Skip to main content
Erschienen in: Experimental Brain Research 3/2008

01.01.2008 | Research Article

Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects

verfasst von: John H. J. Allum, Lars B. Oude Nijhuis, Mark G. Carpenter

Erschienen in: Experimental Brain Research | Ausgabe 3/2008

Einloggen, um Zugang zu erhalten

Abstract

One of the signatures of balance deficits observed in vestibular loss subjects is the greater instability in the roll compared to pitch planes. Directional differences in the timing and strengths of vestibular and proprioceptive sensory signals between roll and pitch may lead to a greater miscalculation of roll than pitch motion of the body in space when vestibular input is absent. For this reason, we compared the timing and amplitude of vestibular information, (observable in stimulus-induced head accelerations when subjects are tilted in different directions), with that of proprioceptive information caused by stimulus induced rotations of ankle and hip joints [observable as short latency (SL) stretch responses in leg and trunk muscle EMG activity]. We attempted to link the possible mode of sensory interaction with the deficits in balance control. Six subjects with bilaterally absent vestibular function and 12 age-matched controls were perturbed, while standing, in 8 directions of pitch and roll support surface rotation in random order. Body segment movements were recorded with a motion analysis system, head accelerations with accelerometers, and muscle activity with surface EMG. Information on stimulus pitch motion was available sequentially. Pitch movements of the support surface were best coded in amplitude by ankle rotation velocity, and by head vertical linear acceleration, which started at 13 ms after the onset of ankle rotation. EMG SL reflex responses in soleus with onsets at 46 ms provided a distal proprioceptive correlate to the pitch motion. Roll information on the stimulus was available simultaneously. Hip adduction and lumbo-sacral angular velocity were represented neurally as directionally specific short latency stretch and unloading reflexes in the bilateral gluteus medius muscles and paraspinal muscles with onsets at 28 ms. Roll angular accelerations of the head coded roll amplitude and direction at the same time (31 ms). Significant differences in amplitude coding between vestibular loss subjects and controls were only observed as a weaker coding between stimulus motion and head roll and head lateral linear accelerations. The absence of vestibular inputs in vestibular loss subjects led to characteristic larger trunk in motion in roll in the direction of tilt compared to pitch with respect to controls. This was preceded by less uphill flexion and no downhill extension of the legs in vestibular loss subjects. Downhill arm abduction responses were also greater. These results suggest that in man vestibular inputs provide critical information necessary for the appropriate modulation of roll balance-correcting responses in the form of stabilising knee and arm movements. The simultaneous arrival of roll sensory information in controls may indicate that proprioceptive and vestibular signals can only be interpreted correctly when both are present. Thus, roll proprioceptive information may be interpreted inaccurately in vestibular loss subjects, leading to an incorrect perception of body tilt and insufficient uphill knee flexion, especially as cervico-collic signals appear less reliable in these subjects as an alternative sensory input.
Literatur
Zurück zum Zitat Anderson JH, Soechting JF, Terzuolo CA (1977) Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. I. Motor output during sinusoidal linear accelerations. Brain Res 120:1–15PubMedCrossRef Anderson JH, Soechting JF, Terzuolo CA (1977) Dynamic relations between natural vestibular inputs and activity of forelimb extensor muscles in the decerebrate cat. I. Motor output during sinusoidal linear accelerations. Brain Res 120:1–15PubMedCrossRef
