Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 1/2008

01.01.2008 | Original article

In vivo amyloid imaging with PET in frontotemporal dementia

verfasst von: Henry Engler, Alexander Frizell Santillo, Shu Xia Wang, Maria Lindau, Irina Savitcheva, Agneta Nordberg, Lars Lannfelt, Bengt Långström, Lena Kilander

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 1/2008

Einloggen, um Zugang zu erhalten

Abstract

Background

N-methyl[11C]2-(4′methylaminophenyl)-6-hydroxy-benzothiazole (PIB) is a positron emission tomography (PET) tracer with amyloid binding properties which allows in vivo measurement of cerebral amyloid load in Alzheimer’s disease (AD). Frontotemporal dementia (FTD) is a syndrome that can be clinically difficult to distinguish from AD, but in FTD amyloid deposition is not a characteristic pathological finding.

Purpose

The aim of this study is to investigate PIB retention in FTD.

Methods

Ten patients with the diagnosis of FTD participated. The diagnosis was based on clinical and neuropsychological examination, computed tomography or magnetic resonance imaging scan, and PET with 18Fluoro-2-deoxy-d-glucose (FDG). The PIB retention, measured in regions of interest, was normalised to a reference region (cerebellum). The results were compared with PIB retention data previously obtained from 17 AD patients with positive PIB retention and eight healthy controls (HC) with negative PIB retention. Statistical analysis was performed with a students t-test with significance level set to 0.00625 after Bonferroni correction.

Results

Eight FTD patients showed significantly lower PIB retention compared to AD in frontal (p < 0.0001), parietal (p < 0.0001), temporal (p = 0.0001), and occipital (p = 0.0003) cortices as well as in putamina (p < 0.0001). The PIB uptake in these FTD patients did not differ significantly from the HC in any region. However, two of the 10 FTD patients showed PIB retention similar to AD patients.

