Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 2/2005

01.12.2005 | Supplement

Imaging in cell-based therapy for neurodegenerative diseases

verfasst von: Deniz Kirik, Nathalie Breysse, Tomas Björklund, Laurent Besret, Philippe Hantraye

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Sonderheft 2/2005

Einloggen, um Zugang zu erhalten

Abstract

Fetal cell transplantation for the treatment of Parkinson’s and Huntington’s diseases has been developed over the past two decades and is now in early clinical testing phase. Direct assessment of the graft’s survival, integration into the host brain and impact on neuronal functions requires advanced in vivo neuroimaging techniques. Owing to its high sensitivity, positron emission tomography is today the most widely used tool to evaluate the viability and function of the transplanted tissue in the brain. Nuclear magnetic resonance techniques are opening new possibilities for imaging neurochemical events in the brain. The ultimate goal will be to use the combination of multiple imaging modalities for complete functional monitoring of the repair processes in the central nervous system.
Literatur
1.
Zurück zum Zitat Tanner CM, Ben-Shlomo Y. Epidemiology of Parkinson’s disease. Adv Neurol 1999;80:153–9PubMed Tanner CM, Ben-Shlomo Y. Epidemiology of Parkinson’s disease. Adv Neurol 1999;80:153–9PubMed
2.
Zurück zum Zitat Lindgren P. Economic evidence in Parkinson’s disease: a review. Eur J Health Econ 2004;5 Suppl 1:S63–6CrossRefPubMed Lindgren P. Economic evidence in Parkinson’s disease: a review. Eur J Health Econ 2004;5 Suppl 1:S63–6CrossRefPubMed
3.
Zurück zum Zitat Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat Med 2004;10 Suppl:S2–9CrossRefPubMed Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration. Nat Med 2004;10 Suppl:S2–9CrossRefPubMed
4.
5.
Zurück zum Zitat Lai BC, Marion SA, Teschke K, Tsui JK. Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism Relat Disord 2002;8 5:297–309CrossRefPubMed Lai BC, Marion SA, Teschke K, Tsui JK. Occupational and environmental risk factors for Parkinson’s disease. Parkinsonism Relat Disord 2002;8 5:297–309CrossRefPubMed
6.
Zurück zum Zitat Di Monte DA. The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2003;2 9:531–8CrossRefPubMed Di Monte DA. The environment and Parkinson’s disease: is the nigrostriatal system preferentially targeted by neurotoxins? Lancet Neurol 2003;2 9:531–8CrossRefPubMed
7.
Zurück zum Zitat Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson’s disease. Trends Neurosci 2000;23 10 Suppl:S2–7CrossRefPubMed Obeso JA, Olanow CW, Nutt JG. Levodopa motor complications in Parkinson’s disease. Trends Neurosci 2000;23 10 Suppl:S2–7CrossRefPubMed
8.
Zurück zum Zitat Olanow CW, Koller WC. An algorithm (decision tree) for the management of Parkinson’s disease: treatment guidelines. American Academy of Neurology. Neurology 1998;50 3 Suppl 3:S1–57 Olanow CW, Koller WC. An algorithm (decision tree) for the management of Parkinson’s disease: treatment guidelines. American Academy of Neurology. Neurology 1998;50 3 Suppl 3:S1–57
9.
Zurück zum Zitat Quinn NP. Parkinson’s disease: clinical features. Baillieres Clin Neurol 1997;6 1:1–13PubMed Quinn NP. Parkinson’s disease: clinical features. Baillieres Clin Neurol 1997;6 1:1–13PubMed
10.
Zurück zum Zitat Zgaljardic DJ, Foldi NS, Borod JC. Cognitive and behavioral dysfunction in Parkinson’s disease: neurochemical and clinicopathological contributions. J Neural Transm 2004;111 10–1:1287–301CrossRefPubMed Zgaljardic DJ, Foldi NS, Borod JC. Cognitive and behavioral dysfunction in Parkinson’s disease: neurochemical and clinicopathological contributions. J Neural Transm 2004;111 10–1:1287–301CrossRefPubMed
11.
Zurück zum Zitat Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56 1:33–9CrossRefPubMed Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch Neurol 1999;56 1:33–9CrossRefPubMed
12.
Zurück zum Zitat Aarsland D, Larsen JP, Cummins JL, Laake K. Prevalence and clinical correlates of psychotic symptoms in Parkinson disease: a community-based study. Arch Neurol 1999;56 5:595–601CrossRefPubMed Aarsland D, Larsen JP, Cummins JL, Laake K. Prevalence and clinical correlates of psychotic symptoms in Parkinson disease: a community-based study. Arch Neurol 1999;56 5:595–601CrossRefPubMed
13.
Zurück zum Zitat Lemke MR, Fuchs G, Gemende I, Herting B, Oehlwein C, Reichmann H, et al. Depression and Parkinson’s disease. J Neurol 2004;251 Suppl 6:VI/24–7CrossRef Lemke MR, Fuchs G, Gemende I, Herting B, Oehlwein C, Reichmann H, et al. Depression and Parkinson’s disease. J Neurol 2004;251 Suppl 6:VI/24–7CrossRef
14.
Zurück zum Zitat Schrag A. Psychiatric aspects of Parkinson’s disease—an update. J Neurol 2004;251 7:795–804CrossRefPubMed Schrag A. Psychiatric aspects of Parkinson’s disease—an update. J Neurol 2004;251 7:795–804CrossRefPubMed
15.
Zurück zum Zitat Brissaud E. Lecons sur les Maladies Nerveuses. Paris: Salpétriére; 1895 Brissaud E. Lecons sur les Maladies Nerveuses. Paris: Salpétriére; 1895
16.
Zurück zum Zitat Lewy F. Paralisis Agitans: I. Pathologisches anatomie. In: Handbuch der neurologie. Berlin Heidelberg New York: Springer; 1912. p. 920–33 Lewy F. Paralisis Agitans: I. Pathologisches anatomie. In: Handbuch der neurologie. Berlin Heidelberg New York: Springer; 1912. p. 920–33
17.