Zurück zum Zitat Allum JHJ, Pfaltz CR (1985) Visual and vestibular contributions to pitch sway stabilization in the ankle muscles of normals and patients with bilateral peripheral vestibular deficits. Exp Brain Res 58:82–90PubMedCrossRef Allum JHJ, Pfaltz CR (1985) Visual and vestibular contributions to pitch sway stabilization in the ankle muscles of normals and patients with bilateral peripheral vestibular deficits. Exp Brain Res 58:82–90PubMedCrossRef
Zurück zum Zitat Allum JHJ, Honegger F, Schicks H (1993) Vestibular and proprioceptive modulation of postural synergies in normal subjects. J Vest Res 3:59–85 Allum JHJ, Honegger F, Schicks H (1993) Vestibular and proprioceptive modulation of postural synergies in normal subjects. J Vest Res 3:59–85
Zurück zum Zitat Allum JHJ, Honegger F, Acuña H (1995) Differential control of leg and trunk muscle activity by vestibulo-spinal and proprioceptive signals during human balance corrections. Acta Otol Laryngol (Stockh) 115:124–129 Allum JHJ, Honegger F, Acuña H (1995) Differential control of leg and trunk muscle activity by vestibulo-spinal and proprioceptive signals during human balance corrections. Acta Otol Laryngol (Stockh) 115:124–129
Zurück zum Zitat Allum JHJ, Honegger F (1998) Interactions between vestibular and proprioceptive signals in triggering and modulating human balance-correcting responses differ across muscles. Exp Brain Res 121:478–494PubMedCrossRef Allum JHJ, Honegger F (1998) Interactions between vestibular and proprioceptive signals in triggering and modulating human balance-correcting responses differ across muscles. Exp Brain Res 121:478–494PubMedCrossRef
Zurück zum Zitat Allum JHJ, Ledin T (1999) Recovery of vestibulo-ocular function in subjects with acute peripheral vestibular loss. J Vest Res 9:135–144 Allum JHJ, Ledin T (1999) Recovery of vestibulo-ocular function in subjects with acute peripheral vestibular loss. J Vest Res 9:135–144
Zurück zum Zitat Allum JHJ, Carpenter MG, Bloem BR, Honegger F, Adkin AL (2002) Age-dependent variations in the directional sensitivity of balance corrections. J Physiol (Lond) 542:643–663CrossRef Allum JHJ, Carpenter MG, Bloem BR, Honegger F, Adkin AL (2002) Age-dependent variations in the directional sensitivity of balance corrections. J Physiol (Lond) 542:643–663CrossRef
Zurück zum Zitat Allum JHJ, Carpenter MG, Honegger F (2003) Directional aspects of balance corrections in man. IEEE Eng Med Biol Mag 22:37–47PubMedCrossRef Allum JHJ, Carpenter MG, Honegger F (2003) Directional aspects of balance corrections in man. IEEE Eng Med Biol Mag 22:37–47PubMedCrossRef
Zurück zum Zitat Bakker M, Allum JHJ, Visser JE, Grüneberg C, Van de Warrenburg BPC, Kremer BH, Bloem BR (2006) Postural responses to multidirectional stance perturbations in cerebellar ataxia. Exp Neurol 202:21–35 Bakker M, Allum JHJ, Visser JE, Grüneberg C, Van de Warrenburg BPC, Kremer BH, Bloem BR (2006) Postural responses to multidirectional stance perturbations in cerebellar ataxia. Exp Neurol 202:21–35
Zurück zum Zitat Bloem BR, Allum JHJ, Carpenter MG, Honegger F (2000) Is lower leg proprioception essential for triggering human balance corrections? Exp Brain Res 130:375–391PubMedCrossRef Bloem BR, Allum JHJ, Carpenter MG, Honegger F (2000) Is lower leg proprioception essential for triggering human balance corrections? Exp Brain Res 130:375–391PubMedCrossRef
Zurück zum Zitat Bloem BR, Allum JHJ, Carpenter MG (2002) Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Exp Brain Res 142:91–107PubMedCrossRef Bloem BR, Allum JHJ, Carpenter MG (2002) Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Exp Brain Res 142:91–107PubMedCrossRef
Zurück zum Zitat Carpenter MG, Allum JHJ, Honegger F (1999) Directional sensitivities of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes. Exp Brain Res 129:93–113PubMedCrossRef Carpenter MG, Allum JHJ, Honegger F (1999) Directional sensitivities of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes. Exp Brain Res 129:93–113PubMedCrossRef
