Skip to main content
Erschienen in: Calcified Tissue International 1/2007

01.01.2007 | Laboratory Investigations

Cannabinoids Stimulate Fibroblastic Colony Formation by Bone Marrow Cells Indirectly via CB2 Receptors

verfasst von: A. Scutt, E. M. Williamson

Erschienen in: Calcified Tissue International | Ausgabe 1/2007

Einloggen, um Zugang zu erhalten

Abstract

Recently, the cannabinoid receptors CB1 and CB2 were shown to modulate bone formation and resorption in vivo, although little is known of the mechanisms underlying this. The effects of cannabinoids on mesenchymal stem cell (MSC) recruitment in whole bone marrow were investigated using either the fibroblastic colony-forming unit (CFU-f) assay or high-density cultures of whole bone marrow. Levels of the CB1 and CB2 receptors were assessed by flow cytometry. Treatment of CFU-f cultures with the endocannabinoid 2-arachidonylglycerol (2-AG) dose-dependently increased fibroblastic and differentiated colony formation along with colony size. The nonspecific agonists CP 55,940 and WIN 55,212 both increased colony numbers, as did the CB2 agonists BML190 and JWH015. The CB1-specific agonist ACEA had no effect, whereas the CB2 antagonist AM630 blocked the effect of the natural cannabinoid tetrahydrocannabivarin, confirming mediation via the CB2 receptor. Treatment of primary bone marrow cultures with 2-AG stimulated proliferation and collagen accumulation, whereas treatment of subcultures of MSC had no effect, suggesting that the target cell is not the MSC but an accessory cell present in bone marrow. Subcultures of MSCs were negative for CB1 and CB2 receptors as shown by flow cytometry, whereas whole bone marrow contained a small population of cells positive for both receptors. These data suggest that cannabinoids may stimulate the recruitment of MSCs from the bone marrow indirectly via an accessory cell and mediated via the CB2 receptor. This recruitment may be one mechanism responsible for the increased bone formation seen after cannabinoid treatment in vivo.
Literatur
1.
Zurück zum Zitat Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(suppl 1):S163-S171PubMedCrossRef Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(suppl 1):S163-S171PubMedCrossRef
2.
Zurück zum Zitat Elsohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548PubMedCrossRef Elsohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548PubMedCrossRef
3.
Zurück zum Zitat Drysdale A, Platt B (2005) Medical marijuana in CNS disorders. Front Med Chem 3:133–159CrossRef Drysdale A, Platt B (2005) Medical marijuana in CNS disorders. Front Med Chem 3:133–159CrossRef
4.
Zurück zum Zitat Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613PubMed Devane WA, Dysarz FA 3rd, Johnson MR, Melvin LS, Howlett AC (1988) Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 34:605–613PubMed
5.
Zurück zum Zitat Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202PubMedCrossRef Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202PubMedCrossRef
6.
Zurück zum Zitat Martin BR (2002) Identification of the endogenous cannabinoid system through integrative pharmacological approaches. J Pharmacol Exp Ther 301:790–796PubMedCrossRef Martin BR (2002) Identification of the endogenous cannabinoid system through integrative pharmacological approaches. J Pharmacol Exp Ther 301:790–796PubMedCrossRef
7.
Zurück zum Zitat Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65PubMedCrossRef Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65PubMedCrossRef
8.
Zurück zum Zitat Grundy RI, Rabuffetti M, Beltramo M (2001) Cannabinoids and neuroprotection. Mol Neurobiol 24:29–51PubMedCrossRef Grundy RI, Rabuffetti M, Beltramo M (2001) Cannabinoids and neuroprotection. Mol Neurobiol 24:29–51PubMedCrossRef
9.