Zurück zum Zitat Tretiàkoff C. Contribution à l’étude de l’anatomie pathologique du locus niger der Soemmering avec quelces déductions relatives à la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson. Paris: University of Paris; 1919 Tretiàkoff C. Contribution à l’étude de l’anatomie pathologique du locus niger der Soemmering avec quelces déductions relatives à la pathogénie des troubles du tonus musculaire et de la maladie de Parkinson. Paris: University of Paris; 1919
18.
Zurück zum Zitat Bertler A, Rosengren E. Occurrence and distribution of catechol amines in brain. Acta Physiol Scand 1959;47:350–61PubMed Bertler A, Rosengren E. Occurrence and distribution of catechol amines in brain. Acta Physiol Scand 1959;47:350–61PubMed
19.
Zurück zum Zitat Ehinger H, Hornykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrangungen des extrapyramidalen Systems. Klin Wochenschr 1960;38:1236–9CrossRefPubMed Ehinger H, Hornykiewicz O. Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrangungen des extrapyramidalen Systems. Klin Wochenschr 1960;38:1236–9CrossRefPubMed
20.
Zurück zum Zitat Bjorklund A, Lindvall O. Catecholaminergic brain stem regulatory systems. In: Handbook of physiology. Baltimore: Waverly Press; 1986. p. 155–235 Bjorklund A, Lindvall O. Catecholaminergic brain stem regulatory systems. In: Handbook of physiology. Baltimore: Waverly Press; 1986. p. 155–235
21.
Zurück zum Zitat Agid Y, Ruberg M, Javoy-Agid F, Hirsch E, Raisman-Vozari R, Vyas S, et al. Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? Adv Neurol 1993;60:148–64PubMed Agid Y, Ruberg M, Javoy-Agid F, Hirsch E, Raisman-Vozari R, Vyas S, et al. Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? Adv Neurol 1993;60:148–64PubMed
22.
Zurück zum Zitat Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 1988;334 6180:345–8CrossRefPubMed Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 1988;334 6180:345–8CrossRefPubMed
23.
Zurück zum Zitat Hassler R. Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol 1938;48:387–476 Hassler R. Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J Psychol Neurol 1938;48:387–476
24.
Zurück zum Zitat Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114 Pt 5:2283–301PubMed Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 1991;114 Pt 5:2283–301PubMed
25.
Zurück zum Zitat Nyberg P, Nordberg A, Wester P, Winblad B. Dopaminergic deficiency is more pronounced in putamen than in nucleus caudatus in Parkinson’s disease. Neurochem Pathol 1983;1:193–202 Nyberg P, Nordberg A, Wester P, Winblad B. Dopaminergic deficiency is more pronounced in putamen than in nucleus caudatus in Parkinson’s disease. Neurochem Pathol 1983;1:193–202
26.
Zurück zum Zitat Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 1988;318 14:876–80PubMed Kish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 1988;318 14:876–80PubMed
27.
Zurück zum Zitat Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999;122 Pt 8:1437–48CrossRefPubMed Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 1999;122 Pt 8:1437–48CrossRefPubMed
28.
Zurück zum Zitat Cotzias J, Van Woert M, Scheffer L. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276:374–9PubMed Cotzias J, Van Woert M, Scheffer L. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276:374–9PubMed
29.
Zurück zum Zitat Mouradian MM, Heuser IJ, Baronti F, Fabbrini G, Juncos JL, Chase TN. Pathogenesis of dyskinesias in Parkinson’s disease. Ann Neurol 1989;25 5:523–6CrossRefPubMed Mouradian MM, Heuser IJ, Baronti F, Fabbrini G, Juncos JL, Chase TN. Pathogenesis of dyskinesias in Parkinson’s disease. Ann Neurol 1989;25 5:523–6CrossRefPubMed
30.
Zurück zum Zitat Chase TN, Mouradian MM, Engber TM. Motor response complications and the function of striatal efferent systems. Neurology 1993;43 12 Suppl 6:S23–7PubMed Chase TN, Mouradian MM, Engber TM. Motor response complications and the function of striatal efferent systems. Neurology 1993;43 12 Suppl 6:S23–7PubMed
31.
Zurück zum Zitat Nutt JG, Obeso JA, Stocchi F. Continuous dopamine-receptor stimulation in advanced Parkinson’s disease. Trends Neurosci 2000;23 10 Suppl:S109–15CrossRefPubMed Nutt JG, Obeso JA, Stocchi F. Continuous dopamine-receptor stimulation in advanced Parkinson’s disease. Trends Neurosci 2000;23 10 Suppl:S109–15CrossRefPubMed
32.
Zurück zum Zitat Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 2000;342 20:1484–91CrossRefPubMed Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE. A five-year study of the incidence of dyskinesia in patients with early Parkinson’s disease who were treated with ropinirole or levodopa. 056 Study Group. N Engl J Med 2000;342 20:1484–91CrossRefPubMed
33.
Zurück zum Zitat Stocchi F, Ruggieri S, Vacca L, Olanow CW. Prospective randomized trial of lisuride infusion versus oral levodopa in patients with Parkinson’s disease. Brain 2002;125 Pt 9:2058–66CrossRefPubMed Stocchi F, Ruggieri S, Vacca L, Olanow CW. Prospective randomized trial of lisuride infusion versus oral levodopa in patients with Parkinson’s disease. Brain 2002;125 Pt 9:2058–66CrossRefPubMed
34.
Zurück zum Zitat Rascol O. The pharmacological therapeutic management of levodopa-induced dyskinesias in patients with Parkinson’s disease. J Neurol 2000;247 Suppl 2:II51–7PubMed Rascol O. The pharmacological therapeutic management of levodopa-induced dyskinesias in patients with Parkinson’s disease. J Neurol 2000;247 Suppl 2:II51–7PubMed
35.
Zurück zum Zitat Del Dotto P, Pavese N, Gambaccini G, Bernardini S, Metman LV, Chase TN, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001;16 3:515–20CrossRefPubMed Del Dotto P, Pavese N, Gambaccini G, Bernardini S, Metman LV, Chase TN, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001;16 3:515–20CrossRefPubMed
36.
Zurück zum Zitat Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990;247 4942:574–7PubMed Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990;247 4942:574–7PubMed
37.
38.
