2139CrossRefPubMed Kakei S, Hoffman DS, Strick PL (1999) Muscle and movement representations in the primary motor cortex. Science 285:2136–2139CrossRefPubMed
Zurück zum Zitat Kakei S, Hoffman DS, Strick-PL (2001) Direction of action is represented in the ventral premotor cortex. Nat Neurosci 4:1020–1025CrossRefPubMed Kakei S, Hoffman DS, Strick-PL (2001) Direction of action is represented in the ventral premotor cortex. Nat Neurosci 4:1020–1025CrossRefPubMed
Zurück zum Zitat Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255:1517–1523PubMed Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255:1517–1523PubMed
Zurück zum Zitat Kalaska JF, Hyde ML (1985) Area 4 and 5: differences between the load direction-dependent variability of cells during active postural fixation. Exp Brain Res 59:197–202PubMed Kalaska JF, Hyde ML (1985) Area 4 and 5: differences between the load direction-dependent variability of cells during active postural fixation. Exp Brain Res 59:197–202PubMed
Zurück zum Zitat Kawashima R, Tanji J, Okada K, Sugiura M, Sato K, Kinomura S, Inoue K, Ogawa A, Fukuda H (1998) Oculomotor sequence learning: a positron emission tomography study. Exp Brain Res 122:1–8CrossRefPubMed Kawashima R, Tanji J, Okada K, Sugiura M, Sato K, Kinomura S, Inoue K, Ogawa A, Fukuda H (1998) Oculomotor sequence learning: a positron emission tomography study. Exp Brain Res 122:1–8CrossRefPubMed
Zurück zum Zitat Kermadi I, Boussaoud D (1995) Role of the primate striatum in attention and sensorimotor processes: comparison with premotor cortex. Neuroreport 6:1177–1181PubMed Kermadi I, Boussaoud D (1995) Role of the primate striatum in attention and sensorimotor processes: comparison with premotor cortex. Neuroreport 6:1177–1181PubMed
Zurück zum Zitat Kimura M, Aosaki T, Hu Y, Ishida A, Watanabe K (1992) Activity of primate putamen neurons is selective to the mode of voluntary movement: visually guided, self-initiated or memory-guided. Exp Brain Res 89:473–477PubMed Kimura M, Aosaki T, Hu Y, Ishida A, Watanabe K (1992) Activity of primate putamen neurons is selective to the mode of voluntary movement: visually guided, self-initiated or memory-guided. Exp Brain Res 89:473–477PubMed
Zurück zum Zitat Lebedev MA, Wise SP (2001) Tuning for the orientation of spatial attention in dorsal premotor cortex. Eur J Neurosci 13:1002–1008CrossRefPubMed Lebedev MA, Wise SP (2001) Tuning for the orientation of spatial attention in dorsal premotor cortex. Eur J Neurosci 13:1002–1008CrossRefPubMed
Zurück zum Zitat Leonard JL (2000) Network architectures and circuit function: testing alternative hypotheses in multifunctional networks. Brain Behav Evol 55:248–255CrossRefPubMed Leonard JL (2000) Network architectures and circuit function: testing alternative hypotheses in multifunctional networks. Brain Behav Evol 55:248–255CrossRefPubMed
Zurück zum Zitat Lu M-T, Preston J, Strick P (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392PubMed Lu M-T, Preston J, Strick P (1994) Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J Comp Neurol 341:375–392PubMed
Zurück zum Zitat Luppino G, Matelli M, Rizzolatti G (1990) Cortico-cortical connections of two electrophysiologically identified arm representations in the mesial agranular frontal cortex. Exp Brain Res 82:214–218PubMed Luppino G, Matelli M, Rizzolatti G (1990) Cortico-cortical connections of two electrophysiologically identified arm representations in the mesial agranular frontal cortex. Exp Brain Res 82:214–218PubMed
Zurück zum Zitat Luppino G, Matelli M, Camarda R, Gallese V, Rizzolatti G (1991) Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol 311:463–482PubMed Luppino G, Matelli M, Camarda R, Gallese V, Rizzolatti G (1991) Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol 311:463–482PubMed
Zurück zum Zitat Luppino G, Matelli M, Camarda R, Rizzolatti G (1994) Corticospinal projections from mesial frontal and cingulate areas in the monkey. Neuroreport 5:2545–2548PubMed Luppino G, Matelli M, Camarda R, Rizzolatti G (1994) Corticospinal projections from mesial frontal and cingulate areas in the monkey. Neuroreport 5:2545–2548PubMed
Zurück zum Zitat Lurito JT, Georgakopoulos T, Georgopoulos AP (1991) Cognitive spatial-motor processes. 7. The making of movements at an angle from a stimulus direction: studies of motor cortical activity at the single cell and population levels. Exp Brain Res 87:562–580PubMed Lurito JT, Georgakopoulos T, Georgopoulos AP (1991) Cognitive spatial-motor processes. 7. The making of movements at an angle from a stimulus direction: studies of motor cortical activity at the single cell and population levels. Exp Brain Res 87:562–580PubMed
Zurück zum Zitat Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462PubMed Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J Comp Neurol 311:445–462PubMed