Zurück zum Zitat Lynn AB, Herkenham M (1994) Localization of cannabinoid receptors and nonsaturable high-density cannabinoid binding sites in peripheral tissues of the rat: implications for receptor-mediated immune modulation by cannabinoids. J Pharmacol Exp Ther 268:1612–1623PubMed Lynn AB, Herkenham M (1994) Localization of cannabinoid receptors and nonsaturable high-density cannabinoid binding sites in peripheral tissues of the rat: implications for receptor-mediated immune modulation by cannabinoids. J Pharmacol Exp Ther 268:1612–1623PubMed
10.
Zurück zum Zitat Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141PubMed Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23:11136–11141PubMed
11.
12.
Zurück zum Zitat Brown A, Wise A (2005) Identification of modulators of GPR55 activity. In: US Patent Document no. 20030113814 Brown A, Wise A (2005) Identification of modulators of GPR55 activity. In: US Patent Document no. 20030113814
13.
Zurück zum Zitat Kishimoto S, Gokoh M, Oka S, Muramatsu M, Kajiwara T, Waku K, Sugiura T (2003) 2-Arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes through the cannabinoid CB2 receptor-dependent mechanism. J Biol Chem 278:24469–24475PubMedCrossRef Kishimoto S, Gokoh M, Oka S, Muramatsu M, Kajiwara T, Waku K, Sugiura T (2003) 2-Arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes through the cannabinoid CB2 receptor-dependent mechanism. J Biol Chem 278:24469–24475PubMedCrossRef
14.
Zurück zum Zitat Parolaro D, Massi P, Rubino T, Monti E (2002) Endocannabinoids in the immune system and cancer. Prostaglandins Leukot Essent Fatty Acids 66:319–332PubMedCrossRef Parolaro D, Massi P, Rubino T, Monti E (2002) Endocannabinoids in the immune system and cancer. Prostaglandins Leukot Essent Fatty Acids 66:319–332PubMedCrossRef
15.
Zurück zum Zitat Casanova ML, Blazquez C, Martinez-Palacio J, Villanueva C, Fernandez-Acenero MJ, Huffman JW, Jorcano JL, Guzman M (2003) Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 111:43–50PubMedCrossRef Casanova ML, Blazquez C, Martinez-Palacio J, Villanueva C, Fernandez-Acenero MJ, Huffman JW, Jorcano JL, Guzman M (2003) Inhibition of skin tumor growth and angiogenesis in vivo by activation of cannabinoid receptors. J Clin Invest 111:43–50PubMedCrossRef
16.
Zurück zum Zitat Bab I, Ofek O, Karsak M, Fogel M, Wright K, Attar-Namdar M, Shohami E, Zimmer K, Mechoulam R (2004) Cannabinoid CB2 receptor and human osteoporosis. 14th Annual Symposium, International Cannabinoid Research Society, Paestum, Italy, p P74, 22–24 June 2004 Bab I, Ofek O, Karsak M, Fogel M, Wright K, Attar-Namdar M, Shohami E, Zimmer K, Mechoulam R (2004) Cannabinoid CB2 receptor and human osteoporosis. 14th Annual Symposium, International Cannabinoid Research Society, Paestum, Italy, p P74, 22–24 June 2004
17.
Zurück zum Zitat Idris AI, van ‘t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779PubMedCrossRef Idris AI, van ‘t Hof RJ, Greig IR, Ridge SA, Baker D, Ross RA, Ralston SH (2005) Regulation of bone mass, bone loss and osteoclast activity by cannabinoid receptors. Nat Med 11:774–779PubMedCrossRef
18.
Zurück zum Zitat Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, Essig J, Erxlebe E, Bab I, Kubisch C, de Vernejoul MC, Zimmer A (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396PubMedCrossRef Karsak M, Cohen-Solal M, Freudenberg J, Ostertag A, Morieux C, Kornak U, Essig J, Erxlebe E, Bab I, Kubisch C, de Vernejoul MC, Zimmer A (2005) Cannabinoid receptor type 2 gene is associated with human osteoporosis. Hum Mol Genet 14:3389–3396PubMedCrossRef
19.