Zurück zum Zitat Winkler C, Kirik D, Bjorklund A. Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 2005;28 2:86–92CrossRefPubMed Winkler C, Kirik D, Bjorklund A. Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 2005;28 2:86–92CrossRefPubMed
39.
Zurück zum Zitat Collier TJ, Sortwell CE, Daley BF. Diminished viability, growth, and behavioral efficacy of fetal dopamine neuron grafts in aging rats with long-term dopamine depletion: an argument for neurotrophic supplementation. J Neurosci 1999;19 13:5563–73PubMed Collier TJ, Sortwell CE, Daley BF. Diminished viability, growth, and behavioral efficacy of fetal dopamine neuron grafts in aging rats with long-term dopamine depletion: an argument for neurotrophic supplementation. J Neurosci 1999;19 13:5563–73PubMed
40.
Zurück zum Zitat Kirik D, Winkler C, Bjorklund A. Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration. J Neurosci 2001;21 8:2889–96PubMed Kirik D, Winkler C, Bjorklund A. Growth and functional efficacy of intrastriatal nigral transplants depend on the extent of nigrostriatal degeneration. J Neurosci 2001;21 8:2889–96PubMed
41.
Zurück zum Zitat Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344 10:710–9CrossRefPubMed Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001;344 10:710–9CrossRefPubMed
42.
Zurück zum Zitat Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003;54 3:403–14CrossRefPubMed Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003;54 3:403–14CrossRefPubMed
43.
Zurück zum Zitat Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983;306 5940:234–8CrossRefPubMed Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983;306 5940:234–8CrossRefPubMed
44.
Zurück zum Zitat The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72 6:971–83 The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993;72 6:971–83
45.
Zurück zum Zitat Gutekunst CA, Li SH, Yi H, Ferrante RJ, Li XJ, Hersch SM. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J Neurosci 1998;18 19:7674–86PubMed Gutekunst CA, Li SH, Yi H, Ferrante RJ, Li XJ, Hersch SM. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J Neurosci 1998;18 19:7674–86PubMed
46.
Zurück zum Zitat Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 1996;2 3:347–50CrossRefPubMed Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 1996;2 3:347–50CrossRefPubMed
47.
Zurück zum Zitat Bao J, Sharp AH, Wagster MV, Becher M, Schilling G, Ross CA, et al. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci U S A 1996;93 10:5037–42CrossRefPubMed Bao J, Sharp AH, Wagster MV, Becher M, Schilling G, Ross CA, et al. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci U S A 1996;93 10:5037–42CrossRefPubMed
48.
Zurück zum Zitat Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 1996;271 32:19385–94CrossRefPubMed Kalchman MA, Graham RK, Xia G, Koide HB, Hodgson JG, Graham KC, et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 1996;271 32:19385–94CrossRefPubMed
49.
Zurück zum Zitat Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, et al. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 1997;16 1:44–53CrossRefPubMed Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, et al. HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 1997;16 1:44–53CrossRefPubMed
50.
Zurück zum Zitat Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41 5:646–53CrossRefPubMed Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit MM, et al. Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41 5:646–53CrossRefPubMed
51.
Zurück zum Zitat Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 1997;41 2:160–5CrossRefPubMed Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol 1997;41 2:160–5CrossRefPubMed
52.
Zurück zum Zitat Harper PS. Huntington’s disease. London: W.B. Saunders; 1991 Harper PS. Huntington’s disease. London: W.B. Saunders; 1991
53.
Zurück zum Zitat Wellington CL, Brinkman RR, O’Kusky JR, Hayden MR. Toward understanding the molecular pathology of Huntington’s disease. Brain Pathol 1997;7 3:979–1002PubMed Wellington CL, Brinkman RR, O’Kusky JR, Hayden MR. Toward understanding the molecular pathology of Huntington’s disease. Brain Pathol 1997;7 3:979–1002PubMed
54.
Zurück zum Zitat Kremer B, Weber B, Hayden MR. New insights into the clinical features, pathogenesis and molecular genetics of Huntington disease. Brain Pathol 1992;2 4:321–35PubMed Kremer B, Weber B, Hayden MR. New insights into the clinical features, pathogenesis and molecular genetics of Huntington disease. Brain Pathol 1992;2 4:321–35PubMed
55.
Zurück zum Zitat Thompson PD, Berardelli A, Rothwell JC, Day BL, Dick JP, Benecke R, et al. The coexistence of bradykinesia and chorea in Huntington’s disease and its implications for theories of basal ganglia control of movement. Brain 1988;111 Pt 2:223–44PubMed Thompson PD, Berardelli A, Rothwell JC, Day BL, Dick JP, Benecke R, et al. The coexistence of bradykinesia and chorea in Huntington’s disease and its implications for theories of basal ganglia control of movement. Brain 1988;111 Pt 2:223–44PubMed
56.
Zurück zum Zitat Podoll K, Caspary P, Lange HW, Noth J. Language functions in Huntington’s disease. Brain 1988;111 Pt 6:1475–503PubMed Podoll K, Caspary P, Lange HW, Noth J. Language functions in Huntington’s disease. Brain 1988;111 Pt 6:1475–503PubMed
57.
Zurück zum Zitat Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985;44 6:559–77PubMed Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP Jr. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 1985;44 6:559–77PubMed
58.
Zurück zum Zitat Myers RH, Vonsattel JP, Stevens TJ, Cupples LA, Richardson EP, Martin JB, et al. Clinical and neuropathologic assessment of severity in Huntington’s disease. Neurology 1988;38 3:341–7PubMed Myers RH, Vonsattel JP, Stevens TJ, Cupples LA, Richardson EP, Martin JB, et al. Clinical and neuropathologic assessment of severity in Huntington’s disease. Neurology 1988;38 3:341–7PubMed
59.
Zurück zum Zitat Kowall NW, Ferrante RJ, Martin JB. Patterns of cell loss in Huntington’s disease. Trends Neurosci 1987;10 1:24–9CrossRef Kowall NW, Ferrante RJ, Martin JB. Patterns of cell loss in Huntington’s disease. Trends Neurosci 1987;10 1:24–9CrossRef
60.
