Skip to main content
Erschienen in: Experimental Brain Research 12/2014

01.12.2014 | Research Article

Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb

verfasst von: Peter S. Lum, Iian Black, Rahsaan J. Holley, Jessica Barth, Alexander W. Dromerick

Erschienen in: Experimental Brain Research | Ausgabe 12/2014

Einloggen, um Zugang zu erhalten

Abstract

Internal models allow unimpaired individuals to appropriately scale grip force when grasping and lifting familiar objects. In prosthesis users, the internal model must adapt to the characteristics of the prosthetic devices and reduced sensory feedback. We studied the internal models of 11 amputees and eight unimpaired controls when grasping and lifting a fragile object. When the object was modified from a rigid to fragile state, both subject groups adapted appropriately by significantly reducing grasp force on the first trial with the fragile object compared to the rigid object (p < 0.020). There was a wide range of performance skill illustrated by amputee subjects when lifting the fragile object in 10 repeated trials. One subject, using a voluntary close device, never broke the object, four subjects broke the fragile device on every attempt and seven others failed on their initial attempts, but improved over the repeated trials. Amputees decreased their grip forces 51 ± 7 % from the first to the last trial (p < 0.001), indicating a practice effect. However, amputees used much higher levels of force than controls throughout the testing (p < 0.015). Amputees with better performance on the Box and Blocks test used lower grip force levels (p = 0.006) and had more successful lifts of the fragile object (p = 0.002). In summary, amputees do employ internal models when picking up objects; however, the accuracy of these models is poor and grip force modulation is significantly impaired. Further studies could examine the alternative sensory modalities and training parameters that best promote internal model formation.
Literatur
Zurück zum Zitat Adee S (2009) The revolution will be prosthetized. Spectr IEEE 46:44–48CrossRef Adee S (2009) The revolution will be prosthetized. Spectr IEEE 46:44–48CrossRef
Zurück zum Zitat Biddiss EA, Chau TT (2007a) Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int 31:236–257PubMedCrossRef Biddiss EA, Chau TT (2007a) Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet Orthot Int 31:236–257PubMedCrossRef
Zurück zum Zitat Biddiss E, Chau T (2007b) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil 86:977–987PubMedCrossRef Biddiss E, Chau T (2007b) Upper-limb prosthetics: critical factors in device abandonment. Am J Phys Med Rehabil 86:977–987PubMedCrossRef
Zurück zum Zitat Biddiss EA, Chau TT (2008) Multivariate prediction of upper limb prosthesis acceptance or rejection. Disabil Rehabil Assist Technol 3(4):181–192PubMedCrossRef Biddiss EA, Chau TT (2008) Multivariate prediction of upper limb prosthesis acceptance or rejection. Disabil Rehabil Assist Technol 3(4):181–192PubMedCrossRef
Zurück zum Zitat Bleecker M, Bolla-Wilson K, Kawas C, Agnew J (1988) Age-specific norms for the Mini-Mental State Exam. Neurology 38:1565–1568PubMedCrossRef Bleecker M, Bolla-Wilson K, Kawas C, Agnew J (1988) Age-specific norms for the Mini-Mental State Exam. Neurology 38:1565–1568PubMedCrossRef
Zurück zum Zitat Bouwsema H, van der Sluis CK, Bongers RM (2008) The role of order of practice in learning to handle an upper-limb prosthesis. Arch Phys Med Rehabil 89(9):1759–1764PubMedCrossRef Bouwsema H, van der Sluis CK, Bongers RM (2008) The role of order of practice in learning to handle an upper-limb prosthesis. Arch Phys Med Rehabil 89(9):1759–1764PubMedCrossRef
Zurück zum Zitat Bouwsema H, van der Sluis CK, Bongers RM (2010) Learning to control opening and closing a myoelectric hand. Arch Phys Med Rehabil 91(9):1442–1446PubMedCrossRef Bouwsema H, van der Sluis CK, Bongers RM (2010) Learning to control opening and closing a myoelectric hand. Arch Phys Med Rehabil 91(9):1442–1446PubMedCrossRef