Zurück zum Zitat Tam J, Ofek O, Fride E, Ledent C, Gabet Y, Muller R, Zimmer A, Mackie K, Mechoulam R, Shohami E, Bab I (2006) Involvement of neuronal cannabinoid receptor, CB1, in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792PubMedCrossRef Tam J, Ofek O, Fride E, Ledent C, Gabet Y, Muller R, Zimmer A, Mackie K, Mechoulam R, Shohami E, Bab I (2006) Involvement of neuronal cannabinoid receptor, CB1, in regulation of bone mass and bone remodeling. Mol Pharmacol 70:786–792PubMedCrossRef
20.
Zurück zum Zitat Mbvundula EC, Bunning RA, Rainsford KD (2005) Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage. Biochem Pharmacol 69:635–640PubMedCrossRef Mbvundula EC, Bunning RA, Rainsford KD (2005) Effects of cannabinoids on nitric oxide production by chondrocytes and proteoglycan degradation in cartilage. Biochem Pharmacol 69:635–640PubMedCrossRef
21.
Zurück zum Zitat Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272PubMed Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272PubMed
22.
23.
Zurück zum Zitat Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351PubMed Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME (1992) Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351PubMed
24.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef
25.
Zurück zum Zitat Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12:1335–1347PubMedCrossRef Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12:1335–1347PubMedCrossRef
26.
Zurück zum Zitat Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98PubMedCrossRef Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105:93–98PubMedCrossRef
27.
Zurück zum Zitat Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426PubMedCrossRef Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417–1426PubMedCrossRef
28.
Zurück zum Zitat Munoz-Elias G, Woodbury D, Black IB (2003) Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 21:437–448PubMedCrossRef Munoz-Elias G, Woodbury D, Black IB (2003) Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 21:437–448PubMedCrossRef
29.
Zurück zum Zitat Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530PubMedCrossRef Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530PubMedCrossRef
30.
Zurück zum Zitat Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239PubMedCrossRef Devine MJ, Mierisch CM, Jang E, Anderson PC, Balian G (2002) Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res 20:1232–1239PubMedCrossRef
31.
Zurück zum Zitat Weinreb M, Suponitzky I, Keila S (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20:521–526PubMedCrossRef Weinreb M, Suponitzky I, Keila S (1997) Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone 20:521–526PubMedCrossRef
32.
Zurück zum Zitat Pun S, Dearden RL, Ratkus AM, Liang H, Wronski TJ (2001) Decreased bone anabolic effect of basic fibroblast growth factor at fatty marrow sites in ovariectomized rats. Bone 28:220–226PubMedCrossRef Pun S, Dearden RL, Ratkus AM, Liang H, Wronski TJ (2001) Decreased bone anabolic effect of basic fibroblast growth factor at fatty marrow sites in ovariectomized rats. Bone 28:220–226PubMedCrossRef
33.
Zurück zum Zitat Erben RG, Scutt AM, Miao D, Kollenkirchen U, Haberey M (1997) Short-term treatment of rats with high dose 1,25-dihydroxyvitamin D3 stimulates bone formation and increases the number of osteoblast precursor cells in bone marrow. Endocrinology 138:4629–4635PubMedCrossRef Erben RG, Scutt AM, Miao D, Kollenkirchen U, Haberey M (1997) Short-term treatment of rats with high dose 1,25-dihydroxyvitamin D3 stimulates bone formation and increases the number of osteoblast precursor cells in bone marrow. Endocrinology 138:4629–4635PubMedCrossRef
34.
Zurück zum Zitat Nishida S, Yamaguchi A, Tanizawa T, Endo N, Mashiba T, Uchiyama Y, Suda T, Yoshiki S, Takahashi HE (1994) Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone 15:717–723PubMedCrossRef Nishida S, Yamaguchi A, Tanizawa T, Endo N, Mashiba T, Uchiyama Y, Suda T, Yoshiki S, Takahashi HE (1994) Increased bone formation by intermittent parathyroid hormone administration is due to the stimulation of proliferation and differentiation of osteoprogenitor cells in bone marrow. Bone 15:717–723PubMedCrossRef
35.