Zurück zum Zitat Ferrante RJ, Kowall NW, Beal MF, Richardson EP Jr., Bird ED, Martin JB. Selective sparing of a class of striatal neurons in Huntington’s disease. Science 1985;230 4725:561–3PubMed Ferrante RJ, Kowall NW, Beal MF, Richardson EP Jr., Bird ED, Martin JB. Selective sparing of a class of striatal neurons in Huntington’s disease. Science 1985;230 4725:561–3PubMed
61.
Zurück zum Zitat Buck SH, Burks TF, Brown MR, Yamamura HI. Reduction in basal ganglia and substantia nigra substance P levels in Huntington’s disease. Brain Res 1981;209 2:464–9CrossRefPubMed Buck SH, Burks TF, Brown MR, Yamamura HI. Reduction in basal ganglia and substantia nigra substance P levels in Huntington’s disease. Brain Res 1981;209 2:464–9CrossRefPubMed
62.
Zurück zum Zitat Richfield EK, Maguire-Zeiss KA, Vonkeman HE, Voorn P. Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s disease patients. Ann Neurol 1995;38 6:852–61CrossRefPubMed Richfield EK, Maguire-Zeiss KA, Vonkeman HE, Voorn P. Preferential loss of preproenkephalin versus preprotachykinin neurons from the striatum of Huntington’s disease patients. Ann Neurol 1995;38 6:852–61CrossRefPubMed
63.
Zurück zum Zitat Storey E, Beal MF. Neurochemical substrates of rigidity and chorea in Huntington’s disease. Brain 1993;116 Pt 5:1201–22PubMed Storey E, Beal MF. Neurochemical substrates of rigidity and chorea in Huntington’s disease. Brain 1993;116 Pt 5:1201–22PubMed
64.
Zurück zum Zitat Ferrante RJ, Kowall NW, Richardson EP Jr. Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J Neurosci 1991;11 12:3877–87PubMed Ferrante RJ, Kowall NW, Richardson EP Jr. Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: a combined study using the section-Golgi method and calbindin D28k immunocytochemistry. J Neurosci 1991;11 12:3877–87PubMed
65.
Zurück zum Zitat Hedreen JC, Folstein SE. Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 1995;54 1:105–20PubMed Hedreen JC, Folstein SE. Early loss of neostriatal striosome neurons in Huntington’s disease. J Neuropathol Exp Neurol 1995;54 1:105–20PubMed
66.
Zurück zum Zitat Beal MF, Mazurek MF, Ellison DW, Swartz KJ, McGarvey U, Bird ED, et al. Somatostatin and neuropeptide Y concentrations in pathologically graded cases of Huntington’s disease. Ann Neurol 1988;23 6:562–9CrossRefPubMed Beal MF, Mazurek MF, Ellison DW, Swartz KJ, McGarvey U, Bird ED, et al. Somatostatin and neuropeptide Y concentrations in pathologically graded cases of Huntington’s disease. Ann Neurol 1988;23 6:562–9CrossRefPubMed
67.
Zurück zum Zitat Bird ED, Iversen LL. Neurochemical findings in Huntington’s chorea. Essays Neurochem Neuropharmacol 1977;1:177–95PubMed Bird ED, Iversen LL. Neurochemical findings in Huntington’s chorea. Essays Neurochem Neuropharmacol 1977;1:177–95PubMed
68.
Zurück zum Zitat Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A 1991;88 17:7797–801PubMed Dawson TM, Bredt DS, Fotuhi M, Hwang PM, Snyder SH. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc Natl Acad Sci U S A 1991;88 17:7797–801PubMed
69.
70.
Zurück zum Zitat Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 1993;13 6:2651–61PubMed Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH. Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 1993;13 6:2651–61PubMed
71.
Zurück zum Zitat Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP Jr. Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 1987;46 1:12–27PubMed Ferrante RJ, Kowall NW, Beal MF, Martin JB, Bird ED, Richardson EP Jr. Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 1987;46 1:12–27PubMed
72.
Zurück zum Zitat Spokes EG. Neurochemical alterations in Huntington’s chorea: a study of post-mortem brain tissue. Brain 1980;103 1:179–210PubMed Spokes EG. Neurochemical alterations in Huntington’s chorea: a study of post-mortem brain tissue. Brain 1980;103 1:179–210PubMed
73.
Zurück zum Zitat McGeer PL, McGeer EG. Enzymes associated with the metabolism of catecholamines, acetylcholine and gaba in human controls and patients with Parkinson’s disease and Huntington’s chorea. J Neurochem 1976;26 1:65–76PubMed McGeer PL, McGeer EG. Enzymes associated with the metabolism of catecholamines, acetylcholine and gaba in human controls and patients with Parkinson’s disease and Huntington’s chorea. J Neurochem 1976;26 1:65–76PubMed
74.
Zurück zum Zitat Kish SJ, Shannak K, Hornykiewicz O. Elevated serotonin and reduced dopamine in subregionally divided Huntington’s disease striatum. Ann Neurol 1987;22 3:386–9CrossRefPubMed Kish SJ, Shannak K, Hornykiewicz O. Elevated serotonin and reduced dopamine in subregionally divided Huntington’s disease striatum. Ann Neurol 1987;22 3:386–9CrossRefPubMed
75.
Zurück zum Zitat DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277 5334:1990–3CrossRefPubMed DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 1997;277 5334:1990–3CrossRefPubMed
76.
Zurück zum Zitat Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology 1992;42 4:733–8PubMed Albin RL, Greenamyre JT. Alternative excitotoxic hypotheses. Neurology 1992;42 4:733–8PubMed
77.
Zurück zum Zitat Martin JJ, Van de Vyver FL, Scholte HR, Roodhooft AM, Ceuterick C, Martin L, et al. Defect in succinate oxidation by isolated muscle mitochondria in a patient with symmetrical lesions in the basal ganglia. J Neurol Sci 1988;84 2–3:189–200CrossRefPubMed Martin JJ, Van de Vyver FL, Scholte HR, Roodhooft AM, Ceuterick C, Martin L, et al. Defect in succinate oxidation by isolated muscle mitochondria in a patient with symmetrical lesions in the basal ganglia. J Neurol Sci 1988;84 2–3:189–200CrossRefPubMed
78.
Zurück zum Zitat Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 1995;11 2:144–9CrossRefPubMed Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 1995;11 2:144–9CrossRefPubMed
79.