Zurück zum Zitat Carpenter MG, Allum JHJ, Honegger F (2001) Vestibular influences on human postural control in combination of pitch and roll planes reveal differences in spatio temporal processing. Exp Brain Res 140:95–111PubMedCrossRef Carpenter MG, Allum JHJ, Honegger F (2001) Vestibular influences on human postural control in combination of pitch and roll planes reveal differences in spatio temporal processing. Exp Brain Res 140:95–111PubMedCrossRef
Zurück zum Zitat Carpenter MG, Allum JHJ, Honegger F, Adkin AL, Bloem BR (2004) Postural abnormalities to multidirectional stance perturbations in Parkinson’s disease. J Neurol Neurosurg Psychiat 75:1245–1254PubMedCrossRef Carpenter MG, Allum JHJ, Honegger F, Adkin AL, Bloem BR (2004) Postural abnormalities to multidirectional stance perturbations in Parkinson’s disease. J Neurol Neurosurg Psychiat 75:1245–1254PubMedCrossRef
Zurück zum Zitat Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59:1888–1905PubMed Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59:1888–1905PubMed
Zurück zum Zitat Dietz V (1998) Evidence for a load receptor contribution to the control of posture and locomotion. Neurosci Biobehav Rev 22:495–499PubMedCrossRef Dietz V (1998) Evidence for a load receptor contribution to the control of posture and locomotion. Neurosci Biobehav Rev 22:495–499PubMedCrossRef
Zurück zum Zitat Forssberg H, Hirschfeld H (1994) Postural adjustments in sitting humans following external perturbations. Exp Brain Res 97:515–527PubMedCrossRef Forssberg H, Hirschfeld H (1994) Postural adjustments in sitting humans following external perturbations. Exp Brain Res 97:515–527PubMedCrossRef
Zurück zum Zitat Grillner S, Hongo T (1972) Vestibulo spinal effects on motoneurons and interneurons in the lumbosacral cord. Prog Brain Res 37:243–262PubMedCrossRef Grillner S, Hongo T (1972) Vestibulo spinal effects on motoneurons and interneurons in the lumbosacral cord. Prog Brain Res 37:243–262PubMedCrossRef
Zurück zum Zitat Grillner S, Hongo T, Lund S (1971) Convergent effects on α-motoneurons from the vestibulospinal tract and a pathway descending in the medial longitudinal fasciculus. Exp Brain Res 12:457–479PubMedCrossRef Grillner S, Hongo T, Lund S (1971) Convergent effects on α-motoneurons from the vestibulospinal tract and a pathway descending in the medial longitudinal fasciculus. Exp Brain Res 12:457–479PubMedCrossRef
Zurück zum Zitat Grüneberg C, Allum JHJ, Honegger F, Bloem BR (2004) The influence of artificially increased hip and trunk stiffness on balance control in the pitch and roll planes. Exp Brain Res 157:472–485PubMedCrossRef Grüneberg C, Allum JHJ, Honegger F, Bloem BR (2004) The influence of artificially increased hip and trunk stiffness on balance control in the pitch and roll planes. Exp Brain Res 157:472–485PubMedCrossRef
Zurück zum Zitat Grüneberg C, Duysens J, Honegger F, Allum JHJ (2005) Spatio-temporal separation of roll and pitch balance correcting commands in man. J Neurophysiol 94:3143–3158PubMedCrossRef Grüneberg C, Duysens J, Honegger F, Allum JHJ (2005) Spatio-temporal separation of roll and pitch balance correcting commands in man. J Neurophysiol 94:3143–3158PubMedCrossRef
Zurück zum Zitat Henry SM, Fung J, Horak FB (1998) EMG responses to maintain stance during multidirectional surface translations. J Neurophysiol 80:1939–1950PubMed Henry SM, Fung J, Horak FB (1998) EMG responses to maintain stance during multidirectional surface translations. J Neurophysiol 80:1939–1950PubMed
Zurück zum Zitat Horak FB, Nashner LM, Diener HC (1990) Postural strategies associated with somatosensory and vestibular-loss. Exp Brain Res 82:167–177PubMedCrossRef Horak FB, Nashner LM, Diener HC (1990) Postural strategies associated with somatosensory and vestibular-loss. Exp Brain Res 82:167–177PubMedCrossRef
