Skip to main content
Erschienen in: Experimental Brain Research 2/2010

01.04.2010 | Research Article

Multi-muscle synergies in a dual postural task: evidence for the principle of superposition

verfasst von: Miriam Klous, Alessander Danna-dos-Santos, Mark L. Latash

Erschienen in: Experimental Brain Research | Ausgabe 2/2010

Einloggen, um Zugang zu erhalten

Abstract

We used the framework of the uncontrolled manifold hypothesis to quantify multi-muscle synergies stabilizing the moment of force about the frontal axis (M Y) and the shear force in the anterior–posterior direction (F X) during voluntary body sway performed by standing subjects. We tested a hypothesis whether the controller could stabilize both M Y and F X at the same time when the task and the visual feedback was provided only on one of the variables (M Y). Healthy young subjects performed voluntary body sway in the anterior–posterior direction while different loads were attached at the ankle level producing horizontal forces acting forward or backwards. Principal component analysis was used to identify three M-modes within the space of integrated indices of muscle activation. Variance in the M-mode space across sway cycles was partitioned into two components, one that did not affect a selected performance variable (M Y or F X) and the other that did. Under all loading conditions and for each performance variable, a higher value for the former variance component was found. We interpret these results as reflections of two multi-M-mode synergies stabilizing both F X and M Y. The indices of synergies were modulated within the sway cycle; both performance variables were better stabilized when the body moved forward than when it moved backward. The results show that the controller can use a set of three elemental variables (M-modes) to stabilize two performance variables at the same time. No negative interference was seen between the synergy indices computed for the two performance variables supporting the principle of superposition with respect to multi-muscle postural control.
Literatur
Zurück zum Zitat Arimoto S, Tahara K, Yamaguchi M, Nguyen PTA, Han H-Y (2001) Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica 19:21–28CrossRef Arimoto S, Tahara K, Yamaguchi M, Nguyen PTA, Han H-Y (2001) Principles of superposition for controlling pinch motions by means of robot fingers with soft tips. Robotica 19:21–28CrossRef
Zurück zum Zitat Asaka T, Wang Y, Fukushima J, Latash ML (2008) Learning effects on muscle modes and multi-mode synergies. Exp Brain Res 184:323–338CrossRefPubMed Asaka T, Wang Y, Fukushima J, Latash ML (2008) Learning effects on muscle modes and multi-mode synergies. Exp Brain Res 184:323–338CrossRefPubMed
Zurück zum Zitat Bernstein NA (1935) The problem of interrelation between coordination and localization. Arch Biol Sci 38:1–35 (in Russian) Bernstein NA (1935) The problem of interrelation between coordination and localization. Arch Biol Sci 38:1–35 (in Russian)
Zurück zum Zitat Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford Bernstein NA (1967) The co-ordination and regulation of movements. Pergamon Press, Oxford
Zurück zum Zitat Bradley NS, Bekoff A (1990) Development of coordinated movements in chicks: I. Temporal analysis of hindlimb muscle synergies at embryonic days 9 and 10. Dev Psychobiol 23:763–782CrossRefPubMed Bradley NS, Bekoff A (1990) Development of coordinated movements in chicks: I. Temporal analysis of hindlimb muscle synergies at embryonic days 9 and 10. Dev Psychobiol 23:763–782CrossRefPubMed
Zurück zum Zitat d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308CrossRefPubMed d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308CrossRefPubMed
Zurück zum Zitat Danna-dos-Santos A, Slomka K, Latash ML, Zatsiorsky VM (2007) Muscle modes and synergies during voluntary body sway. Exp Brain Res 179:533–550CrossRefPubMed Danna-dos-Santos A, Slomka K, Latash ML, Zatsiorsky VM (2007) Muscle modes and synergies during voluntary body sway. Exp Brain Res 179:533–550CrossRefPubMed