Zurück zum Zitat Bouwsema H, Kyberd PJ, Hill W, van der Sluis CK, Bongers RM (2012) Determining skill level in myoelectric prosthesis use with multiple outcome measures. J Rehabil Res Dev 49(9):1331–1348PubMedCrossRef Bouwsema H, Kyberd PJ, Hill W, van der Sluis CK, Bongers RM (2012) Determining skill level in myoelectric prosthesis use with multiple outcome measures. J Rehabil Res Dev 49(9):1331–1348PubMedCrossRef
Zurück zum Zitat Bouwsema H, van der Sluis CK, Bongers RM (2014) Changes in performance over time while learning to use a myoelectric prosthesis. J Neuroeng Rehabil 11(1):16PubMedCentralPubMedCrossRef Bouwsema H, van der Sluis CK, Bongers RM (2014) Changes in performance over time while learning to use a myoelectric prosthesis. J Neuroeng Rehabil 11(1):16PubMedCentralPubMedCrossRef
Zurück zum Zitat Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255PubMedCrossRef Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in human motor memory. Nature 382:252–255PubMedCrossRef
Zurück zum Zitat Caithness G, Osu R, Bays P et al (2004) Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks. J Neurosci: Off J Soc Neurosci 24:8662–8671CrossRef Caithness G, Osu R, Bays P et al (2004) Failure to consolidate the consolidation theory of learning for sensorimotor adaptation tasks. J Neurosci: Off J Soc Neurosci 24:8662–8671CrossRef
Zurück zum Zitat Cohen LG, Bandinelli S, Findley TW, Hallett M (1991) Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain 114(1B):615–627PubMedCrossRef Cohen LG, Bandinelli S, Findley TW, Hallett M (1991) Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain 114(1B):615–627PubMedCrossRef
Zurück zum Zitat Dromerick AW, Schabowsky CN, Holley RJ, Monroe B, Markotic A, Lum PS (2008) Effect of training on upper-extremity prosthetic performance and motor learning: a single-case study. Arch Phys Med Rehabil 89(6):1199–1204PubMedCrossRef Dromerick AW, Schabowsky CN, Holley RJ, Monroe B, Markotic A, Lum PS (2008) Effect of training on upper-extremity prosthetic performance and motor learning: a single-case study. Arch Phys Med Rehabil 89(6):1199–1204PubMedCrossRef
Zurück zum Zitat Dudkiewicz I, Gabrielov R, Seiv-Ner I, Zelig G, Heim M (2004) Evaluation of prosthetic usage in upper limb amputees. Disabil Rehabil 26:60–63PubMedCrossRef Dudkiewicz I, Gabrielov R, Seiv-Ner I, Zelig G, Heim M (2004) Evaluation of prosthetic usage in upper limb amputees. Disabil Rehabil 26:60–63PubMedCrossRef
Zurück zum Zitat Edin BB, Ascari L, Beccai L, Roccella S, Cabibihan JJ, Carrozza MC (2008) Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task. Brain Res Bull 75(6):785–795PubMedCrossRef Edin BB, Ascari L, Beccai L, Roccella S, Cabibihan JJ, Carrozza MC (2008) Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task. Brain Res Bull 75(6):785–795PubMedCrossRef
Zurück zum Zitat Engeberg ED, Meek SG (2009) Backstepping and sliding mode control hybridized for a prosthetic hand. IEEE Trans Neural Syst Rehabil Eng 17(1):70–79PubMedCrossRef Engeberg ED, Meek SG (2009) Backstepping and sliding mode control hybridized for a prosthetic hand. IEEE Trans Neural Syst Rehabil Eng 17(1):70–79PubMedCrossRef
Zurück zum Zitat Engeberg ED, Meek S (2012) Enhanced visual feedback for slip prevention with a prosthetic hand. Prosthet Orthot Int 36:423–429PubMedCrossRef Engeberg ED, Meek S (2012) Enhanced visual feedback for slip prevention with a prosthetic hand. Prosthet Orthot Int 36:423–429PubMedCrossRef
Zurück zum Zitat Engeberg ED, Meek S (2013) Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. IEEE Trans Mechatron 18:376–385CrossRef Engeberg ED, Meek S (2013) Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. IEEE Trans Mechatron 18:376–385CrossRef
Zurück zum Zitat Engeberg ED, Meek SG, Minor MA (2008) Hybrid force–velocity sliding mode control of a prosthetic hand. IEEE Trans Biomed Eng 55(5):1572–1581PubMedCrossRef Engeberg ED, Meek SG, Minor MA (2008) Hybrid force–velocity sliding mode control of a prosthetic hand. IEEE Trans Biomed Eng 55(5):1572–1581PubMedCrossRef