Conclusion

The majority of FTD patients displayed no PIB retention. Thus, PIB could potentially aid in differentiating between FTD and AD.
Literatur
1.
Zurück zum Zitat Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound B. Ann Neurol 2004;55:306–319.PubMedCrossRef Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound B. Ann Neurol 2004;55:306–319.PubMedCrossRef
2.
Zurück zum Zitat Price JC, Klunk WE, Lopresti BJ, Lu X, Hodge JA, Ziolko SK, et al. Kinetic modelling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 2005;25:1528–1547.PubMedCrossRef Price JC, Klunk WE, Lopresti BJ, Lu X, Hodge JA, Ziolko SK, et al. Kinetic modelling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 2005;25:1528–1547.PubMedCrossRef
3.
Zurück zum Zitat Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD) part II. Standardization of the neuropathological assessment of Alzheimer’s disease. Neurology 1991;41:479–486.PubMed Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD) part II. Standardization of the neuropathological assessment of Alzheimer’s disease. Neurology 1991;41:479–486.PubMed
4.
Zurück zum Zitat McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia. Arch Neurol 2001;58:1803–1809.PubMedCrossRef McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia. Arch Neurol 2001;58:1803–1809.PubMedCrossRef
5.
Zurück zum Zitat Hodges JR. Frontotemporal dementia (Pick’s disease): clinical features and assessment. Neurology 2001;56(Suppl 4):S6–10.PubMed Hodges JR. Frontotemporal dementia (Pick’s disease): clinical features and assessment. Neurology 2001;56(Suppl 4):S6–10.PubMed
6.
Zurück zum Zitat Neary D, Snowden JS, Gustavsson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546–1554.PubMed Neary D, Snowden JS, Gustavsson L, Passant U, Stuss D, Black S, et al. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546–1554.PubMed
7.
Zurück zum Zitat Kitagaki H, Mori E, Yamaji S, Ishii K, Hirono N, Kobashi S, et al. Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 1998;208:431–439.PubMed Kitagaki H, Mori E, Yamaji S, Ishii K, Hirono N, Kobashi S, et al. Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 1998;208:431–439.PubMed
8.
Zurück zum Zitat Jeong Y, Cho SS, Park JM, Kang SJ, Lee JS, Kang E, et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med 2005;46:233–239.PubMed Jeong Y, Cho SS, Park JM, Kang SJ, Lee JS, Kang E, et al. 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J Nucl Med 2005;46:233–239.PubMed
9.
Zurück zum Zitat Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–198.PubMedCrossRef Folstein MF, Folstein SE, McHugh PR. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–198.PubMedCrossRef
10.
Zurück zum Zitat Claeson L-E, Esbjornsson E, Carte’ B-M, Wahlbin M. Manual to Claeson-Dahls learning test for clinical use. Stockholm: Psykologiförlaget AB; 1971. Claeson L-E, Esbjornsson E, Carte’ B-M, Wahlbin M. Manual to Claeson-Dahls learning test for clinical use. Stockholm: Psykologiförlaget AB; 1971.
11.
Zurück zum Zitat Schmidt M. Rey auditory verbal learning test: a handbook. Los Angeles, California: Western Psychological Services; 1996. Schmidt M. Rey auditory verbal learning test: a handbook. Los Angeles, California: Western Psychological Services; 1996.
12.
Zurück zum Zitat Rascovsky K, Salmon DP, Ho GJ, Galasko D, Peavy GM, Hansen LA, et al. Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology 2002;58:1801–1808.PubMed Rascovsky K, Salmon DP, Ho GJ, Galasko D, Peavy GM, Hansen LA, et al. Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology 2002;58:1801–1808.PubMed
13.
Zurück zum Zitat McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984;34:939–944.PubMed McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 1984;34:939–944.PubMed
14.
Zurück zum Zitat Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 2006;129:2856–2866.PubMedCrossRef Engler H, Forsberg A, Almkvist O, Blomquist G, Larsson E, Savitcheva I, et al. Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 2006;129:2856–2866.PubMedCrossRef
15.
Zurück zum Zitat Andersson JL, Thurfjell L. Implementation and validation of a fully automatic system for intra- and interindividual registration of PET brain scans. J Comput Assist Tomogr 1997;21:136–144.PubMedCrossRef Andersson JL, Thurfjell L. Implementation and validation of a fully automatic system for intra- and interindividual registration of PET brain scans. J Comput Assist Tomogr 1997;21:136–144.PubMedCrossRef
16.
Zurück zum Zitat Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalisations. J Cereb Blood Flow Metab 1983;3:1–7.PubMed Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalisations. J Cereb Blood Flow Metab 1983;3:1–7.PubMed
17.
Zurück zum Zitat Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005;46:1959–1972.PubMed Lopresti BJ, Klunk WE, Mathis CA, Hoge JA, Ziolko SK, Lu X, et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005;46:1959–1972.PubMed
18.
Zurück zum Zitat Yamaguchi H, Hiriai S, Morimatsu M, Shoji M, Nakazato Y. Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by beta protein immunostain. Acta Neuropathol (Berl) 1989;77:314–319.CrossRef Yamaguchi H, Hiriai S, Morimatsu M, Shoji M, Nakazato Y. Diffuse type of senile plaques in the cerebellum of Alzheimer-type dementia demonstrated by beta protein immunostain. Acta Neuropathol (Berl) 1989;77:314–319.CrossRef
19.
Zurück zum Zitat Blomquist G, Ringheim A, Estrada S, Höglund U, Frändberg P, Nylén G, et al. Influx and net accumulation of PIB compared with CBF in a rhesus monkey. EANM05, Istanbul, Turkey. EJNM 2005;32(Suppl 1):S263. Blomquist G, Ringheim A, Estrada S, Höglund U, Frändberg P, Nylén G, et al. Influx and net accumulation of PIB compared with CBF in a rhesus monkey. EANM05, Istanbul, Turkey. EJNM 2005;32(Suppl 1):S263.
20.
Zurück zum Zitat Kertez A, Mc Monagle P, Blair M, Davidson W, Munoz DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128:1996–2005.CrossRef Kertez A, Mc Monagle P, Blair M, Davidson W, Munoz DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128:1996–2005.CrossRef
21.
Zurück zum Zitat Litvan I, Agid Y, Sastrj BS, Jankovic J, Wenning GK, Goetz CG, et al. What are the obstacles for an accurate clinical diagnosis of Pick’s disease? A clinicopathological study. Neurology 1997;48:62–69. Litvan I, Agid Y, Sastrj BS, Jankovic J, Wenning GK, Goetz CG, et al. What are the obstacles for an accurate clinical diagnosis of Pick’s disease? A clinicopathological study. Neurology 1997;48:62–69.
22.
Zurück zum Zitat Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Förstl H, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 2007;28(1):42–50.PubMedCrossRef Diehl-Schmid J, Grimmer T, Drzezga A, Bornschein S, Riemenschneider M, Förstl H, et al. Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiol Aging 2007;28(1):42–50.PubMedCrossRef
23.
Zurück zum Zitat Hulette CH, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM. Neuropathological changes in “normal” aging: evidence for preclinical Alzheimer’s disease in cognitively normal individuals. J Neuropathol Exp Neurol 1998;57:1168–1174.PubMedCrossRef Hulette CH, Welsh-Bohmer KA, Murray MG, Saunders AM, Mash DC, McIntyre LM. Neuropathological changes in “normal” aging: evidence for preclinical Alzheimer’s disease in cognitively normal individuals. J Neuropathol Exp Neurol 1998;57:1168–1174.PubMedCrossRef
24.
Zurück zum Zitat Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003;62:1087–1095.PubMed Knopman DS, Parisi JE, Salviati A, Floriach-Robert M, Boeve BF, Ivnik RJ, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003;62:1087–1095.PubMed
25.
Zurück zum Zitat Klunk WE, Wang Y, Huang G, Debnath ML, Holt DP, Shao L, et al. The binding of 2-(4′-Methylaminophenyl)Benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 2003;23:2086–2092.PubMed Klunk WE, Wang Y, Huang G, Debnath ML, Holt DP, Shao L, et al. The binding of 2-(4′-Methylaminophenyl)Benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci 2003;23:2086–2092.PubMed
Metadaten
Titel
In vivo amyloid imaging with PET in frontotemporal dementia
verfasst von
Henry Engler
Alexander Frizell Santillo
Shu Xia Wang
Maria Lindau
Irina Savitcheva
Agneta Nordberg
Lars Lannfelt
Bengt Långström
Lena Kilander
Publikationsdatum
01.01.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 1/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0523-1

Weitere Artikel der Ausgabe 1/2008

European Journal of Nuclear Medicine and Molecular Imaging 1/2008 Zur Ausgabe