Zurück zum Zitat Danna-dos-Santos A, Degani AM, Latash ML (2008) Flexible muscle modes and synergies in challenging whole-body tasks. Exp Brain Res 189:171–187CrossRefPubMed Danna-dos-Santos A, Degani AM, Latash ML (2008) Flexible muscle modes and synergies in challenging whole-body tasks. Exp Brain Res 189:171–187CrossRefPubMed
Zurück zum Zitat Demieville HN, Partridge LD (1980) Probability of peripheral interaction between motor units and implications for motor control. Am J Physiol 238:R119–R137PubMed Demieville HN, Partridge LD (1980) Probability of peripheral interaction between motor units and implications for motor control. Am J Physiol 238:R119–R137PubMed
Zurück zum Zitat Fingelkurts AA, Filngelkurts AA (2006) Stability, reliability and consistency of the compositions of brain oscillations. Int J Psychophysiol 59:116–126CrossRefPubMed Fingelkurts AA, Filngelkurts AA (2006) Stability, reliability and consistency of the compositions of brain oscillations. Int J Psychophysiol 59:116–126CrossRefPubMed
Zurück zum Zitat Friedman J, SKM V, Zatsiorsky VM, Latash ML (2009) The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies. Exp Brain Res 196:263–277CrossRefPubMed Friedman J, SKM V, Zatsiorsky VM, Latash ML (2009) The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies. Exp Brain Res 196:263–277CrossRefPubMed
Zurück zum Zitat Gelfand IM, Latash ML (1998) On the problem of adequate language in movement science. Mot Control 2:306–313 Gelfand IM, Latash ML (1998) On the problem of adequate language in movement science. Mot Control 2:306–313
Zurück zum Zitat Gelfand IM, Tsetlin ML (1966) On mathematical modeling of the mechanisms of the central nervous system. In: Gelfand IM, Gurfinkel VS, Fomin SV, Tsetlin ML (eds) Models of the structural-functional organization of certain biological systems. Nauka, Moscow, pp 9–36 (in Russian, a translation is available in 1971 edition by MIT Press, Cambridge) Gelfand IM, Tsetlin ML (1966) On mathematical modeling of the mechanisms of the central nervous system. In: Gelfand IM, Gurfinkel VS, Fomin SV, Tsetlin ML (eds) Models of the structural-functional organization of certain biological systems. Nauka, Moscow, pp 9–36 (in Russian, a translation is available in 1971 edition by MIT Press, Cambridge)
Zurück zum Zitat Gera G, Freitas SMSF, Latash ML, Monahan K, Schöner G, Scholz JP (2009) Motor abundance contributes to resolving multiple kinematic task constraints. Motor Control (in press) Gera G, Freitas SMSF, Latash ML, Monahan K, Schöner G, Scholz JP (2009) Motor abundance contributes to resolving multiple kinematic task constraints. Motor Control (in press)
Zurück zum Zitat Glazer VD, Gauzelman VE (1997) Linear and nonlinear properties of simple cells of the striate cortex of the cat: two types of nonlinearity. Exp Brain Res 117:281291 Glazer VD, Gauzelman VE (1997) Linear and nonlinear properties of simple cells of the striate cortex of the cat: two types of nonlinearity. Exp Brain Res 117:281291
Zurück zum Zitat Goodman SR, Shim JK, Zatsiorsky VM, Latash ML (2005) Motor variability within a multi-effector system: experimental and analytical studies of multi-finger production of quick force pulses. Exp Brain Res 163:75–85CrossRefPubMed Goodman SR, Shim JK, Zatsiorsky VM, Latash ML (2005) Motor variability within a multi-effector system: experimental and analytical studies of multi-finger production of quick force pulses. Exp Brain Res 163:75–85CrossRefPubMed
Zurück zum Zitat Gorniak SL, Duarte M, Latash ML (2008) Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Motor Control 12:151–172PubMed Gorniak SL, Duarte M, Latash ML (2008) Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Motor Control 12:151–172PubMed
Zurück zum Zitat Gorniak SL, Zatsiorsky VM, Latash ML (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194:1–15CrossRefPubMed Gorniak SL, Zatsiorsky VM, Latash ML (2009) Hierarchical control of static prehension: II. Multi-digit synergies. Exp Brain Res 194:1–15CrossRefPubMed
Zurück zum Zitat Hair JF, Anderson RE, Tatham RL, Black WC (1995) Factor analysis. In: Borkowsky D (ed) Multivariate data analysis. Prentice-Hall, Englewood Cliffs, pp 364–404 Hair JF, Anderson RE, Tatham RL, Black WC (1995) Factor analysis. In: Borkowsky D (ed) Multivariate data analysis. Prentice-Hall, Englewood Cliffs, pp 364–404