Zurück zum Zitat Gagne M, Hetu S, Reilly KT, Mercier C (2011) The map is not the territory: motor system reorganization in upper limb amputees. Hum Brain Mapp 32:509–519PubMedCrossRef Gagne M, Hetu S, Reilly KT, Mercier C (2011) The map is not the territory: motor system reorganization in upper limb amputees. Hum Brain Mapp 32:509–519PubMedCrossRef
Zurück zum Zitat Gordon AM, Westling G, Cole KJ, Johansson RS (1993) Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 69:1789–1796PubMed Gordon AM, Westling G, Cole KJ, Johansson RS (1993) Memory representations underlying motor commands used during manipulation of common and novel objects. J Neurophysiol 69:1789–1796PubMed
Zurück zum Zitat Hermsdorfer J, Elias Z, Cole JD, Quaney BM, Nowak DA (2008) Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation. Neurorehabil Neural Repair 22:374–384PubMedCrossRef Hermsdorfer J, Elias Z, Cole JD, Quaney BM, Nowak DA (2008) Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation. Neurorehabil Neural Repair 22:374–384PubMedCrossRef
Zurück zum Zitat Horch K, Meek S, Taylor TG, Hutchinson DT (2011) Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 19(5):483–489PubMedCrossRef Horch K, Meek S, Taylor TG, Hutchinson DT (2011) Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 19(5):483–489PubMedCrossRef
Zurück zum Zitat Irlbacher K, Meyer B-U, Voss M, Brandt SA, Roricht S (2001) Spatial reorganization of cortical motor output maps of stump muscles in human upper-limb amputees. Neurosci Lett 321:129–132CrossRef Irlbacher K, Meyer B-U, Voss M, Brandt SA, Roricht S (2001) Spatial reorganization of cortical motor output maps of stump muscles in human upper-limb amputees. Neurosci Lett 321:129–132CrossRef
Zurück zum Zitat Jacobs S, Danielmeier C, Frey SH (2010) Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. J Cogn Neurosci 22(11):2594–2608PubMedCrossRef Jacobs S, Danielmeier C, Frey SH (2010) Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. J Cogn Neurosci 22(11):2594–2608PubMedCrossRef
Zurück zum Zitat Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564PubMedCrossRef Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564PubMedCrossRef
Zurück zum Zitat Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727PubMedCrossRef Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727PubMedCrossRef
Zurück zum Zitat Kim K, Colgate JE (2012) Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees. IEEE Trans Neural Syst Rehabil Eng 20(6):798–805PubMedCrossRef Kim K, Colgate JE (2012) Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees. IEEE Trans Neural Syst Rehabil Eng 20(6):798–805PubMedCrossRef
Zurück zum Zitat Kuiken TA, Miller LA, Lipschutz RD et al (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369:371–380PubMedCrossRef Kuiken TA, Miller LA, Lipschutz RD et al (2007) Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369:371–380PubMedCrossRef
Zurück zum Zitat Kuiken TA, Li G et al (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301:619–628PubMedCentralPubMedCrossRef Kuiken TA, Li G et al (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301:619–628PubMedCentralPubMedCrossRef
Zurück zum Zitat Lang CE, Wagner JM, Dromerick AW, Edwards DF (2006) Measurement of upper-extremity function early after stroke: properties of the action research arm test. Arch Phys Med Rehabil 87:1605–1610PubMedCrossRef Lang CE, Wagner JM, Dromerick AW, Edwards DF (2006) Measurement of upper-extremity function early after stroke: properties of the action research arm test. Arch Phys Med Rehabil 87:1605–1610PubMedCrossRef
Zurück zum Zitat Light CM, Chappell PH, Kyberd PJ (2002) Establishing a stan-dardized clinical assessment tool of pathologic and pros-thetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil 83(6):776–783PubMedCrossRef Light CM, Chappell PH, Kyberd PJ (2002) Establishing a stan-dardized clinical assessment tool of pathologic and pros-thetic hand function: normative data, reliability, and validity. Arch Phys Med Rehabil 83(6):776–783PubMedCrossRef
