Skip to main content
Erschienen in: Experimental Brain Research 3/2006

01.11.2006 | Research Article

The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles

verfasst von: Inge Zijdewind, Jane E. Butler, Simon C. Gandevia, Janet L. Taylor

Erschienen in: Experimental Brain Research | Ausgabe 3/2006

Einloggen, um Zugang zu erhalten

Abstract

During strong voluntary contractions, activity is not restricted to the target muscles. Other muscles, including contralateral muscles, often contract. We used transcranial magnetic stimulation (TMS) to analyse the origin of these unintended contralateral contractions (termed “associated” contractions). Subjects (n = 9) performed maximal voluntary contractions (MVCs) with their right elbow-flexor muscles followed by submaximal contractions with their left elbow flexors. Electromyographic activity (EMG) during the submaximal contractions was matched to the associated EMG in the left biceps brachii during the right MVC. During contractions, TMS was delivered to the motor cortex of the right or left hemisphere and excitatory motor evoked potentials (MEPs) and inhibitory (silent period) responses recorded from left biceps. Changes at a spinal level were investigated using cervicomedullary stimulation to activate corticospinal paths (n = 5). Stimulation of the right hemisphere produced silent periods of comparable duration in associated and voluntary contractions (218 vs 217 ms, respectively), whereas left hemisphere stimulation caused a depression of EMG but no EMG silence in either contraction. Despite matched EMG, MEPs elicited by right hemisphere stimulation were ∼1.5–2.5 times larger during associated compared to voluntary contractions (P < 0.005). Similar inhibition of the associated and matched voluntary activity during the silent period suggests that associated activity comes from the contralateral hemisphere and that motor areas in this (right) hemisphere are activated concomitantly with the motor areas in the left hemisphere. Comparison of the MEPs and subcortically evoked potentials implies that cortical excitability was greater in associated contractions than in the matched voluntary efforts.
Literatur
Zurück zum Zitat Aranyi Z, Rosler KM (2002) Effort-induced mirror movements. A study of transcallosal inhibition in humans. Exp Brain Res 145:76–82PubMedCrossRef Aranyi Z, Rosler KM (2002) Effort-induced mirror movements. A study of transcallosal inhibition in humans. Exp Brain Res 145:76–82PubMedCrossRef
Zurück zum Zitat Armatas CA, Summers JJ, Bradshaw JL (1994) Mirror movements in normal adult subjects. J Clin Exp Neuropsychol 16:405–413PubMed Armatas CA, Summers JJ, Bradshaw JL (1994) Mirror movements in normal adult subjects. J Clin Exp Neuropsychol 16:405–413PubMed
Zurück zum Zitat Brasil-Neto JP, Cammarota A, Valls-Sole J, Pascual-Leone A, Hallett M, Cohen LG (1995) Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand 92:383–386PubMedCrossRef Brasil-Neto JP, Cammarota A, Valls-Sole J, Pascual-Leone A, Hallett M, Cohen LG (1995) Role of intracortical mechanisms in the late part of the silent period to transcranial stimulation of the human motor cortex. Acta Neurol Scand 92:383–386PubMedCrossRef
Zurück zum Zitat Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 49:641–662PubMedCrossRef Carson RG (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res Brain Res Rev 49:641–662PubMedCrossRef
Zurück zum Zitat Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, Byblow WD (2004) Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol 560:929–940PubMedCrossRef Carson RG, Riek S, Mackey DC, Meichenbaum DP, Willms K, Forner M, Byblow WD (2004) Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. J Physiol 560:929–940PubMedCrossRef
Zurück zum Zitat Cernacek J (1961) Contralateral motor irradiation—cerebral dominance. Its changes in hemiparesis. Arch Neurol 4:165–172PubMed Cernacek J (1961) Contralateral motor irradiation—cerebral dominance. Its changes in hemiparesis. Arch Neurol 4:165–172PubMed
Zurück zum Zitat Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542PubMedCrossRef Chen R, Lozano AM, Ashby P (1999) Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 128:539–542PubMedCrossRef
Zurück zum Zitat Chen R, Yung D, Li JY (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264PubMedCrossRef Chen R, Yung D, Li JY (2003) Organization of ipsilateral excitatory and inhibitory pathways in the human motor cortex. J Neurophysiol 89:1256–1264PubMedCrossRef