Zurück zum Zitat Scutt A, Kollenkirchen U, Bertram P (1996) Effect of age and ovariectomy on fibroblastic colony-forming unit numbers in rat bone marrow. Calcif Tissue Int 59:309–310PubMedCrossRef Scutt A, Kollenkirchen U, Bertram P (1996) Effect of age and ovariectomy on fibroblastic colony-forming unit numbers in rat bone marrow. Calcif Tissue Int 59:309–310PubMedCrossRef
36.
Zurück zum Zitat Tsuji T, Hughes FJ, McCulloch CA, Melcher AH (1990) Effects of donor age on osteogenic cells of rat bone marrow in vitro. Mech Ageing Dev 51:121–132PubMedCrossRef Tsuji T, Hughes FJ, McCulloch CA, Melcher AH (1990) Effects of donor age on osteogenic cells of rat bone marrow in vitro. Mech Ageing Dev 51:121–132PubMedCrossRef
37.
Zurück zum Zitat Egrise D, Martin D, Vienne A, Neve P, Schoutens A (1992) The number of fibroblastic colonies formed from bone marrow is decreased and the in vitro proliferation rate of trabecular bone cells increased in aged rats. Bone 13:355–361PubMedCrossRef Egrise D, Martin D, Vienne A, Neve P, Schoutens A (1992) The number of fibroblastic colonies formed from bone marrow is decreased and the in vitro proliferation rate of trabecular bone cells increased in aged rats. Bone 13:355–361PubMedCrossRef
38.
Zurück zum Zitat Basso N, Jia Y, Bellows CG, Heersche JN (2005) The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats. Bone 37:370–378PubMedCrossRef Basso N, Jia Y, Bellows CG, Heersche JN (2005) The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics: studies in hind limb unloaded rats. Bone 37:370–378PubMedCrossRef
39.
Zurück zum Zitat Basso N, Bellows CG, Heersche JN (2005) Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 36:173–183PubMedCrossRef Basso N, Bellows CG, Heersche JN (2005) Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 36:173–183PubMedCrossRef
40.
Zurück zum Zitat Dobson KR, Reading L, Haberey M, Marine X, Scutt A (1999) Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae. Calcif Tissue Int 65:411–413PubMedCrossRef Dobson KR, Reading L, Haberey M, Marine X, Scutt A (1999) Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae. Calcif Tissue Int 65:411–413PubMedCrossRef
41.
Zurück zum Zitat Dobson K, Reading L, Scutt A (1999) A cost-effective method for the automatic quantitative analysis of fibroblastic colony-forming units. Calcif Tissue Int 65:166–172PubMedCrossRef Dobson K, Reading L, Scutt A (1999) A cost-effective method for the automatic quantitative analysis of fibroblastic colony-forming units. Calcif Tissue Int 65:166–172PubMedCrossRef
42.
Zurück zum Zitat Scutt A, Bertram P (1995) Bone marrow cells are targets for the anabolic actions of prostaglandin E2 on bone: induction of a transition from nonadherent to adherent osteoblast precursors. J Bone Miner Res 10:474–487PubMed Scutt A, Bertram P (1995) Bone marrow cells are targets for the anabolic actions of prostaglandin E2 on bone: induction of a transition from nonadherent to adherent osteoblast precursors. J Bone Miner Res 10:474–487PubMed
43.
Zurück zum Zitat Miao D, Murant S, Scutt N, Genever P, Scutt A (2004) Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng 10:807–817PubMedCrossRef Miao D, Murant S, Scutt N, Genever P, Scutt A (2004) Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng 10:807–817PubMedCrossRef
44.
45.