Zurück zum Zitat McFarland LV, Hubbard Winkler SL, Heinemann AW, Jones M, Esquenazi A (2010) Unilateral upper-limb loss: satisfaction and prosthetic-device use in veterans and service members from Vietnam and OIF/OEF conflicts. J Rehabil Res Dev 47:299–316PubMedCrossRef McFarland LV, Hubbard Winkler SL, Heinemann AW, Jones M, Esquenazi A (2010) Unilateral upper-limb loss: satisfaction and prosthetic-device use in veterans and service members from Vietnam and OIF/OEF conflicts. J Rehabil Res Dev 47:299–316PubMedCrossRef
Zurück zum Zitat Meek SG, Jacobsen SC, Goulding PP (1989) Extended physiologic taction: design and evaluation of a proportional force feedback system. J Rehabil Res Dev 26(3):53–62PubMed Meek SG, Jacobsen SC, Goulding PP (1989) Extended physiologic taction: design and evaluation of a proportional force feedback system. J Rehabil Res Dev 26(3):53–62PubMed
Zurück zum Zitat Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A (2006) Mapping phantom movement representations in the motor cortex of amputees. Brain 129(8):2202–2210PubMedCrossRef Mercier C, Reilly KT, Vargas CD, Aballea A, Sirigu A (2006) Mapping phantom movement representations in the motor cortex of amputees. Brain 129(8):2202–2210PubMedCrossRef
Zurück zum Zitat Metzger AJ, Dromerick AW, Schabowsky CN, Holley RJ, Monroe B, Lum PS (2010) Feedforward control strategies of subjects with transradial amputation in planar reaching. J Rehabil Res Dev 47(3):201–211PubMedCrossRef Metzger AJ, Dromerick AW, Schabowsky CN, Holley RJ, Monroe B, Lum PS (2010) Feedforward control strategies of subjects with transradial amputation in planar reaching. J Rehabil Res Dev 47(3):201–211PubMedCrossRef
Zurück zum Zitat Nowak DA, Hermsdorfer J, Glasauer S, Philipp J, Meyer L, Mai N (2001) The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci 14:756–762PubMedCrossRef Nowak DA, Hermsdorfer J, Glasauer S, Philipp J, Meyer L, Mai N (2001) The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object. Eur J Neurosci 14:756–762PubMedCrossRef
Zurück zum Zitat Ohnishi K, Weir RF, Kuiken TA (2007) Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev Med Devices 4:43–53PubMedCrossRef Ohnishi K, Weir RF, Kuiken TA (2007) Neural machine interfaces for controlling multifunctional powered upper-limb prostheses. Expert Rev Med Devices 4:43–53PubMedCrossRef
Zurück zum Zitat Park E, Meek SG (1995) Adaptive filtering of the electromyographic signal for prosthetic control and force estimation. IEEE Trans Bio-med Eng 42:1048–1052CrossRef Park E, Meek SG (1995) Adaptive filtering of the electromyographic signal for prosthetic control and force estimation. IEEE Trans Bio-med Eng 42:1048–1052CrossRef
Zurück zum Zitat Pasluosta CF, Chiu AW (2012) Evaluation of a neural network-based control strategy for a cost-effective externally-powered prosthesis. Assist Technol 24(3):196–208PubMedCrossRef Pasluosta CF, Chiu AW (2012) Evaluation of a neural network-based control strategy for a cost-effective externally-powered prosthesis. Assist Technol 24(3):196–208PubMedCrossRef
Zurück zum Zitat Philip BA, Frey SH (2011) Preserved grip selection planning in chronic unilateral upper extremity amputees. Exp Brain Res 214:437–452PubMedCrossRef Philip BA, Frey SH (2011) Preserved grip selection planning in chronic unilateral upper extremity amputees. Exp Brain Res 214:437–452PubMedCrossRef
Zurück zum Zitat Philip BA, Frey SH (2014) Compensatory changes accompanying chronic forced use of the nondominant hand by unilateral amputees. J Neurosci 34(10):3622–3631PubMedCentralPubMedCrossRef Philip BA, Frey SH (2014) Compensatory changes accompanying chronic forced use of the nondominant hand by unilateral amputees. J Neurosci 34(10):3622–3631PubMedCentralPubMedCrossRef