Zurück zum Zitat Henry SM, Fung J, Horak FB (1998) EMG responses to maintain stance during multidirectional surface translation. J Neurophysiol 80:1939–1950PubMed Henry SM, Fung J, Horak FB (1998) EMG responses to maintain stance during multidirectional surface translation. J Neurophysiol 80:1939–1950PubMed
Zurück zum Zitat Hogan N, Sternad D (2007) On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res 181:13–30CrossRefPubMed Hogan N, Sternad D (2007) On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res 181:13–30CrossRefPubMed
Zurück zum Zitat Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146:233–243CrossRefPubMed Holdefer RN, Miller LE (2002) Primary motor cortical neurons encode functional muscle synergies. Exp Brain Res 146:233–243CrossRefPubMed
Zurück zum Zitat Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282CrossRefPubMed Ivanenko YP, Poppele RE, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282CrossRefPubMed
Zurück zum Zitat Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F (2005) Coordination of locomotion with voluntary movements in humans. J Neurosci 25:7238–7253CrossRefPubMed Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F (2005) Coordination of locomotion with voluntary movements in humans. J Neurosci 25:7238–7253CrossRefPubMed
Zurück zum Zitat Ivanenko YP, Wright WG, Gurfinkel VS, Horak F, Cordo P (2006) Interaction of involuntary post-contraction activity with locomotor movements. Exp Brain Res 169:255–260CrossRefPubMed Ivanenko YP, Wright WG, Gurfinkel VS, Horak F, Cordo P (2006) Interaction of involuntary post-contraction activity with locomotor movements. Exp Brain Res 169:255–260CrossRefPubMed
Zurück zum Zitat Johnson RM, Bekoff A (1996) Patterns of muscle activity during different behaviors in chicks: implications for neural control. J Comp Physiol 179:169–184 Johnson RM, Bekoff A (1996) Patterns of muscle activity during different behaviors in chicks: implications for neural control. J Comp Physiol 179:169–184
Zurück zum Zitat Karakas S, Erzengin OU, Basar E (2000) A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses. Clin Neurophysiol 111:1719–1732CrossRefPubMed Karakas S, Erzengin OU, Basar E (2000) A new strategy involving multiple cognitive paradigms demonstrates that ERP components are determined by the superposition of oscillatory responses. Clin Neurophysiol 111:1719–1732CrossRefPubMed
Zurück zum Zitat Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. II Prediction of unit responses to arbitrary dynamic spectra. J Neurophysiol 76:3524–3534PubMed Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. II Prediction of unit responses to arbitrary dynamic spectra. J Neurophysiol 76:3524–3534PubMed
Zurück zum Zitat Krishnamoorthy V, Latash ML (2005) Reversals of anticipatory postural adjustments during voluntary sway in humans. J Physiol 565:675–684CrossRefPubMed Krishnamoorthy V, Latash ML (2005) Reversals of anticipatory postural adjustments during voluntary sway in humans. J Physiol 565:675–684CrossRefPubMed
Zurück zum Zitat Krishnamoorthy V, Goodman SR, Latash ML, Zatsiorsky VM (2003a) Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol Cybern 89:152–161CrossRefPubMed Krishnamoorthy V, Goodman SR, Latash ML, Zatsiorsky VM (2003a) Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol Cybern 89:152–161CrossRefPubMed
Zurück zum Zitat Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2003b) Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 152:281–292CrossRefPubMed Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2003b) Muscle synergies during shifts of the center of pressure by standing persons. Exp Brain Res 152:281–292CrossRefPubMed
Zurück zum Zitat Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2004) Muscle modes during shifts of the center of pressure by standing persons: effects of instability and additional support. Exp Brain Res 157:18–31CrossRefPubMed Krishnamoorthy V, Latash ML, Scholz JP, Zatsiorsky VM (2004) Muscle modes during shifts of the center of pressure by standing persons: effects of instability and additional support. Exp Brain Res 157:18–31CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JF, Danion F, Schöner G (2002a) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146:412–432 Latash ML, Scholz JF, Danion F, Schöner G (2002a) Finger coordination during discrete and oscillatory force production tasks. Exp Brain Res 146:412–432