Zurück zum Zitat Abedin M, Tintut Y, Demer LL (2004) Mesenchymal stem cells and the artery wall. Circ Res 95:671–676PubMedCrossRef Abedin M, Tintut Y, Demer LL (2004) Mesenchymal stem cells and the artery wall. Circ Res 95:671–676PubMedCrossRef
46.
Zurück zum Zitat Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV, Russell SJ, Litzow MR, Edwards WD (2003) Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA 100:4754–4759PubMedCrossRef Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV, Russell SJ, Litzow MR, Edwards WD (2003) Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci USA 100:4754–4759PubMedCrossRef
47.
Zurück zum Zitat Lotinun S, Sibonga JD, Turner RT (2005) Evidence that the cells responsible for marrow fibrosis in a rat model for hyperparathyroidism are preosteoblasts. Endocrinology 146:4074–4081PubMedCrossRef Lotinun S, Sibonga JD, Turner RT (2005) Evidence that the cells responsible for marrow fibrosis in a rat model for hyperparathyroidism are preosteoblasts. Endocrinology 146:4074–4081PubMedCrossRef
48.
Zurück zum Zitat Heissig B, Ohki Y, Sato Y, Rafii S, Werb Z, Hattori K (2005) A role for niches in hematopoietic cell development. Hematology 10:247–253PubMedCrossRef Heissig B, Ohki Y, Sato Y, Rafii S, Werb Z, Hattori K (2005) A role for niches in hematopoietic cell development. Hematology 10:247–253PubMedCrossRef
49.
Zurück zum Zitat Fukuda K (2003) Use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes. Bone Marrow Transplant 32(suppl 1):S25–S27PubMedCrossRef Fukuda K (2003) Use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes. Bone Marrow Transplant 32(suppl 1):S25–S27PubMedCrossRef
50.
Zurück zum Zitat Caplan AI (2005) Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211PubMedCrossRef Caplan AI (2005) Mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11:1198–1211PubMedCrossRef
51.
Zurück zum Zitat Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Application of stem cells for vascular tissue engineering. Tissue Eng 11:1535–1552PubMedCrossRef Riha GM, Lin PH, Lumsden AB, Yao Q, Chen C (2005) Application of stem cells for vascular tissue engineering. Tissue Eng 11:1535–1552PubMedCrossRef
52.
Zurück zum Zitat Prockop DJ (2004) Targeting gene therapy for osteogenesis imperfecta. N Engl J Med 350:2302–2304PubMedCrossRef Prockop DJ (2004) Targeting gene therapy for osteogenesis imperfecta. N Engl J Med 350:2302–2304PubMedCrossRef
53.
Zurück zum Zitat Goncalves MA, de Vries AA, Holkers M, van de Watering MJ, van der Velde I, van Nierop GP, Valerio D, Knaan-Shanzer S (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet 15:213–221PubMedCrossRef Goncalves MA, de Vries AA, Holkers M, van de Watering MJ, van der Velde I, van Nierop GP, Valerio D, Knaan-Shanzer S (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet 15:213–221PubMedCrossRef
54.
Zurück zum Zitat Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA 103:696–701PubMedCrossRef Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I (2006) Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA 103:696–701PubMedCrossRef
55.
Zurück zum Zitat Frolik CA, Black EC, Cain RL, Satterwhite JH, Brown-Augsburger PL, Sato M, Hock JM (2003) Anabolic and catabolic bone effects of human parathyroid hormone (1–34) are predicted by duration of hormone exposure. Bone 33:372–379PubMedCrossRef Frolik CA, Black EC, Cain RL, Satterwhite JH, Brown-Augsburger PL, Sato M, Hock JM (2003) Anabolic and catabolic bone effects of human parathyroid hormone (1–34) are predicted by duration of hormone exposure. Bone 33:372–379PubMedCrossRef
56.
Zurück zum Zitat Jee WS, Ma YF (1997) The in vivo anabolic actions of prostaglandins in bone. Bone 21:297–304PubMedCrossRef Jee WS, Ma YF (1997) The in vivo anabolic actions of prostaglandins in bone. Bone 21:297–304PubMedCrossRef
57.