Zurück zum Zitat He F, Zhang S, Qian F, Zhang C. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3-nitropropionic acid). Neurology 1995;45 12:2178–83PubMed He F, Zhang S, Qian F, Zhang C. Delayed dystonia with striatal CT lucencies induced by a mycotoxin (3-nitropropionic acid). Neurology 1995;45 12:2178–83PubMed
80.
Zurück zum Zitat Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS. Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol 1998;149 1:97–108CrossRefPubMed Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS. Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol 1998;149 1:97–108CrossRefPubMed
81.
Zurück zum Zitat Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 2000;356 9246:1975–9CrossRefPubMed Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, et al. Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 2000;356 9246:1975–9CrossRefPubMed
82.
Zurück zum Zitat Bloch J, Bachoud-Levi AC, Deglon N, Lefaucheur JP, Winkel L, Palfi S, et al. Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 2004;15 10:968–75CrossRefPubMed Bloch J, Bachoud-Levi AC, Deglon N, Lefaucheur JP, Winkel L, Palfi S, et al. Neuroprotective gene therapy for Huntington’s disease, using polymer-encapsulated cells engineered to secrete human ciliary neurotrophic factor: results of a phase I study. Hum Gene Ther 2004;15 10:968–75CrossRefPubMed
83.
Zurück zum Zitat Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28 5:897–916PubMed Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 1977;28 5:897–916PubMed
84.
Zurück zum Zitat Maziere B, Maziere M. Positron emission tomography studies of brain receptors. Fundam Clin Pharmacol 1991;5 1:61–91PubMed Maziere B, Maziere M. Positron emission tomography studies of brain receptors. Fundam Clin Pharmacol 1991;5 1:61–91PubMed
85.
Zurück zum Zitat Stocklin G. Tracers for metabolic imaging of brain and heart. Radiochemistry and radiopharmacology. Eur J Nucl Med 1992;19 7:527–51PubMed Stocklin G. Tracers for metabolic imaging of brain and heart. Radiochemistry and radiopharmacology. Eur J Nucl Med 1992;19 7:527–51PubMed
86.
Zurück zum Zitat Shiue CY, Welch MJ. Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin North Am 2004;42 6:1033–53, viiiCrossRefPubMed Shiue CY, Welch MJ. Update on PET radiopharmaceuticals: life beyond fluorodeoxyglucose. Radiol Clin North Am 2004;42 6:1033–53, viiiCrossRefPubMed
87.
Zurück zum Zitat Hamill TG, Krause S, Ryan C, Bonnefous C, Govek S, Seiders TJ, et al. Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers. Synapse 2005;56 4:205–16CrossRefPubMed Hamill TG, Krause S, Ryan C, Bonnefous C, Govek S, Seiders TJ, et al. Synthesis, characterization, and first successful monkey imaging studies of metabotropic glutamate receptor subtype 5 (mGluR5) PET radiotracers. Synapse 2005;56 4:205–16CrossRefPubMed
88.
Zurück zum Zitat Brooks DJ. PET studies on the function of dopamine in health and Parkinson’s disease. Ann N Y Acad Sci 2003;991:22–35PubMed Brooks DJ. PET studies on the function of dopamine in health and Parkinson’s disease. Ann N Y Acad Sci 2003;991:22–35PubMed
89.
Zurück zum Zitat Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 1999;2 12:1137–40CrossRefPubMed Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 1999;2 12:1137–40CrossRefPubMed
90.
Zurück zum Zitat Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9 5:589–95CrossRefPubMed Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003;9 5:589–95CrossRefPubMed
91.
Zurück zum Zitat Rascol O, Sabatini U, Chollet F, Celsis P, Montastruc JL, Marc-Vergnes JP, et al. Supplementary and primary sensory motor area activity in Parkinson’s disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol 1992;49 2:144–8PubMed Rascol O, Sabatini U, Chollet F, Celsis P, Montastruc JL, Marc-Vergnes JP, et al. Supplementary and primary sensory motor area activity in Parkinson’s disease. Regional cerebral blood flow changes during finger movements and effects of apomorphine. Arch Neurol 1992;49 2:144–8PubMed
92.
Zurück zum Zitat Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, et al. Evidence for striatal dopamine release during a video game. Nature 1998;393 6682:266–8CrossRefPubMed Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, et al. Evidence for striatal dopamine release during a video game. Nature 1998;393 6682:266–8CrossRefPubMed
93.
Zurück zum Zitat de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 2004;127 Pt 12:2747–54CrossRefPubMed de la Fuente-Fernandez R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 2004;127 Pt 12:2747–54CrossRefPubMed
94.
Zurück zum Zitat Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 1997;120 Pt 12:2187–95CrossRefPubMed Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, et al. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 1997;120 Pt 12:2187–95CrossRefPubMed
95.
Zurück zum Zitat Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005;128 Pt 6:1314–22CrossRefPubMed Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005;128 Pt 6:1314–22CrossRefPubMed
96.
Zurück zum Zitat Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 1982;12 5:425–34CrossRefPubMed Kuhl DE, Phelps ME, Markham CH, Metter EJ, Riege WH, Winter J. Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann Neurol 1982;12 5:425–34CrossRefPubMed
97.
Zurück zum Zitat Garnett ES, Firnau G, Nahmias C, Carbotte R, Bartolucci G. Reduced striatal glucose consumption and prolonged reaction time are early features in Huntington’s disease. J Neurol Sci 1984;65 2:231–7CrossRefPubMed Garnett ES, Firnau G, Nahmias C, Carbotte R, Bartolucci G. Reduced striatal glucose consumption and prolonged reaction time are early features in Huntington’s disease. J Neurol Sci 1984;65 2:231–7CrossRefPubMed
98.
Zurück zum Zitat Kuwert T, Lange HW, Boecker H, Titz H, Herzog H, Aulich A, et al. Striatal glucose consumption in chorea-free subjects at risk of Huntington’s disease. J Neurol 1993;241 1:31–6CrossRefPubMed Kuwert T, Lange HW, Boecker H, Titz H, Herzog H, Aulich A, et al. Striatal glucose consumption in chorea-free subjects at risk of Huntington’s disease. J Neurol 1993;241 1:31–6CrossRefPubMed
99.