Zurück zum Zitat Matsuzaka Y, Aizawa H, Tanji J (1992) A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol 68:653–662PubMed Matsuzaka Y, Aizawa H, Tanji J (1992) A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol 68:653–662PubMed
Zurück zum Zitat McGuire PK, Bates JF, Goldman-Rakic PS (1991) Interhemispheric integration: 1. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cereb Cortex 1:390–407PubMed McGuire PK, Bates JF, Goldman-Rakic PS (1991) Interhemispheric integration: 1. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cereb Cortex 1:390–407PubMed
Zurück zum Zitat Mink JW, Thach WT (1993) Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 3:950–957CrossRefPubMed Mink JW, Thach WT (1993) Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 3:950–957CrossRefPubMed
Zurück zum Zitat Mitz A, Godschalk M (1989) Eye-movement representation in the frontal lobe of rhesus monkeys. Neurosci Lett 106:157–162CrossRefPubMed Mitz A, Godschalk M (1989) Eye-movement representation in the frontal lobe of rhesus monkeys. Neurosci Lett 106:157–162CrossRefPubMed
Zurück zum Zitat Mitz AR, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci 7:1010–1021PubMed Mitz AR, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci 7:1010–1021PubMed
Zurück zum Zitat Morecraft R, Hoesen GV (1992) Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J Comp Neurol 322:471–489PubMed Morecraft R, Hoesen GV (1992) Cingulate input to the primary and supplementary motor cortices in the rhesus monkey: evidence for somatotopy in areas 24c and 23c. J Comp Neurol 322:471–489PubMed
Zurück zum Zitat Morecraft RJ, Van Hoesen GW (1993) Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J Comp Neurol 337:669–689PubMed Morecraft RJ, Van Hoesen GW (1993) Frontal granular cortex input to the cingulate (M3), supplementary (M2) and primary (M1) motor cortices in the rhesus monkey. J Comp Neurol 337:669–689PubMed
Zurück zum Zitat Morecraft RJ, Louie JL, Schroeder CM, Avramov K (1997) Segregated parallel inputs to the brachial spinal cord from the cingulate motor cortex in the monkey. Neuroreport 8:3933–3938PubMed Morecraft RJ, Louie JL, Schroeder CM, Avramov K (1997) Segregated parallel inputs to the brachial spinal cord from the cingulate motor cortex in the monkey. Neuroreport 8:3933–3938PubMed
Zurück zum Zitat Mushiake H, Inase M, Tanji J (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J Neurophysiol 66:705–718PubMed Mushiake H, Inase M, Tanji J (1991) Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J Neurophysiol 66:705–718PubMed
Zurück zum Zitat Passingham RE (1989) Premotor cortex and the retrieval of movement. Brain Behav Evol 33:189–192PubMed Passingham RE (1989) Premotor cortex and the retrieval of movement. Brain Behav Evol 33:189–192PubMed
Zurück zum Zitat Paus T, Petrides M, Evans A, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469PubMed Paus T, Petrides M, Evans A, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70:453–469PubMed
Zurück zum Zitat Petit L, Courtney SM, Ungerleider LG, Haxby JV (1998) Sustained activity in the medial wall during working memory delays. J Neurosci 18:9429–9437PubMed Petit L, Courtney SM, Ungerleider LG, Haxby JV (1998) Sustained activity in the medial wall during working memory delays. J Neurosci 18:9429–9437PubMed
Zurück zum Zitat Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116PubMed Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116PubMed
Zurück zum Zitat Riehle A, Requin J (1995) Neuronal correlates of the specification of movement direction and force in four cortical areas of the monkey. Behav Brain Res 70:1–13CrossRefPubMed Riehle A, Requin J (1995) Neuronal correlates of the specification of movement direction and force in four cortical areas of the monkey. Behav Brain Res 70:1–13CrossRefPubMed
Zurück zum Zitat Rouiller EM, Tanne J, Moret V, Boussaoud D (1999) Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: a multiple retrograde tracing study. J Comp Neurol 409:131–152CrossRefPubMed Rouiller EM, Tanne J, Moret V, Boussaoud D (1999) Origin of thalamic inputs to the primary, premotor, and supplementary motor cortical areas and to area 46 in macaque monkeys: a multiple retrograde tracing study. J Comp Neurol 409:131–152CrossRefPubMed
Zurück zum Zitat Rumelhart DE, McClelland JL, Group TPR (1986) Parallel distributed processing: explorations in the microstructure of cognition, vols. 1, 2. MIT Press, Cambridge, MA Rumelhart DE, McClelland JL, Group TPR (1986) Parallel distributed processing: explorations in the microstructure of cognition, vols. 1, 2. MIT Press, Cambridge, MA
Zurück zum Zitat Rushworth MF, Hadland KA, Paus T, Sipila PK (2002) Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol 87:2577–2592PubMed Rushworth MF, Hadland KA, Paus T, Sipila PK (2002) Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. J Neurophysiol 87:2577–2592PubMed