Zurück zum Zitat Desimone DP, Greene VS, Hannon KS, Turner RT, Bell NH (1993) Prostaglandin E2 administered by subcutaneous pellets causes local inflammation and systemic bone loss: a model for inflammation-induced bone disease. J Bone Miner Res 8:625–634PubMed Desimone DP, Greene VS, Hannon KS, Turner RT, Bell NH (1993) Prostaglandin E2 administered by subcutaneous pellets causes local inflammation and systemic bone loss: a model for inflammation-induced bone disease. J Bone Miner Res 8:625–634PubMed
58.
Zurück zum Zitat Schneider GB, Relfson M, Langman CB (1994) Effects of 1,25-dihydroxyvitamin D3 on bone resorption and natural immunity in osteopetrotic (ia) rats. J Bone Miner Res 9:585–591PubMedCrossRef Schneider GB, Relfson M, Langman CB (1994) Effects of 1,25-dihydroxyvitamin D3 on bone resorption and natural immunity in osteopetrotic (ia) rats. J Bone Miner Res 9:585–591PubMedCrossRef
59.
Zurück zum Zitat Davies J, Chambers TJ (2004) Parathyroid hormone activates adhesion in bone marrow stromal precursor cells. J Endocrinol 180:505–513PubMedCrossRef Davies J, Chambers TJ (2004) Parathyroid hormone activates adhesion in bone marrow stromal precursor cells. J Endocrinol 180:505–513PubMedCrossRef
60.
Zurück zum Zitat Scutt A, Beier N, Fittschen C (2004) EMD273316 & EMD95833, type 4 phosphodiesterase inhibitors, stimulate fibroblastic-colony formation by bone marrow cells via direct inhibition of PDE4 and the induction of endogenous prostaglandin synthesis. BMC Pharmacol 4:10PubMedCrossRef Scutt A, Beier N, Fittschen C (2004) EMD273316 & EMD95833, type 4 phosphodiesterase inhibitors, stimulate fibroblastic-colony formation by bone marrow cells via direct inhibition of PDE4 and the induction of endogenous prostaglandin synthesis. BMC Pharmacol 4:10PubMedCrossRef
61.
Zurück zum Zitat Scutt A, Bertram P (1999) Basic fibroblast growth factor in the presence of dexamethasone stimulates colony formation, expansion, and osteoblastic differentiation by rat bone marrow stromal cells. Calcif Tissue Int 64:69–77PubMedCrossRef Scutt A, Bertram P (1999) Basic fibroblast growth factor in the presence of dexamethasone stimulates colony formation, expansion, and osteoblastic differentiation by rat bone marrow stromal cells. Calcif Tissue Int 64:69–77PubMedCrossRef
62.
Zurück zum Zitat Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61PubMedCrossRef Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61PubMedCrossRef
63.
Zurück zum Zitat Randall MD, Kendall DA, O’Sullivan S (2004) The complexities of the cardiovascular actions of cannabinoids. Br J Pharmacol 142:20–26PubMedCrossRef Randall MD, Kendall DA, O’Sullivan S (2004) The complexities of the cardiovascular actions of cannabinoids. Br J Pharmacol 142:20–26PubMedCrossRef
64.
Zurück zum Zitat Schmitz B, Wickenhauser C, Thiele J, Frimpong S, Brockbals C, Selbach B, Mueller C, Fischer R (1999) Megakaryocyte induced fibroblast proliferation is enhanced by costimulation with IL-6/IL-3 and dependent on secretory and adhesion events. Leuk Res 23:723–729PubMedCrossRef Schmitz B, Wickenhauser C, Thiele J, Frimpong S, Brockbals C, Selbach B, Mueller C, Fischer R (1999) Megakaryocyte induced fibroblast proliferation is enhanced by costimulation with IL-6/IL-3 and dependent on secretory and adhesion events. Leuk Res 23:723–729PubMedCrossRef
65.