Zurück zum Zitat Inglis JT, Macpherson JM (1995) Bilateral labyrinthectomy in the cat: effects on the postural response to translation. J Neurophysiol 73:1181–1191PubMed Inglis JT, Macpherson JM (1995) Bilateral labyrinthectomy in the cat: effects on the postural response to translation. J Neurophysiol 73:1181–1191PubMed
Zurück zum Zitat Katz R, Pierrot-Deseilligny E (1999) Recurrent inhibition in humans. Prog Neurobiol 57:325–355PubMedCrossRef Katz R, Pierrot-Deseilligny E (1999) Recurrent inhibition in humans. Prog Neurobiol 57:325–355PubMedCrossRef
Zurück zum Zitat Keshner EA, Allum JHJ, Pfaltz CR (1987) Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Exp Brain Res 69:77–92PubMedCrossRef Keshner EA, Allum JHJ, Pfaltz CR (1987) Postural coactivation and adaptation in the sway stabilizing responses of normals and patients with bilateral vestibular deficit. Exp Brain Res 69:77–92PubMedCrossRef
Zurück zum Zitat Krutki P, Jankowska E, Edgley SA (2003) Are crossed actions of reticulospinal and vestibulospinal neurons on feline motoneurons mediated by the same or separate commissural neurons? J Neurosci 23:8041–8050PubMed Krutki P, Jankowska E, Edgley SA (2003) Are crossed actions of reticulospinal and vestibulospinal neurons on feline motoneurons mediated by the same or separate commissural neurons? J Neurosci 23:8041–8050PubMed
Zurück zum Zitat Lacour M, Xerri C, Hugen M (1979) Compensation of postural reactions to fall in the vestibular neurectomized monkey. Role of remaining labyrinthic afferences. Exp Brain Res 37:563–580PubMedCrossRef Lacour M, Xerri C, Hugen M (1979) Compensation of postural reactions to fall in the vestibular neurectomized monkey. Role of remaining labyrinthic afferences. Exp Brain Res 37:563–580PubMedCrossRef
Zurück zum Zitat Lindsay KW, Roberts TD, Rosenberg JR (1976) Asymmetric tonic labyrinth reflexes in the decerebrate cat. J Physiol 261:583–601PubMed Lindsay KW, Roberts TD, Rosenberg JR (1976) Asymmetric tonic labyrinth reflexes in the decerebrate cat. J Physiol 261:583–601PubMed
Zurück zum Zitat MacPherson JM (1988) Strategies that simplify the control of quadrupedal stance and forces at the ground. J Neurophysiol 60:204–217PubMed MacPherson JM (1988) Strategies that simplify the control of quadrupedal stance and forces at the ground. J Neurophysiol 60:204–217PubMed
Zurück zum Zitat MacPherson JM, Everaert DG, Stapley PJ, Ting LH (2007) Bilateral vestibular loss in cats leads to active destabilization of balance during pitch and roll rotations of the support-surface. J Neurophysiol 97:4357–4367PubMedCrossRef MacPherson JM, Everaert DG, Stapley PJ, Ting LH (2007) Bilateral vestibular loss in cats leads to active destabilization of balance during pitch and roll rotations of the support-surface. J Neurophysiol 97:4357–4367PubMedCrossRef
Zurück zum Zitat Mergner T, Huber W, Becker W (1997) Vestibular-neck interaction and transformation of sensory coordinates. J Ves Res 7:347–367CrossRef Mergner T, Huber W, Becker W (1997) Vestibular-neck interaction and transformation of sensory coordinates. J Ves Res 7:347–367CrossRef
Zurück zum Zitat Nashner LM, Black FO, Wall C III (1982) Adaptation to altered support and visual conditions during stance in patients with vestibular deficits. J Neurosc 5:536–544 Nashner LM, Black FO, Wall C III (1982) Adaptation to altered support and visual conditions during stance in patients with vestibular deficits. J Neurosc 5:536–544
Zurück zum Zitat Perry SD, McIlroy WE, Maki BE (2000) The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation. Brain Res 877:401–406PubMedCrossRef Perry SD, McIlroy WE, Maki BE (2000) The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation. Brain Res 877:401–406PubMedCrossRef
Zurück zum Zitat Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423PubMedCrossRef Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423PubMedCrossRef