Zurück zum Zitat Russo GS, Backus DA, Ye S, Crutcher MD (2002) Neural activity in monkey dorsal and ventral cingulate motor areas: comparison with the supplementary motor area. J Neurophysiol 88:2612–2629PubMed Russo GS, Backus DA, Ye S, Crutcher MD (2002) Neural activity in monkey dorsal and ventral cingulate motor areas: comparison with the supplementary motor area. J Neurophysiol 88:2612–2629PubMed
Zurück zum Zitat Sakurai Y (1996) Population coding by cell assemblies—what it really is in the brain. Neurosci Res 26:1–16PubMed Sakurai Y (1996) Population coding by cell assemblies—what it really is in the brain. Neurosci Res 26:1–16PubMed
Zurück zum Zitat Saltzman E (1979) Levels of sensorimotor representation. J Math Psychol 20:91–163 Saltzman E (1979) Levels of sensorimotor representation. J Math Psychol 20:91–163
Zurück zum Zitat Schall JD (1991) Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. J Neurophysiol 66:530–558PubMed Schall JD (1991) Neuronal activity related to visually guided saccadic eye movements in the supplementary motor area of rhesus monkeys. J Neurophysiol 66:530–558PubMed
Zurück zum Zitat Shen L, Alexander GE (1997a) Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex. J Neurophysiol 77:1171–1194PubMed Shen L, Alexander GE (1997a) Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex. J Neurophysiol 77:1171–1194PubMed
Zurück zum Zitat Shen L, Alexander GE (1997b) Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J Neurophysiol 77:1195–1212PubMed Shen L, Alexander GE (1997b) Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J Neurophysiol 77:1195–1212PubMed
Zurück zum Zitat Sheskin D (2000) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC, Boca Raton Sheskin D (2000) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC, Boca Raton
Zurück zum Zitat Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335–1338CrossRefPubMed Shima K, Tanji J (1998) Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335–1338CrossRefPubMed
Zurück zum Zitat Shima K, Aya K, Mushiake H, Inase M, Aizawa H, Tanji J (1991) Two movement-related foci in the primate cingulate cortex observed in signal triggered and self-paced forelimb movements. J Neurophysiol 65:188–202PubMed Shima K, Aya K, Mushiake H, Inase M, Aizawa H, Tanji J (1991) Two movement-related foci in the primate cingulate cortex observed in signal triggered and self-paced forelimb movements. J Neurophysiol 65:188–202PubMed
Zurück zum Zitat Shindo K, Shima K, Tanji J (1995) Spatial distribution of thalamic projections to the supplementary motor area and the primary motor cortex: a retrograde multiple labeling study in the macaque monkey. J Comp Neurol 357:98–116PubMed Shindo K, Shima K, Tanji J (1995) Spatial distribution of thalamic projections to the supplementary motor area and the primary motor cortex: a retrograde multiple labeling study in the macaque monkey. J Comp Neurol 357:98–116PubMed
Zurück zum Zitat Wang Y, Shima K, Sawamura H, Tanji J (2001) Spatial distribution of cingulate cells projecting to the primary, supplementary, and pre-supplementary motor areas: a retrograde multiple labeling study in the macaque monkey. Neurosci Res 39:39–49CrossRefPubMed Wang Y, Shima K, Sawamura H, Tanji J (2001) Spatial distribution of cingulate cells projecting to the primary, supplementary, and pre-supplementary motor areas: a retrograde multiple labeling study in the macaque monkey. Neurosci Res 39:39–49CrossRefPubMed
Zurück zum Zitat Wise S, Pellegrino GD, Boussaoud D (1996a) The premotor cortex and nonstandard sensorimotor mapping. Can J Physiol Pharmacol 74:469–482CrossRefPubMed Wise S, Pellegrino GD, Boussaoud D (1996a) The premotor cortex and nonstandard sensorimotor mapping. Can J Physiol Pharmacol 74:469–482CrossRefPubMed
Zurück zum Zitat Wise SP, Murray EA, Gerfen CR (1996b) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10:317–356PubMed Wise SP, Murray EA, Gerfen CR (1996b) The frontal cortex-basal ganglia system in primates. Crit Rev Neurobiol 10:317–356PubMed
Zurück zum Zitat Zhang J, Riehle A, Requin J, Kornblum S (1997) Dynamics of single neuron activity in monkey primary motor cortex related to sensorimotor transformation. J Neurosci 17:2227–2246PubMed Zhang J, Riehle A, Requin J, Kornblum S (1997) Dynamics of single neuron activity in monkey primary motor cortex related to sensorimotor transformation. J Neurosci 17:2227–2246PubMed
Metadaten
Titel
Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey
verfasst von
M. D. Crutcher
G. S. Russo
S. Ye
D. A. Backus
Publikationsdatum
01.10.2004
Erschienen in
Experimental Brain Research / Ausgabe 3/2004
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-004-1895-0

Weitere Artikel der Ausgabe 3/2004

Experimental Brain Research 3/2004 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.