Zurück zum Zitat Latash ML, Scholz JP, Schöner G (2002b) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31CrossRefPubMed Latash ML, Scholz JP, Schöner G (2002b) Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev 30:26–31CrossRefPubMed
Zurück zum Zitat Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Motor Control 11:275–307 Latash ML, Scholz JP, Schöner G (2007) Toward a new theory of motor synergies. Motor Control 11:275–307
Zurück zum Zitat Latt LD, Sparto PJ, Fruman JM, Redfern MS (2003) The steady-state postural response to continuous sinusoidal galvanic vestibular stimulation. Gait Posture 18:64–72CrossRefPubMed Latt LD, Sparto PJ, Fruman JM, Redfern MS (2003) The steady-state postural response to continuous sinusoidal galvanic vestibular stimulation. Gait Posture 18:64–72CrossRefPubMed
Zurück zum Zitat Lemay MA, Grill WM (2004) Modularity of motor output evoked by intraspinal microstimulation in cats. J Neurophysiol 91:502–514CrossRefPubMed Lemay MA, Grill WM (2004) Modularity of motor output evoked by intraspinal microstimulation in cats. J Neurophysiol 91:502–514CrossRefPubMed
Zurück zum Zitat Robert T, Zatsiorsky VM, Latash ML (2008) Multi-muscle synergies in an unusual postural task: quick shear force production. Exp Brain Res 187:237–253CrossRef Robert T, Zatsiorsky VM, Latash ML (2008) Multi-muscle synergies in an unusual postural task: quick shear force production. Exp Brain Res 187:237–253CrossRef
Zurück zum Zitat Ruegg DG, Bongioanni F (1989) Superposition of ballistic on steady contractions in man. Exp Brain Res 77:412–420CrossRefPubMed Ruegg DG, Bongioanni F (1989) Superposition of ballistic on steady contractions in man. Exp Brain Res 77:412–420CrossRefPubMed
Zurück zum Zitat Saltiel P, Wyler-Duda K, d’Avella A, Tresch MC, Bizzi E (2001) Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J Neurophysiol 5:605–619 Saltiel P, Wyler-Duda K, d’Avella A, Tresch MC, Bizzi E (2001) Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J Neurophysiol 5:605–619
Zurück zum Zitat Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1136–1143CrossRefPubMed Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7:1136–1143CrossRefPubMed
Zurück zum Zitat Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMed Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306CrossRefPubMed
Zurück zum Zitat Shapkova EY, Shapkova AL, Goodman SR, Zatsiorsky VM, Latash ML (2008) Do synergies decrease force variability? A study of single-finger and multi-finger force production. Exp Brain Res 188:411–425CrossRefPubMed Shapkova EY, Shapkova AL, Goodman SR, Zatsiorsky VM, Latash ML (2008) Do synergies decrease force variability? A study of single-finger and multi-finger force production. Exp Brain Res 188:411–425CrossRefPubMed
Zurück zum Zitat Shim JK, Park J (2007) Prehension synergies: principle of superposition and hierarchical organization in circular object prehension. Exp Brain Res 180:541–556CrossRefPubMed Shim JK, Park J (2007) Prehension synergies: principle of superposition and hierarchical organization in circular object prehension. Exp Brain Res 180:541–556CrossRefPubMed
Zurück zum Zitat Shim JK, Latash ML, Zatsiorsky VM (2003) Prehension synergies: trial-to-trial variability and hierarchical organization of stable performance. Exp Brain Res 152:173–178CrossRefPubMed Shim JK, Latash ML, Zatsiorsky VM (2003) Prehension synergies: trial-to-trial variability and hierarchical organization of stable performance. Exp Brain Res 152:173–178CrossRefPubMed
Zurück zum Zitat Shim JK, Latash ML, Zatsiorsky VM (2005a) Prehension synergies: trial-to-trial variability and principle of superposition during static prehension in three dimensions. J Neurophysiol 93:3649–3658CrossRefPubMed Shim JK, Latash ML, Zatsiorsky VM (2005a) Prehension synergies: trial-to-trial variability and principle of superposition during static prehension in three dimensions. J Neurophysiol 93:3649–3658CrossRefPubMed