Zurück zum Zitat Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, et al. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 1987;316 7:357–62PubMed Mazziotta JC, Phelps ME, Pahl JJ, Huang SC, Baxter LR, Riege WH, et al. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington’s disease. N Engl J Med 1987;316 7:357–62PubMed
100.
Zurück zum Zitat Seibyl J, Jennings D, Tabamo R, Marek K. Neuroimaging trials of Parkinson’s disease progression. J Neurol 2004;251 Suppl 7:vII9–13CrossRefPubMed Seibyl J, Jennings D, Tabamo R, Marek K. Neuroimaging trials of Parkinson’s disease progression. J Neurol 2004;251 Suppl 7:vII9–13CrossRefPubMed
101.
Zurück zum Zitat Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 2003;54 1:93–101CrossRefPubMed Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: the REAL-PET study. Ann Neurol 2003;54 1:93–101CrossRefPubMed
102.
Zurück zum Zitat Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995;332 17:1118–24CrossRefPubMed Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995;332 17:1118–24CrossRefPubMed
103.
Zurück zum Zitat Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 2005;128 Pt 7:1498–510CrossRefPubMed Mendez I, Sanchez-Pernaute R, Cooper O, Vinuela A, Ferrari D, Bjorklund L, et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 2005;128 Pt 7:1498–510CrossRefPubMed
104.
Zurück zum Zitat Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P, et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 1997;42 1:95–107CrossRefPubMed Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P, et al. Short- and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 1997;42 1:95–107CrossRefPubMed
105.
Zurück zum Zitat Levivier M, Dethy S, Rodesch F, Peschanski M, Vandesteene A, David P, et al. Intracerebral transplantation of fetal ventral mesencephalon for patients with advanced Parkinson’s disease. Methodology and 6-month to 1-year follow-up in 3 patients. Stereotact Funct Neurosurg 1997;69 1–4 Pt 2:99–111PubMed Levivier M, Dethy S, Rodesch F, Peschanski M, Vandesteene A, David P, et al. Intracerebral transplantation of fetal ventral mesencephalon for patients with advanced Parkinson’s disease. Methodology and 6-month to 1-year follow-up in 3 patients. Stereotact Funct Neurosurg 1997;69 1–4 Pt 2:99–111PubMed
106.
Zurück zum Zitat Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol 2002;52 5:628–34CrossRefPubMed Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol 2002;52 5:628–34CrossRefPubMed
107.
Zurück zum Zitat Cochen V, Ribeiro MJ, Nguyen JP, Gurruchaga JM, Villafane G, Loc’h C, et al. Transplantation in Parkinson’s disease: PET changes correlate with the amount of grafted tissue. Mov Disord 2003;18 8:928–32CrossRefPubMed Cochen V, Ribeiro MJ, Nguyen JP, Gurruchaga JM, Villafane G, Loc’h C, et al. Transplantation in Parkinson’s disease: PET changes correlate with the amount of grafted tissue. Mov Disord 2003;18 8:928–32CrossRefPubMed
108.
Zurück zum Zitat Piccini P, Lindvall O, Bjorklund A, Brundin P, Hagell P, Ceravolo R, et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol 2000;48 5:689–95CrossRefPubMed Piccini P, Lindvall O, Bjorklund A, Brundin P, Hagell P, Ceravolo R, et al. Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol 2000;48 5:689–95CrossRefPubMed
109.
Zurück zum Zitat Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, et al. Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 2004;127 Pt 1:65–72CrossRefPubMed Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, et al. Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 2004;127 Pt 1:65–72CrossRefPubMed
110.
Zurück zum Zitat Leergaard TB, Bjaalie JG, Devor A, Wald LL, Dale AM. In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing. NeuroImage 2003;20 3:1591–600CrossRefPubMed Leergaard TB, Bjaalie JG, Devor A, Wald LL, Dale AM. In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing. NeuroImage 2003;20 3:1591–600CrossRefPubMed
111.
Zurück zum Zitat Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13 3:981–9PubMed Urenjak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13 3:981–9PubMed
112.
Zurück zum Zitat Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002;3 2:142–51CrossRefPubMed Heeger DJ, Ress D. What does fMRI tell us about neuronal activity? Nat Rev Neurosci 2002;3 2:142–51CrossRefPubMed
113.
Zurück zum Zitat Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176 2:439–45PubMed Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176 2:439–45PubMed
114.
Zurück zum Zitat Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review. NMR Biomed 2002;15 7–8:468–80CrossRefPubMed Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review. NMR Biomed 2002;15 7–8:468–80CrossRefPubMed
115.
Zurück zum Zitat Geninatti Crich S, Barge A, Battistini E, Cabella C, Coluccia S, Longo D, et al. Magnetic resonance imaging visualization of targeted cells by the internalization of supramolecular adducts formed between avidin and biotinylated Gd3+ chelates. J Biol Inorg Chem 2005;10 1:78–86CrossRefPubMed Geninatti Crich S, Barge A, Battistini E, Cabella C, Coluccia S, Longo D, et al. Magnetic resonance imaging visualization of targeted cells by the internalization of supramolecular adducts formed between avidin and biotinylated Gd3+ chelates. J Biol Inorg Chem 2005;10 1:78–86CrossRefPubMed
116.
Zurück zum Zitat O’Neill J, Schuff N, Marks WJ Jr, Feiwell R, Aminoff MJ, Weiner MW. Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson’s disease. Mov Disord 2002;17 5:917–27CrossRefPubMed O’Neill J, Schuff N, Marks WJ Jr, Feiwell R, Aminoff MJ, Weiner MW. Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson’s disease. Mov Disord 2002;17 5:917–27CrossRefPubMed
117.
Zurück zum Zitat Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA. Parkinson’s disease is associated with hippocampal atrophy. Mov Disord 2003;18 7:784–90CrossRefPubMed Camicioli R, Moore MM, Kinney A, Corbridge E, Glassberg K, Kaye JA. Parkinson’s disease is associated with hippocampal atrophy. Mov Disord 2003;18 7:784–90CrossRefPubMed
118.