Zurück zum Zitat Cohen LG, Bandinelli S, Sato S, Kufta C, Hallett M (1991) Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:366–376PubMedCrossRef Cohen LG, Bandinelli S, Sato S, Kufta C, Hallett M (1991) Attenuation in detection of somatosensory stimuli by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:366–376PubMedCrossRef
Zurück zum Zitat Curschmann H (1906) Beitrage zur physiologie und pathologie der kontralateralen mitbewegungen. Deutsche Zeitschrift Nervenheilkunde 31:1–52CrossRef Curschmann H (1906) Beitrage zur physiologie und pathologie der kontralateralen mitbewegungen. Deutsche Zeitschrift Nervenheilkunde 31:1–52CrossRef
Zurück zum Zitat Datta AK, Harrison LM, Stephens JA (1989) Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseous muscle. J Physiol 418:13–23PubMed Datta AK, Harrison LM, Stephens JA (1989) Task-dependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseous muscle. J Physiol 418:13–23PubMed
Zurück zum Zitat Diedrichsen J, Hazeltine E, Nurss W, Ivry R (2003) The role of the corpus callosum in the coupling of bimanual isometric force pulses. J Neurophysiol 90:2409–2418PubMedCrossRef Diedrichsen J, Hazeltine E, Nurss W, Ivry R (2003) The role of the corpus callosum in the coupling of bimanual isometric force pulses. J Neurophysiol 90:2409–2418PubMedCrossRef
Zurück zum Zitat Durwen HF, Herzog AG, Falk A, Calabrese P, Gehlen W (1997) Motorische spiegelphanomene; Spielgelbildliche mitbewegungen und mitaktivierungen. Neurol Rehabil 2:69–75 Durwen HF, Herzog AG, Falk A, Calabrese P, Gehlen W (1997) Motorische spiegelphanomene; Spielgelbildliche mitbewegungen und mitaktivierungen. Neurol Rehabil 2:69–75
Zurück zum Zitat Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546PubMed Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546PubMed
Zurück zum Zitat Flament D, Goldsmith P, Buckley CJ, Lemon RN (1993) Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J Physiol 464:361–378PubMed Flament D, Goldsmith P, Buckley CJ, Lemon RN (1993) Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J Physiol 464:361–378PubMed
Zurück zum Zitat Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262PubMedCrossRef Fuhr P, Agostino R, Hallett M (1991) Spinal motor neuron excitability during the silent period after cortical stimulation. Electroencephalogr Clin Neurophysiol 81:257–262PubMedCrossRef
Zurück zum Zitat Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789PubMed Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789PubMed
Zurück zum Zitat Gandevia SC, Macefield VG, Bigland-Ritchie B, Gorman RB, Burke D (1993) Motoneuronal output and gradation of effort in attempts to contract acutely paralysed leg muscles in man. J Physiol 471:411–427PubMed Gandevia SC, Macefield VG, Bigland-Ritchie B, Gorman RB, Burke D (1993) Motoneuronal output and gradation of effort in attempts to contract acutely paralysed leg muscles in man. J Physiol 471:411–427PubMed
Zurück zum Zitat Gerloff C, Cohen LG, Floeter MK, Chen R, Corwell B, Hallett M (1998) Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J Physiol 510:249–259PubMedCrossRef Gerloff C, Cohen LG, Floeter MK, Chen R, Corwell B, Hallett M (1998) Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J Physiol 510:249–259PubMedCrossRef
Zurück zum Zitat Hess CW, Mills KR, Murray NM (1986) Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neurosci Lett 71:235–240PubMedCrossRef Hess CW, Mills KR, Murray NM (1986) Magnetic stimulation of the human brain: facilitation of motor responses by voluntary contraction of ipsilateral and contralateral muscles with additional observations on an amputee. Neurosci Lett 71:235–240PubMedCrossRef
Zurück zum Zitat Hortobagyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC (2003) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90:2451–2459PubMedCrossRef Hortobagyi T, Taylor JL, Petersen NT, Russell G, Gandevia SC (2003) Changes in segmental and motor cortical output with contralateral muscle contractions and altered sensory inputs in humans. J Neurophysiol 90:2451–2459PubMedCrossRef
Zurück zum Zitat Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534PubMed Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534PubMed
Zurück zum Zitat Kang Y, Kaneko T, Ohishi H, Endo K, Araki T (1994) Spatiotemporally differential inhibition of pyramidal cells in the cat motor cortex. J Neurophysiol 71:280–293PubMed Kang Y, Kaneko T, Ohishi H, Endo K, Araki T (1994) Spatiotemporally differential inhibition of pyramidal cells in the cat motor cortex. J Neurophysiol 71:280–293PubMed