Zurück zum Zitat Peterson BW, Fukushima K, Hirgi N, Schor RH, Wilson VJ (1980) Responses of vestibulospinal and recticulospinal neurons to sinusoidal vestibular stimulation. J Neurophysiol 43:1236–1250PubMed Peterson BW, Fukushima K, Hirgi N, Schor RH, Wilson VJ (1980) Responses of vestibulospinal and recticulospinal neurons to sinusoidal vestibular stimulation. J Neurophysiol 43:1236–1250PubMed
Zurück zum Zitat Pompeiano O (1984) Excitatory and inhibitory influences on the spinal cord during vestibular and neck reflexes. Acta Otolaryngol (Stockh) Suppl 406:5–9 Pompeiano O (1984) Excitatory and inhibitory influences on the spinal cord during vestibular and neck reflexes. Acta Otolaryngol (Stockh) Suppl 406:5–9
Zurück zum Zitat Roberts TMD (1995) Understanding balance. The mechanics of posture and locomotion. Chapman and Hall, London, UK Roberts TMD (1995) Understanding balance. The mechanics of posture and locomotion. Chapman and Hall, London, UK
Zurück zum Zitat Runge CF, Shepert CL, Horak FB, Zajac FE (1998) Role of vestibular information in initiation of rapid postural responses. Exp Brain Res 122:403–412PubMedCrossRef Runge CF, Shepert CL, Horak FB, Zajac FE (1998) Role of vestibular information in initiation of rapid postural responses. Exp Brain Res 122:403–412PubMedCrossRef
Zurück zum Zitat Stapley PJ, Ting LH, Kuifu C, Everaert DG, MacPherson JM (2006) Bilateral vestibular loss leads to active destabilization of balance during voluntary head turns in the standing cat. J Neurophysiol 95:3783–3797PubMedCrossRef Stapley PJ, Ting LH, Kuifu C, Everaert DG, MacPherson JM (2006) Bilateral vestibular loss leads to active destabilization of balance during voluntary head turns in the standing cat. J Neurophysiol 95:3783–3797PubMedCrossRef
Zurück zum Zitat Ting LH, MacPherson JM (2004) Ratio of shear to ground-reaction force may underlie the directional tuning of the automatic postural response to rotation and translation. J Neurophysiol 92:808–823PubMedCrossRef Ting LH, MacPherson JM (2004) Ratio of shear to ground-reaction force may underlie the directional tuning of the automatic postural response to rotation and translation. J Neurophysiol 92:808–823PubMedCrossRef
Zurück zum Zitat Wilson VJ, Yoshida M (1969) Comparison of effects of stimulation of Dieters’ nucleus and medial longitudinal fasciculus on neck, forelimb, and hindlimb motoneurons. J Neurophysiol 32:743–758PubMed Wilson VJ, Yoshida M (1969) Comparison of effects of stimulation of Dieters’ nucleus and medial longitudinal fasciculus on neck, forelimb, and hindlimb motoneurons. J Neurophysiol 32:743–758PubMed
Zurück zum Zitat Wilson VJ, Melvill Jones G (1979) Mammation vestibular physiology. Plenum, New York, pp 239–245 Wilson VJ, Melvill Jones G (1979) Mammation vestibular physiology. Plenum, New York, pp 239–245
Zurück zum Zitat Wilson VJ, Schor RH, Suzuki I, Parks BR (1986) Spatial organisation of neck and vestibular reflexes acting on the forelimbs of the decerebrate cat. J Neurophysiol 55:514–526PubMed Wilson VJ, Schor RH, Suzuki I, Parks BR (1986) Spatial organisation of neck and vestibular reflexes acting on the forelimbs of the decerebrate cat. J Neurophysiol 55:514–526PubMed
Zurück zum Zitat Wilson VJ, Schor RH (1999) The neural substrate of the vestibulo colic reflex. What needs to be learned. Exp Brain Res 129:483–493PubMedCrossRef Wilson VJ, Schor RH (1999) The neural substrate of the vestibulo colic reflex. What needs to be learned. Exp Brain Res 129:483–493PubMedCrossRef
Metadaten
Titel
Differences in coding provided by proprioceptive and vestibular sensory signals may contribute to lateral instability in vestibular loss subjects
verfasst von
John H. J. Allum
Lars B. Oude Nijhuis
Mark G. Carpenter
Publikationsdatum
01.01.2008
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 3/2008
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-007-1112-z

Weitere Artikel der Ausgabe 3/2008

Experimental Brain Research 3/2008 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.