Zurück zum Zitat Summerfield C, Junque C, Tolosa E, Salgado-Pineda P, Gomez-Anson B, Marti MJ, et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 2005;62 2:281–5CrossRefPubMed Summerfield C, Junque C, Tolosa E, Salgado-Pineda P, Gomez-Anson B, Marti MJ, et al. Structural brain changes in Parkinson disease with dementia: a voxel-based morphometry study. Arch Neurol 2005;62 2:281–5CrossRefPubMed
119.
Zurück zum Zitat Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 2002;73 5:517–23CrossRefPubMed Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 2002;73 5:517–23CrossRefPubMed
120.
Zurück zum Zitat Schocke MF, Seppi K, Esterhammer R, Kremser C, Mair KJ, Czermak BV, et al. Trace of diffusion tensor differentiates the Parkinson variant of multiple system atrophy and Parkinson’s disease. NeuroImage 2004;21 4:1443–51CrossRefPubMed Schocke MF, Seppi K, Esterhammer R, Kremser C, Mair KJ, Czermak BV, et al. Trace of diffusion tensor differentiates the Parkinson variant of multiple system atrophy and Parkinson’s disease. NeuroImage 2004;21 4:1443–51CrossRefPubMed
121.
Zurück zum Zitat Eckert T, Sailer M, Kaufmann J, Schrader C, Peschel T, Bodammer N, et al. Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging. NeuroImage 2004;21 1:229–35CrossRefPubMed Eckert T, Sailer M, Kaufmann J, Schrader C, Peschel T, Bodammer N, et al. Differentiation of idiopathic Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, and healthy controls using magnetization transfer imaging. NeuroImage 2004;21 1:229–35CrossRefPubMed
122.
Zurück zum Zitat Mascalchi M, Lolli F, Della Nave R, Tessa C, Petralli R, Gavazzi C, et al. Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology 2004;232 3:867–73PubMed Mascalchi M, Lolli F, Della Nave R, Tessa C, Petralli R, Gavazzi C, et al. Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR imaging of brain. Radiology 2004;232 3:867–73PubMed
123.
Zurück zum Zitat Savoiardo M, Strada L, Oliva D, Girotti F, D’Incerti L. Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatry 1991;54 10:888–91PubMed Savoiardo M, Strada L, Oliva D, Girotti F, D’Incerti L. Abnormal MRI signal in the rigid form of Huntington’s disease. J Neurol Neurosurg Psychiatry 1991;54 10:888–91PubMed
124.
Zurück zum Zitat Oliva D, Carella F, Savoiardo M, Strada L, Giovannini P, Testa D, et al. Clinical and magnetic resonance features of the classic and akinetic-rigid variants of Huntington’s disease. Arch Neurol 1993;50 1:17–9PubMed Oliva D, Carella F, Savoiardo M, Strada L, Giovannini P, Testa D, et al. Clinical and magnetic resonance features of the classic and akinetic-rigid variants of Huntington’s disease. Arch Neurol 1993;50 1:17–9PubMed
125.
Zurück zum Zitat Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 1993;43 12:2689–95PubMed Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 1993;43 12:2689–95PubMed
126.
Zurück zum Zitat Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R, MacDonald M, et al. 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 1998;50 5:1357–65PubMed Jenkins BG, Rosas HD, Chen YC, Makabe T, Myers R, MacDonald M, et al. 1H NMR spectroscopy studies of Huntington’s disease: correlations with CAG repeat numbers. Neurology 1998;50 5:1357–65PubMed
127.
Zurück zum Zitat Brennan WA Jr, Bird ED, Aprille JR. Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 1985;44 6:1948–50PubMed Brennan WA Jr, Bird ED, Aprille JR. Regional mitochondrial respiratory activity in Huntington’s disease brain. J Neurochem 1985;44 6:1948–50PubMed
128.
Zurück zum Zitat Hoang TQ, Bluml S, Dubowitz DJ, Moats R, Kopyov O, Jacques D, et al. Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington’s and Parkinson’s diseases. Neurology 1998;50 4:1033–40PubMed Hoang TQ, Bluml S, Dubowitz DJ, Moats R, Kopyov O, Jacques D, et al. Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington’s and Parkinson’s diseases. Neurology 1998;50 4:1033–40PubMed
129.
Zurück zum Zitat Alexander E III, Kooy HM, van Herk M, Schwartz M, Barnes PD, Tarbell N, et al. Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg 1995;83 2:271–6PubMed Alexander E III, Kooy HM, van Herk M, Schwartz M, Barnes PD, Tarbell N, et al. Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg 1995;83 2:271–6PubMed
130.
Zurück zum Zitat Donovan T, Fryer TD, Pena A, Watts C, Carpenter TA, Pickard JD. Stereotactic MR imaging for planning neural transplantation: a reliable technique at 3 Tesla? Br J Neurosurg 2003;17 5:443–9CrossRefPubMed Donovan T, Fryer TD, Pena A, Watts C, Carpenter TA, Pickard JD. Stereotactic MR imaging for planning neural transplantation: a reliable technique at 3 Tesla? Br J Neurosurg 2003;17 5:443–9CrossRefPubMed
131.
Zurück zum Zitat Kondziolka D, Dempsey PK, Lunsford LD, Kestle JR, Dolan EJ, Kanal E, et al. A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination. Neurosurgery 1992;30 3:402–6; discussion 406–407PubMed Kondziolka D, Dempsey PK, Lunsford LD, Kestle JR, Dolan EJ, Kanal E, et al. A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination. Neurosurgery 1992;30 3:402–6; discussion 406–407PubMed
132.
Zurück zum Zitat Carter DA, Parsai EI, Ayyangar KM. Accuracy of magnetic resonance imaging stereotactic coordinates with the Cosman-Roberts-Wells frame. Stereotact Funct Neurosurg 1999;72 1:35–46CrossRefPubMed Carter DA, Parsai EI, Ayyangar KM. Accuracy of magnetic resonance imaging stereotactic coordinates with the Cosman-Roberts-Wells frame. Stereotact Funct Neurosurg 1999;72 1:35–46CrossRefPubMed
133.
Zurück zum Zitat Bluml S, Kopyov O, Jacques S, Ross BD. Activation of neurotransplants in humans. Exp Neurol 1999;158 1:121–5CrossRefPubMed Bluml S, Kopyov O, Jacques S, Ross BD. Activation of neurotransplants in humans. Exp Neurol 1999;158 1:121–5CrossRefPubMed
134.