Zurück zum Zitat Kernell D, Hultborn H (1990) Synaptic effects on recruitment gain: a mechanism of importance for the input–output relations of motoneurone pools? Brain Res 507:176–179PubMedCrossRef Kernell D, Hultborn H (1990) Synaptic effects on recruitment gain: a mechanism of importance for the input–output relations of motoneurone pools? Brain Res 507:176–179PubMedCrossRef
Zurück zum Zitat Kim SG, Ashe J, Georgopoulos AP, Merkle H, Ellermann JM, Menon RS, Ogawa S, Ugurbil K (1993) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69:297–302PubMed Kim SG, Ashe J, Georgopoulos AP, Merkle H, Ellermann JM, Menon RS, Ogawa S, Ugurbil K (1993) Functional imaging of human motor cortex at high magnetic field. J Neurophysiol 69:297–302PubMed
Zurück zum Zitat Leocani L, Cohen LG, Wassermann EM, Ikoma K, Hallett M (2000) Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain 123:1161–1173PubMedCrossRef Leocani L, Cohen LG, Wassermann EM, Ikoma K, Hallett M (2000) Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain 123:1161–1173PubMedCrossRef
Zurück zum Zitat Liepert J, Dettmers C, Terborg C, Weiller C (2001) Inhibition of ipsilateral motor cortex during phasic generation of low force. Clin Neurophysiol 112:114–121PubMedCrossRef Liepert J, Dettmers C, Terborg C, Weiller C (2001) Inhibition of ipsilateral motor cortex during phasic generation of low force. Clin Neurophysiol 112:114–121PubMedCrossRef
Zurück zum Zitat Maccabee PJ, Amassian VE, Cracco RQ, Cracco JB, Rudell AP, Eberle LP, Zemon V (1991) Magnetic coil stimulation of human visual cortex: studies of perception. Electroencephalogr Clin Neurophysiol 43(Suppl):111–120 Maccabee PJ, Amassian VE, Cracco RQ, Cracco JB, Rudell AP, Eberle LP, Zemon V (1991) Magnetic coil stimulation of human visual cortex: studies of perception. Electroencephalogr Clin Neurophysiol 43(Suppl):111–120
Zurück zum Zitat Mayston MJ, Harrison LM, Stephens JA (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45:583–594PubMedCrossRef Mayston MJ, Harrison LM, Stephens JA (1999) A neurophysiological study of mirror movements in adults and children. Ann Neurol 45:583–594PubMedCrossRef
Zurück zum Zitat Meyer BU, Roricht S, Grafin von EH, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118:429–440PubMed Meyer BU, Roricht S, Grafin von EH, Kruggel F, Weindl A (1995) Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal humans and patients with abnormalities of the corpus callosum. Brain 118:429–440PubMed
Zurück zum Zitat Muellbacher W, Facchini S, Boroojerdi B, Hallett M (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol 111:344–349PubMedCrossRef Muellbacher W, Facchini S, Boroojerdi B, Hallett M (2000) Changes in motor cortex excitability during ipsilateral hand muscle activation in humans. Clin Neurophysiol 111:344–349PubMedCrossRef
Zurück zum Zitat Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef Pascual-Leone A, Walsh V, Rothwell J (2000) Transcranial magnetic stimulation in cognitive neuroscience—virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol 10:232–237PubMedCrossRef
Zurück zum Zitat Pinneo LR (1961) The effects of induced muscle tension during tracking on level of activation and on performance. J Exp Psychol 62:523–531PubMedCrossRef Pinneo LR (1961) The effects of induced muscle tension during tracking on level of activation and on performance. J Exp Psychol 62:523–531PubMedCrossRef
Zurück zum Zitat Samii A, Canos M, Ikoma K, Wassermann EM , Hallett M (1997) Absence of facilitation or depression of motor evoked potentials after contralateral homologous muscle activation. Electroencephalogr Clin Neurophysiol 105:241–245PubMedCrossRef Samii A, Canos M, Ikoma K, Wassermann EM , Hallett M (1997) Absence of facilitation or depression of motor evoked potentials after contralateral homologous muscle activation. Electroencephalogr Clin Neurophysiol 105:241–245PubMedCrossRef
Zurück zum Zitat Shinohara M, Keenan KG, Enoka RM (2003) Contralateral activity in a homologous hand muscle during voluntary contractions is greater in old adults. J Appl Physiol 94:966–974PubMed Shinohara M, Keenan KG, Enoka RM (2003) Contralateral activity in a homologous hand muscle during voluntary contractions is greater in old adults. J Appl Physiol 94:966–974PubMed