Zurück zum Zitat Platz T, Pinkowski C, van Wijck F, Kim IH, di Bella P, Johnson G (2005) Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, action research arm test and box and block test: a multicentre study. Clin Rehabil 19(4):404–411PubMedCrossRef Platz T, Pinkowski C, van Wijck F, Kim IH, di Bella P, Johnson G (2005) Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, action research arm test and box and block test: a multicentre study. Clin Rehabil 19(4):404–411PubMedCrossRef
Zurück zum Zitat Rijntjes M, Dettmers C, Büchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19(18):8043–8048PubMed Rijntjes M, Dettmers C, Büchel C, Kiebel S, Frackowiak RS, Weiller C (1999) A blueprint for movement: functional and anatomical representations in the human motor system. J Neurosci 19(18):8043–8048PubMed
Zurück zum Zitat Rombokas E, Stepp CE, Chang C, Malhotra M, Matsuoka Y (2013) Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Trans Biomed Eng 60(8):2226–2232PubMedCrossRef Rombokas E, Stepp CE, Chang C, Malhotra M, Matsuoka Y (2013) Vibrotactile sensory substitution for electromyographic control of object manipulation. IEEE Trans Biomed Eng 60(8):2226–2232PubMedCrossRef
Zurück zum Zitat Schabowsky CN, Dromerick AW, Holley RJ, Monroe B, Lum PS (2008) Trans-radial upper extremity amputees are capable of adapting to a novel dynamic environment. Exp Brain Res 188:589–601PubMedCrossRef Schabowsky CN, Dromerick AW, Holley RJ, Monroe B, Lum PS (2008) Trans-radial upper extremity amputees are capable of adapting to a novel dynamic environment. Exp Brain Res 188:589–601PubMedCrossRef
Zurück zum Zitat Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMed Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224PubMed
Zurück zum Zitat Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G (2008) When pliers become fingers in the monkey motor system. Proc Natl Acad Sci USA 105(6):2209–2213PubMedCentralPubMedCrossRef Umiltà MA, Escola L, Intskirveli I, Grammont F, Rochat M, Caruana F, Jezzini A, Gallese V, Rizzolatti G (2008) When pliers become fingers in the monkey motor system. Proc Natl Acad Sci USA 105(6):2209–2213PubMedCentralPubMedCrossRef
Zurück zum Zitat Weeks DL, Wallace SA, Noteboom JT (2000) Precision-grip force changes in the anatomical and prosthetic limb during predictable load increases. Exp Brain Res 132:404–410PubMedCrossRef Weeks DL, Wallace SA, Noteboom JT (2000) Precision-grip force changes in the anatomical and prosthetic limb during predictable load increases. Exp Brain Res 132:404–410PubMedCrossRef
Zurück zum Zitat Weeks DL, Wallace SA, Anderson DI (2003) Training with an upper-limb prosthetic simulator to enhance transfer of skill across limbs. Arch Phys Med Rehabil 84(3):437–443PubMedCrossRef Weeks DL, Wallace SA, Anderson DI (2003) Training with an upper-limb prosthetic simulator to enhance transfer of skill across limbs. Arch Phys Med Rehabil 84(3):437–443PubMedCrossRef
Zurück zum Zitat Wettels N, Parnandi A, Moon J, Loeb G, Sukhatme G (2009) Grip control using biomimetic tactile sensing systems. IEEE/ASME Trans Mechantron 14:718–723CrossRef Wettels N, Parnandi A, Moon J, Loeb G, Sukhatme G (2009) Grip control using biomimetic tactile sensing systems. IEEE/ASME Trans Mechantron 14:718–723CrossRef
Zurück zum Zitat Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R (2008) Estimating the prevalence of limb loss in the united states: 2005 to 2050. Arch Phys Med Rehabil 89:422–429PubMedCrossRef Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R (2008) Estimating the prevalence of limb loss in the united states: 2005 to 2050. Arch Phys Med Rehabil 89:422–429PubMedCrossRef
Metadaten
Titel
Internal models of upper limb prosthesis users when grasping and lifting a fragile object with their prosthetic limb
verfasst von
Peter S. Lum
Iian Black
Rahsaan J. Holley
Jessica Barth
Alexander W. Dromerick
Publikationsdatum
01.12.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 12/2014
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-014-4071-1

Weitere Artikel der Ausgabe 12/2014

Experimental Brain Research 12/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.