Zurück zum Zitat Wickenhauser C, Schmitz B, Baldus SE, Henze F, Farahmand P, Frimpong S, Thiele J, Fischer R (2000) Selectins (CD62L, CD62P) and megakaryocytic glycoproteins (CD41a, CD42b) mediate megakaryocyte-fibroblast interactions in human bone marrow. Leuk Res 24:1013–1021PubMedCrossRef Wickenhauser C, Schmitz B, Baldus SE, Henze F, Farahmand P, Frimpong S, Thiele J, Fischer R (2000) Selectins (CD62L, CD62P) and megakaryocytic glycoproteins (CD41a, CD42b) mediate megakaryocyte-fibroblast interactions in human bone marrow. Leuk Res 24:1013–1021PubMedCrossRef
66.
Zurück zum Zitat Villars F, Bordenave L, Bareille R, Amedee J (2000) Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochem 79:672–685PubMedCrossRef Villars F, Bordenave L, Bareille R, Amedee J (2000) Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF? J Cell Biochem 79:672–685PubMedCrossRef
67.
Zurück zum Zitat Villars F, Guillotin B, Amedee T, Dutoya S, Bordenave L, Bareille R, Amedee J (2002) Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am J Physiol Cell Physiol 282:C775–C785PubMed Villars F, Guillotin B, Amedee T, Dutoya S, Bordenave L, Bareille R, Amedee J (2002) Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am J Physiol Cell Physiol 282:C775–C785PubMed
68.
Zurück zum Zitat O’Sullivan SE, Kendall DA, Randall MD (2005) Vascular effects of delta 9-tetrahydrocannabinol (THC), anandamide and N-arachidonoyldopamine (NADA) in the rat isolated aorta. Eur J Pharmacol 507:211–221PubMedCrossRef O’Sullivan SE, Kendall DA, Randall MD (2005) Vascular effects of delta 9-tetrahydrocannabinol (THC), anandamide and N-arachidonoyldopamine (NADA) in the rat isolated aorta. Eur J Pharmacol 507:211–221PubMedCrossRef
69.
Zurück zum Zitat Begg M, Baydoun A, Parsons ME, Molleman A (2001) Signal transduction of cannabinoid CB1 receptors in a smooth muscle cell line. J Physiol 531:95–104PubMedCrossRef Begg M, Baydoun A, Parsons ME, Molleman A (2001) Signal transduction of cannabinoid CB1 receptors in a smooth muscle cell line. J Physiol 531:95–104PubMedCrossRef
70.
Zurück zum Zitat Pertwee RG (2005) The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J 7:E625–E654PubMedCrossRef Pertwee RG (2005) The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS J 7:E625–E654PubMedCrossRef
71.
Zurück zum Zitat Despres JP, Golay A, Sjostrom L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134PubMedCrossRef Despres JP, Golay A, Sjostrom L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134PubMedCrossRef
72.
Zurück zum Zitat Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775PubMedCrossRef Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775PubMedCrossRef
73.
Zurück zum Zitat LaBuda CJ, Koblish M, Little PJ (2005) Cannabinoid CB2 receptor agonist activity in the hindpaw incision model of postoperative pain. Eur J Pharmacol 527:172–174PubMedCrossRef LaBuda CJ, Koblish M, Little PJ (2005) Cannabinoid CB2 receptor agonist activity in the hindpaw incision model of postoperative pain. Eur J Pharmacol 527:172–174PubMedCrossRef
Metadaten
Titel
Cannabinoids Stimulate Fibroblastic Colony Formation by Bone Marrow Cells Indirectly via CB2 Receptors
verfasst von
A. Scutt
E. M. Williamson
Publikationsdatum
01.01.2007
Erschienen in
Calcified Tissue International / Ausgabe 1/2007
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-006-0171-7

Weitere Artikel der Ausgabe 1/2007

Calcified Tissue International 1/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.