Zurück zum Zitat Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005b) The emergence and disappearance of multi-digit synergies during force production tasks. Exp Brain Res 164:260–270CrossRefPubMed Shim JK, Olafsdottir H, Zatsiorsky VM, Latash ML (2005b) The emergence and disappearance of multi-digit synergies during force production tasks. Exp Brain Res 164:260–270CrossRefPubMed
Zurück zum Zitat Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613CrossRefPubMed Ting LH, Macpherson JM (2005) A limited set of muscle synergies for force control during a postural task. J Neurophysiol 93:609–613CrossRefPubMed
Zurück zum Zitat Ting LH, McKay JL (2007) Neuromechanics of muscle synergies for posture and movement. Curr Opin Neurobiol 17:622–628CrossRefPubMed Ting LH, McKay JL (2007) Neuromechanics of muscle synergies for posture and movement. Curr Opin Neurobiol 17:622–628CrossRefPubMed
Zurück zum Zitat Torres-Oviedo G, Ting L (2007) Muscle synergies characterizing human postural responses. J Neurophysiol 98:2144–2156CrossRefPubMed Torres-Oviedo G, Ting L (2007) Muscle synergies characterizing human postural responses. J Neurophysiol 98:2144–2156CrossRefPubMed
Zurück zum Zitat Torres-Oviedo G, Macpherson JM, Ting L (2006) Muscle synergy organization is robust across a variety of postural perturbations. J Neurophysiol 96:1530–1546CrossRefPubMed Torres-Oviedo G, Macpherson JM, Ting L (2006) Muscle synergy organization is robust across a variety of postural perturbations. J Neurophysiol 96:1530–1546CrossRefPubMed
Zurück zum Zitat Tresch MC, Cheung VC, d’Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 95:2199–2212CrossRefPubMed Tresch MC, Cheung VC, d’Avella A (2006) Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets. J Neurophysiol 95:2199–2212CrossRefPubMed
Zurück zum Zitat Wang Y, Zatsiorsky VM, Latash ML (2005) Muscle synergies involved in shifting center of pressure during making a first step. Exp Brain Res 167:196–210CrossRefPubMed Wang Y, Zatsiorsky VM, Latash ML (2005) Muscle synergies involved in shifting center of pressure during making a first step. Exp Brain Res 167:196–210CrossRefPubMed
Zurück zum Zitat Wang Y, Zatsiorsky VM, Latash ML (2006) Muscle synergies involved in preparation to a step made under the self-paced and reaction time instructions. Clin Neurophysiol 117:41–56CrossRefPubMed Wang Y, Zatsiorsky VM, Latash ML (2006) Muscle synergies involved in preparation to a step made under the self-paced and reaction time instructions. Clin Neurophysiol 117:41–56CrossRefPubMed
Zurück zum Zitat Weiss EJ, Flanders M (2004) Muscular and postural synergies of the human hand. J Neurophysiol 92:523–535CrossRefPubMed Weiss EJ, Flanders M (2004) Muscular and postural synergies of the human hand. J Neurophysiol 92:523–535CrossRefPubMed
Zurück zum Zitat Zatsiorsky VM, Latash ML, Gao F, Shim JK (2004) The principle of superposition in human prehension. Robotica 22:231–234CrossRefPubMed Zatsiorsky VM, Latash ML, Gao F, Shim JK (2004) The principle of superposition in human prehension. Robotica 22:231–234CrossRefPubMed
Zurück zum Zitat Zhang W, Scholz JP, Zatsiorsky VM, Latash ML (2008) What do synergies do? Effects of secondary constraints on multidigit synergies in accurate force-production tasks. J Neurophysiol 99:500–513CrossRefPubMed Zhang W, Scholz JP, Zatsiorsky VM, Latash ML (2008) What do synergies do? Effects of secondary constraints on multidigit synergies in accurate force-production tasks. J Neurophysiol 99:500–513CrossRefPubMed
Metadaten
Titel
Multi-muscle synergies in a dual postural task: evidence for the principle of superposition
verfasst von
Miriam Klous
Alessander Danna-dos-Santos
Mark L. Latash
Publikationsdatum
01.04.2010
Verlag
Springer-Verlag
Erschienen in
Experimental Brain Research / Ausgabe 2/2010
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-009-2153-2

Weitere Artikel der Ausgabe 2/2010

Experimental Brain Research 2/2010 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.