Zurück zum Zitat Ross BD, Hoang TQ, Bluml S, Dubowitz D, Kopyov OV, Jacques DB, et al. In vivo magnetic resonance spectroscopy of human fetal neural transplants. NMR Biomed 1999;12 4:221–36CrossRefPubMed Ross BD, Hoang TQ, Bluml S, Dubowitz D, Kopyov OV, Jacques DB, et al. In vivo magnetic resonance spectroscopy of human fetal neural transplants. NMR Biomed 1999;12 4:221–36CrossRefPubMed
135.
Zurück zum Zitat Brooks DJ. Positron emission tomography and single-photon emission computed tomography in central nervous system drug development. NeuroRx 2005;2 2:226–36CrossRefPubMed Brooks DJ. Positron emission tomography and single-photon emission computed tomography in central nervous system drug development. NeuroRx 2005;2 2:226–36CrossRefPubMed
136.
Zurück zum Zitat Tavitian B. Oligonucleotides as radiopharmaceuticals. Ernst Schering Res Found Workshop 2005;(49):1–34 Tavitian B. Oligonucleotides as radiopharmaceuticals. Ernst Schering Res Found Workshop 2005;(49):1–34
137.
Zurück zum Zitat Mezey E, Dehejia A, Harta G, Papp MI, Polymeropoulos MH, Brownstein MJ. Alpha synuclein in neurodegenerative disorders: murderer or accomplice? Nat Med 1998;4 7:755–7CrossRefPubMed Mezey E, Dehejia A, Harta G, Papp MI, Polymeropoulos MH, Brownstein MJ. Alpha synuclein in neurodegenerative disorders: murderer or accomplice? Nat Med 1998;4 7:755–7CrossRefPubMed
138.
Zurück zum Zitat Goldberg MS, Lansbury PT Jr. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2000;2 7:E115–9CrossRefPubMed Goldberg MS, Lansbury PT Jr. Is there a cause-and-effect relationship between alpha-synuclein fibrillization and Parkinson’s disease? Nat Cell Biol 2000;2 7:E115–9CrossRefPubMed
139.
Zurück zum Zitat Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 2002;10 1:24–35CrossRefPubMed Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 2002;10 1:24–35CrossRefPubMed
140.
Zurück zum Zitat Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55 3:306–19CrossRefPubMed Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55 3:306–19CrossRefPubMed
141.
143.
Zurück zum Zitat Eckert T, Eidelberg D. Neuroimaging and therapeutics in movement disorders. NeuroRx 2005;2 2:361–71CrossRefPubMed Eckert T, Eidelberg D. Neuroimaging and therapeutics in movement disorders. NeuroRx 2005;2 2:361–71CrossRefPubMed
144.
Zurück zum Zitat Gruetter R, Seaquist ER, Kim S, Ugurbil K. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 1998;20 4–5:380–8CrossRefPubMed Gruetter R, Seaquist ER, Kim S, Ugurbil K. Localized in vivo 13C-NMR of glutamate metabolism in the human brain: initial results at 4 tesla. Dev Neurosci 1998;20 4–5:380–8CrossRefPubMed
145.
Zurück zum Zitat Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 2002;22 5:1523–31PubMed Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, et al. Astroglial contribution to brain energy metabolism in humans revealed by 13C nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 2002;22 5:1523–31PubMed
146.
Zurück zum Zitat Boumezbeur F, Besret L, Valette J, Gregoire MC, Delzescaux T, Maroy R, et al. Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR. J Cereb Blood Flow Metab 2005 (Epub ahead of print) Boumezbeur F, Besret L, Valette J, Gregoire MC, Delzescaux T, Maroy R, et al. Glycolysis versus TCA cycle in the primate brain as measured by combining 18F-FDG PET and 13C-NMR. J Cereb Blood Flow Metab 2005 (Epub ahead of print)
147.
Zurück zum Zitat Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido TC. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 2005;8 4:527–33CrossRefPubMed Higuchi M, Iwata N, Matsuba Y, Sato K, Sasamoto K, Saido TC. 19F and 1H MRI detection of amyloid beta plaques in vivo. Nat Neurosci 2005;8 4:527–33CrossRefPubMed
148.
Zurück zum Zitat Dingman S, Mack D, Branch S, Thomas R, Guo C, Branch C. The fate of perfluoro-tagged metabolites of L-DOPA in mice brains. J Immunoassay Immunochem 2004;25 4:359–70CrossRefPubMed Dingman S, Mack D, Branch S, Thomas R, Guo C, Branch C. The fate of perfluoro-tagged metabolites of L-DOPA in mice brains. J Immunoassay Immunochem 2004;25 4:359–70CrossRefPubMed
149.
Zurück zum Zitat Dingman S, Snyder-Leiby T, Mack DJ, Thomas R, Guo C. Enzymatic assay for perfluoro-tagged metabolites of l-DOPA using crude lysate from E. coli transformed with pKKAADCII. Appl Microbiol Biotechnol 2004;64 4:556–9CrossRefPubMed Dingman S, Snyder-Leiby T, Mack DJ, Thomas R, Guo C. Enzymatic assay for perfluoro-tagged metabolites of l-DOPA using crude lysate from E. coli transformed with pKKAADCII. Appl Microbiol Biotechnol 2004;64 4:556–9CrossRefPubMed
150.
Zurück zum Zitat Piccini P, Pavese N, Brooks DJ. Endogenous dopamine release after pharmacological challenges in Parkinson’s disease. Ann Neurol 2003;53 5:647–53CrossRefPubMed Piccini P, Pavese N, Brooks DJ. Endogenous dopamine release after pharmacological challenges in Parkinson’s disease. Ann Neurol 2003;53 5:647–53CrossRefPubMed
Metadaten
Titel
Imaging in cell-based therapy for neurodegenerative diseases
verfasst von
Deniz Kirik
Nathalie Breysse
Tomas Björklund
Laurent Besret
Philippe Hantraye
Publikationsdatum
01.12.2005
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe Sonderheft 2/2005
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-005-1909-6

Weitere Artikel der Sonderheft 2/2005

European Journal of Nuclear Medicine and Molecular Imaging 2/2005 Zur Ausgabe