Zurück zum Zitat Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H, Shimanuki Y, Mugikura S, Fujii T, Yamadori A, Sakamoto M, Yamada S (1998) Comparison of ipsilateral activation between right and left handers: a functional MR imaging study. Neuroreport 9:1861–1866PubMedCrossRef Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H, Shimanuki Y, Mugikura S, Fujii T, Yamadori A, Sakamoto M, Yamada S (1998) Comparison of ipsilateral activation between right and left handers: a functional MR imaging study. Neuroreport 9:1861–1866PubMedCrossRef
Zurück zum Zitat Sohn YH, Dang N, Hallett M (2003) Suppression of corticospinal excitability during negative motor imagery. J Neurophysiol 90:2303–2309PubMedCrossRef Sohn YH, Dang N, Hallett M (2003) Suppression of corticospinal excitability during negative motor imagery. J Neurophysiol 90:2303–2309PubMedCrossRef
Zurück zum Zitat Stedman A, Davey NJ, Ellaway PH (1998) Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle Nerve 21:1033–1039PubMedCrossRef Stedman A, Davey NJ, Ellaway PH (1998) Facilitation of human first dorsal interosseous muscle responses to transcranial magnetic stimulation during voluntary contraction of the contralateral homonymous muscle. Muscle Nerve 21:1033–1039PubMedCrossRef
Zurück zum Zitat Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human corticospinal tract. J Appl Physiol 96:1496–1503PubMedCrossRef Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human corticospinal tract. J Appl Physiol 96:1496–1503PubMedCrossRef
Zurück zum Zitat Tinazzi M, Zanette G (1998) Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neurosci Lett 244:121–124PubMedCrossRef Tinazzi M, Zanette G (1998) Modulation of ipsilateral motor cortex in man during unimanual finger movements of different complexities. Neurosci Lett 244:121–124PubMedCrossRef
Zurück zum Zitat Tinazzi M, Farina S, Tamburin S, Facchini S, Fiaschi A, Restivo D, Berardelli A (2003) Task-dependent modulation of excitatory and inhibitory functions within the human primary motor cortex. Exp Brain Res 150:222–229PubMed Tinazzi M, Farina S, Tamburin S, Facchini S, Fiaschi A, Restivo D, Berardelli A (2003) Task-dependent modulation of excitatory and inhibitory functions within the human primary motor cortex. Exp Brain Res 150:222–229PubMed
Zurück zum Zitat Todor JI, Lazarus JA (1986) Exertion level and the intensity of associated movements. Dev Med Child Neurol 28:205–212PubMedCrossRef Todor JI, Lazarus JA (1986) Exertion level and the intensity of associated movements. Dev Med Child Neurol 28:205–212PubMedCrossRef
Zurück zum Zitat Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795–1799PubMed Wassermann EM, Fuhr P, Cohen LG, Hallett M (1991) Effects of transcranial magnetic stimulation on ipsilateral muscles. Neurology 41:1795–1799PubMed
Zurück zum Zitat Wassermann EM, Pascual-Leone A, Hallett M (1994) Cortical motor representation of the ipsilateral hand and arm. Exp Brain Res 100:121–132PubMedCrossRef Wassermann EM, Pascual-Leone A, Hallett M (1994) Cortical motor representation of the ipsilateral hand and arm. Exp Brain Res 100:121–132PubMedCrossRef
Zurück zum Zitat Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906PubMedCrossRef Ziemann U, Ishii K, Borgheresi A, Yaseen Z, Battaglia F, Hallett M, Cincotta M, Wassermann EM (1999) Dissociation of the pathways mediating ipsilateral and contralateral motor-evoked potentials in human hand and arm muscles. J Physiol 518:895–906PubMedCrossRef
Zurück zum Zitat Zijdewind I, Kernell D (2001) Bilateral interactions during contractions of intrinsic hand muscles. J Neurophysiol 85:1907–1913PubMed Zijdewind I, Kernell D (2001) Bilateral interactions during contractions of intrinsic hand muscles. J Neurophysiol 85:1907–1913PubMed
Zurück zum Zitat Zwarts MJ (1992) Central motor conduction in relation to contra- and ipsilateral activation. Electroencephalogr Clin Neurophysiol 85:425–428PubMedCrossRef Zwarts MJ (1992) Central motor conduction in relation to contra- and ipsilateral activation. Electroencephalogr Clin Neurophysiol 85:425–428PubMedCrossRef
Metadaten
Titel
The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles
verfasst von
Inge Zijdewind
Jane E. Butler
Simon C. Gandevia
Janet L. Taylor
Publikationsdatum
01.11.2006
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 3/2006
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-006-0570-z

Weitere Artikel der Ausgabe 3/2006

Experimental Brain Research 3/2006 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.